JPS593558B2 - Method for recovering and reusing nickel components in aluminum electrolytic coloring process wastewater - Google Patents

Method for recovering and reusing nickel components in aluminum electrolytic coloring process wastewater

Info

Publication number
JPS593558B2
JPS593558B2 JP15553776A JP15553776A JPS593558B2 JP S593558 B2 JPS593558 B2 JP S593558B2 JP 15553776 A JP15553776 A JP 15553776A JP 15553776 A JP15553776 A JP 15553776A JP S593558 B2 JPS593558 B2 JP S593558B2
Authority
JP
Japan
Prior art keywords
nickel
electrolytic coloring
aluminum electrolytic
recovered
coloring process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15553776A
Other languages
Japanese (ja)
Other versions
JPS5378944A (en
Inventor
慎太郎 山下
宏元 植嶋
武雄 新村
陽一郎 杉原
芳明 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP15553776A priority Critical patent/JPS593558B2/en
Publication of JPS5378944A publication Critical patent/JPS5378944A/en
Publication of JPS593558B2 publication Critical patent/JPS593558B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はアルミニウム電解着色に利用されるニッケルの
有効利用方法に関するものであわ、さらに詳しくはアル
ミニウム電解着色工程排水中に含有されるニッケル成分
を電解着色工程に再利用することのできる状態で回収す
るニッケル成分の回収再利用方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for effectively utilizing nickel used in aluminum electrolytic coloring. More specifically, the present invention relates to a method for effectively utilizing nickel used in aluminum electrolytic coloring. More specifically, the present invention relates to a method for reusing nickel components contained in aluminum electrolytic coloring process wastewater in the electrolytic coloring process. This invention relates to a method for recovering and reusing nickel components in a state where they can be recovered.

金属表面処理加工業界の中でもニッケル塩を主体とする
アルミニウム着色加工業においては、電解着色工程排水
中のニッケル成分は環境汚染防止上問題となるだけでな
く、コスト面からもニッケル成分の回収再利用方法の開
発が望まれている。
In the metal surface treatment industry, in the aluminum coloring industry, which mainly uses nickel salts, the nickel component in the electrolytic coloring process wastewater not only poses a problem in terms of preventing environmental pollution, but also requires recovery and reuse of the nickel component from a cost perspective. Development of a method is desired.

排水中のニッケルを回収する方法としてはキレート性イ
オン交換樹脂あるいは陽イオン交換樹脂の如き吸着体を
利用する方法が考えられるが、これらの吸着体を利用し
て通常の方法でニッケルを回収しようとすれば回収液中
に種々の金属イオンが含有される。通常アルミニウム電
解着色工程排水中にはニッケル成分以外にナトリウムイ
オンおよびカルシウムイオンが共存している。キレート
性イオン交換樹脂は重金属イオンに対して、特に優れた
選択吸着能を有するため陽イオン交換樹脂を用いる場合
に比ベニツケルイオンに対し優れた選択性を示すが、こ
のような電解着色排水をキレート性イオン交換樹脂で処
理しても回収液中にナトリウムイオンおよびカルシウム
イオンが混入することは避けられない。本出願人はキレ
ート性イオン交換樹脂を用いて用廃水中の有用金属を不
純物を除去して高純度で回収する方法について先に出願
した(特願昭49−98586号、特開昭51−254
03号)。
One possible method for recovering nickel from wastewater is to use adsorbents such as chelating ion exchange resins or cation exchange resins, but it is difficult to recover nickel using conventional methods using these adsorbents. In this case, various metal ions are contained in the recovered liquid. Normally, sodium ions and calcium ions coexist in aluminum electrolytic coloring process wastewater in addition to nickel components. Chelating ion exchange resins have particularly excellent selective adsorption ability for heavy metal ions, so when cation exchange resins are used, they show excellent selectivity for Bennickel ions. Even when treated with a chelating ion exchange resin, it is inevitable that sodium ions and calcium ions will be mixed into the recovered liquid. The present applicant previously filed an application for a method for removing impurities and recovering high-purity useful metals from industrial wastewater using a chelating ion exchange resin (Japanese Patent Application No. 49-98586, JP-A No. 51-254).
No. 03).

本発明者らはかかる有用金属の高純度回収方法がアルミ
ニウム電解着色工程排水中のニッケル成分の回収再利用
に有効に利用し得るものと確信し、回収脱離液とアルミ
ニウム電解着色工程への再利用時のニッケル成分の純度
について鋭意研究した結果、電解着色工程で再利用する
ニッケル成分の純度は99%以上でなければ着色工程な
らびに製品に種々の問題を生じ、特に直流法による電解
着色に卦いてはニツケル成分の純度が約99.5(fl
)以上で、回収ニツケル水溶液中のニツケルイオン濃度
が12〜509/t1カルシウムイオン濃度が550f
9/!!.以下およびナトリウムイオン濃度が100f
!f/t以下でなければ再利用に供し難いことを見いだ
し本発明を完成した。すなゎち本発明はアルミニウム電
解着色工程排水をキレート性イオン交換樹脂で処理し、
排水中のニツケルイオンを吸着せしめた該樹脂をさらに
ニツケル塩水溶液で処理した後二ツケルイオンを鉱酸水
溶液で脱離してニツケル成分の純度が99%以上のニツ
ケル塩水溶液として回収し、この回収ニツケル塩をアル
ミニウム電解着色工程に再利用することを特徴とするア
ルミニウム電解着色工程排水中のニツケル成分の回収再
利用方法である。
The present inventors believe that such a high-purity recovery method for useful metals can be effectively used to recover and reuse the nickel component in the aluminum electrolytic coloring process wastewater, and we As a result of intensive research on the purity of nickel components during use, we found that unless the purity of nickel components reused in the electrolytic coloring process is 99% or higher, various problems will occur in the coloring process and products, especially in electrolytic coloring using the direct current method. The purity of the nickel component is approximately 99.5 (fl
), the nickel ion concentration in the recovered nickel aqueous solution is 12 to 509/t1 and the calcium ion concentration is 550f.
9/! ! .. or less and sodium ion concentration is 100f
! They found that it is difficult to reuse the material unless it is less than f/t, and completed the present invention. In other words, the present invention treats aluminum electrolytic coloring process wastewater with a chelating ion exchange resin,
The resin adsorbing the nickel ions in the wastewater is further treated with an aqueous nickel salt solution, and then the nickel ions are desorbed with an aqueous mineral acid solution to recover a nickel salt aqueous solution with a purity of nickel component of 99% or more. This is a method for recovering and reusing nickel components in aluminum electrolytic coloring process wastewater, which is characterized in that nickel components are reused in the aluminum electrolytic coloring process.

本発明にいうニツケル成分の純度とは回収溶液中の全金
属イオン濃度に対するニツケルイオン濃度の重量百分率
をいう。アルミニウム電解着色工程排水中にはニツケル
イオン、カルシウムイオン訃よびナトリウムイオンが含
有されており、キレート性イオン交換樹脂はNi2+〉
Ca2+〉Na+の順のイオン交換捕促能力を有するが
、かかる排水をキレート性イオン父換樹脂で処理し鉱酸
で脱離しても、回収溶液中のニツケル成分の純度はせい
ぜい約98%、最高でも約98.5%程度にしかならな
い。
The purity of the nickel component as used in the present invention refers to the weight percentage of the nickel ion concentration to the total metal ion concentration in the recovered solution. The aluminum electrolytic coloring process wastewater contains nickel ions, calcium ions, and sodium ions, and the chelating ion exchange resin is Ni2+
It has the ability to capture ion exchange in the order of Ca2+>Na+, but even if such wastewater is treated with a chelating ion parent exchange resin and desorbed with mineral acid, the purity of the nickel component in the recovered solution is at most about 98%, and at most However, it only reaches about 98.5%.

しかし、かかる回収液をアルミニウムの電解着色工程へ
返却して再利用すると着色性に種々の問題が生じるため
、この回収溶液はさらにニツケル成分の純度を高めなけ
ればアルミニウムの電解着色工程へ返却して再利用する
ことができない。しかるに排水中のニツケルイオンを吸
着したキレート性イオン交換樹脂をさらにニツケル塩水
溶液で処理するとキレート性イオン交換樹脂はニツケル
イオンと優れたイオン交換捕促能力を有するのでニツケ
ルイオンは該樹脂中に残留しているカルシウムイオンお
よびナトリウムイオンと置換する。
However, if such recovered solution is returned to the aluminum electrolytic coloring process and reused, various problems will occur in coloring properties, so this recovered solution must be returned to the aluminum electrolytic coloring process unless the purity of the nickel component is further improved. cannot be reused. However, when a chelating ion exchange resin that has adsorbed nickel ions in wastewater is further treated with an aqueous nickel salt solution, the nickel ions remain in the resin because the chelating ion exchange resin has an excellent ion exchange trapping ability with nickel ions. It replaces the calcium and sodium ions that are present.

このとき用いるニツケル塩水溶液は前もつて脱離回収し
た高濃度二ツケル塩溶液の一部を稀釈したものであつて
も、あるいは新しいニツケル塩溶液であつてもよい。ニ
ツケル塩溶液はニッケルイオン濃度300〜3000η
/t1好ましくは約1000弔1程度のものが適当であ
り、樹脂体積の2〜10倍容量のかかるニツケル塩溶液
を空間速度SV=1〜10(1/Hr)、好ましくはS
V=5(1/Hr)以下で通液すれば、樹脂中に残留し
ているカルシウムイオンおよびナトリウムイオンが容易
にニツケルイオンに置換する。この置換処理において、
ニツケル塩溶液中のニツケルイオン濃度が300mp1
以下ではナトリウムおよびカルシウムの押出しに長時間
を要し、そのため多量の溶液を必要とするので実用的で
なく、一方3000ηl以上では殆どのニツケルが無汰
になるのでやはb実用的でなくなる。
The aqueous nickel salt solution used at this time may be a diluted portion of the high concentration nickel salt solution previously desorbed and recovered, or may be a fresh nickel salt solution. Nickel salt solution has a nickel ion concentration of 300 to 3000η
/t1 is preferably about 1,000 m/t1, and the volume of such a nickel salt solution is 2 to 10 times the resin volume at a space velocity of SV=1 to 10 (1/Hr), preferably S
If the liquid is passed at V=5 (1/Hr) or less, the calcium ions and sodium ions remaining in the resin are easily replaced with nickel ions. In this replacement process,
The nickel ion concentration in the nickel salt solution is 300mp1
If it is less than 3000 ηl, most of the nickel will be lost, so it will not be practical because it will take a long time to extrude sodium and calcium and therefore a large amount of solution will be required.

キレート性イオン交換樹脂による排水中のニツケルイオ
ンの吸着処理、ニツケル塩溶液による置換処理、さらに
は鉱酸による脱離処理は靜的方法および動的方法のいず
れの方法でも行い得るが、工業的規模で実施する場合は
キレート性イオン交換樹脂を充填したカラムに処理液を
通液する動的方法が好ましい。
The adsorption treatment of nickel ions in wastewater using a chelating ion exchange resin, the replacement treatment with a nickel salt solution, and the desorption treatment with a mineral acid can be carried out by either a quiet method or a dynamic method, but it is difficult to carry out on an industrial scale. When carrying out this method, a dynamic method in which the treatment solution is passed through a column filled with a chelating ion exchange resin is preferred.

ニツケルイオンを吸着した樹脂を動的カラム法で鉱酸を
通液して脱離すると、一般に第1図に示す如く回収脱離
液中のニツケル成分の濃度変化が生じる0第1図は鉱酸
をキレート性イオン交換樹脂層に通液してニツケル成分
を脱離した場合の回収液の脱離曲線であり、横軸は鉱酸
通液量を樹脂体積の倍数を単位として示すものであり、
縦軸はそのときのニツケルイオン濃度を(9/t)で示
すものである。脱離処理に用いる鉱酸は0.5〜8規定
の硫酸あるいは塩酸等の水溶液が適当であるが、特に1
〜4規定が好ましい。
When a resin that has adsorbed nickel ions is desorbed by passing a mineral acid through it using a dynamic column method, the concentration of nickel components in the recovered and desorbed liquid generally changes as shown in Figure 1. This is the desorption curve of the recovered liquid when the nickel component is desorbed by passing it through the chelating ion exchange resin layer, and the horizontal axis shows the amount of mineral acid passing in units of multiples of the resin volume.
The vertical axis indicates the nickel ion concentration at that time as (9/t). As the mineral acid used for the desorption treatment, an aqueous solution such as 0.5 to 8 N sulfuric acid or hydrochloric acid is suitable, but especially 1
-4 regulation is preferable.

脱離処理に際しては、最初ナトリウムイオンおよびカル
シウムイオンが脱離し、引続きニツケルイオンが脱離す
るので回収液を分割して回収すれば回収液中のニツケル
成分はさらに高純度にすることが可能である。また、置
換処理に用いるニツケル塩溶液はそのPHが5以上であ
ればニツケル濃度300?/t以下の場合と同様にNa
,Ca、特にCaの押出しに長時間を要し、PHが2以
下ならNa,Caの押出しと同時に吸着したニツケルも
漏洩するので、そのPHが2〜5であることが望ましい
。たとえば、第1図のような脱離曲線が得られる回収方
法に訃いて、回収フラクシヨン1と回収フラクシヨン2
を分割すれば回収フラクシヨン2に示す回収液中のニツ
ケルイオン濃度は159/t以上とな虱かつナトリウム
イオン}よびカルシウムイオン等の不純物濃度を著しく
少なくすることができる。
During the desorption process, sodium ions and calcium ions are first desorbed, and then nickel ions are desorbed, so if the recovered liquid is divided and recovered, the nickel component in the recovered liquid can be made even more pure. . Also, if the pH of the nickel salt solution used in the replacement treatment is 5 or higher, the nickel concentration is 300? Similarly to the case below /t, Na
, Ca, especially Ca, takes a long time to extrude, and if the pH is 2 or less, adsorbed nickel will also leak out at the same time as Na and Ca are extruded, so it is desirable that the pH is 2 to 5. For example, if a recovery method is used that yields a desorption curve as shown in Figure 1, recovery fraction 1 and recovery fraction 2 are
By dividing the fraction, the concentration of nickel ions in the recovered liquid shown in recovered fraction 2 will be 159/t or more, and the concentration of impurities such as sodium ions and calcium ions can be significantly reduced.

このようにして分別回収したニツケル成分は脱離処理に
利用した鉱酸のニツケル塩水溶液であるが、この水溶液
中の不純物金属イオン濃度はカルシウムイオン濃度55
0mυl以下おrびナトリウムイオン濃度100f19
/t以下であり、他に微量に含有されるアルカリ金属お
よびアルカリ土類金属イオンをカルシウムイオン訃よび
ナトリウムイオンに換算してもこの範囲を越えることは
ない。
The nickel component separated and recovered in this way is an aqueous solution of mineral acid nickel salt used in the desorption process, and the impurity metal ion concentration in this aqueous solution is calcium ion concentration of 55.
0mυl or less and sodium ion concentration 100f19
/t or less, and even if other trace amounts of alkali metal and alkaline earth metal ions contained in calcium ions and sodium ions are converted into calcium ions and sodium ions, they do not exceed this range.

アルミニウム電解着色工程排水中のニツケル成分の回収
においてニツケルイオン濃度を129/tより低くする
と回収液量が多く液バランスがとれなくな虱このような
回収液を再利用して電解着色すると色調が淡く品質が悪
くなる。またニツケルイオン濃度を509/t以上にす
ると回収液量が少なくなb過ぎ回収効率の低下をまねく
ので回収液中のニツケルイオン濃度は12〜509/t
であることが好ましい。一方、カルシウムイオン濃度が
550η/t以上の回収液を着色浴に戻すとカルシウム
イオンの蓄積が発生し製品の色調を淡くして製品の品質
管理を困難にし、またナトリウムイオンが1001nυ
Z以上になつても同様である。特にカルシウムイオンの
増加は配管および浴中でのスケーリング等の原因とな)
その限界濃度は550雫1付近である。本発明の方法で
はかかる条件を満足する高純度の回収液が容易に得られ
るので、これをアルミニウムの電解着色工程へ返却して
再利用しても何ら問題は生じない。本発明の方法はアル
ミニウム電解着色工程に利用したニツケル成分を系外に
排出することがないので頃境汚染防止上非常に有効な処
理方法であるばかジか、回収したニツケル成分をそのま
ま再利用するものであるから回収したニツケル成分の有
効利用が簡単で、かつ処理コストが回収ニツケル成分の
再利用で吸収できるメリツトもある。次に実施例により
本発明の方法をさらに詳細に説明する。実施例 1 キレート性イオン父換樹脂ユニセレツクUR一30(ユ
ニチカ(株)社製)をガラスカラム2本に各100m1
宛充填し、それぞれのカラムに第1表Aに示した組成の
アルミ電解着色工程水洗水をSV=20(1/Hr)で
、樹脂体積の1000倍量(100t)通水した。
When recovering nickel components from wastewater from the aluminum electrolytic coloring process, if the nickel ion concentration is lower than 129/t, the amount of recovered liquid will be too large and the liquid balance will not be maintained.If such recovered liquid is reused for electrolytic coloring, the color tone will be pale. Quality deteriorates. In addition, if the nickel ion concentration is 509/t or more, the amount of recovered liquid will be too small, leading to a decrease in recovery efficiency, so the nickel ion concentration in the recovered liquid should be 12 to 509/t.
It is preferable that On the other hand, if the recovered liquid with a calcium ion concentration of 550η/t or more is returned to the coloring bath, calcium ions will accumulate, making the color tone of the product pale and making product quality control difficult.
The same holds true even if it becomes Z or more. In particular, an increase in calcium ions can cause scaling in piping and baths.)
Its critical concentration is around 550 drops. In the method of the present invention, a highly pure recovered liquid that satisfies these conditions can be easily obtained, so no problem will occur even if the recovered liquid is returned to the aluminum electrolytic coloring process and reused. The method of the present invention does not discharge the nickel component used in the aluminum electrolytic coloring process outside the system, so it is a very effective treatment method for preventing environmental pollution.In addition, the recovered nickel component can be reused as is. Since the nickel components are recycled, it is easy to effectively use the recovered nickel components, and there is also the advantage that processing costs can be absorbed by reusing the recovered nickel components. Next, the method of the present invention will be explained in more detail with reference to Examples. Example 1 Two glass columns each containing 100 m1 of chelating ion father exchange resin Uniselect UR-30 (manufactured by Unitika Co., Ltd.)
Each column was filled with aluminum electrolytic coloring process washing water having the composition shown in Table 1 A at SV=20 (1/Hr) in an amount 1000 times the resin volume (100 t).

通水を終えた2本のカラムのうち1本を2NH2s04
70m11水130m1で脱離処理した。
One of the two columns after water flow was filled with 2NH2s04.
Desorption treatment was performed using 70 ml of water and 130 ml of water.

得られた脱離液を第1図に示すフラクシヨンに区分し、
回収2フラクシヨンの組成を測定したところ第1表Bに
示す如くニツケル純度が98.5%であつた。残わの他
の1本のカラムには前記脱離液の回収2フラクシヨンの
一部を稀釈して第1表Cに示した液質の置換液とし、そ
の500m1をSV=2(1/Hr)で通液した。
The resulting desorbed liquid was divided into the fractions shown in Figure 1,
The composition of the recovered second fraction was measured, and as shown in Table 1 B, the nickel purity was 98.5%. In the other remaining column, a part of the recovered two fractions of the desorbed liquid was diluted to obtain a replacement liquid having the liquid quality shown in Table 1 C, and 500 ml of the liquid was diluted at SV = 2 (1/Hr). ).

その後前記と同様に2N−H2sO47Omll水13
0m1で脱離処理5し、第1図に示すフラクシヨンに区
分して回収した。回収2フラクシヨンの組成は第1表D
に示す如くニツケル純度99.54f)の高純度二ツケ
ル溶液であつた0この回収液と同組成の液をアルミニウ
ムの着色電解工程へ供給しても着色性に何ら問題は生じ
なかつた。
Then, as above, 2N-H2sO47Oml water 13
The fraction was desorbed at 0 ml and collected in fractions as shown in FIG. The composition of the recovered 2nd fraction is shown in Table 1 D.
As shown in Figure 2, even when a liquid having the same composition as this recovered liquid, which was a high purity Niskel solution with a nickel purity of 99.54 f), was supplied to the aluminum coloring electrolytic process, no problem occurred in the coloring property.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はニツケルの脱離曲線であV1横軸は通液量をカ
ラム中の樹脂体積の倍数で表示し、縦軸はカラムから漏
洩してくるニツケル濃度を〔9/t単位で表示したもの
である。
Figure 1 shows the desorption curve of nickel. It is something.

Claims (1)

【特許請求の範囲】 1 アルミニウム電解着色工程排水をキレート性イオン
交換樹脂で処理し、排水中のニッケルイオンを吸着せし
めた該樹脂をさらにニッケル塩水溶液で処理した後、ニ
ッケルイオンを鉱酸水溶液で脱離してニッケル成分の純
度が99%以上のニッケル塩水溶液として回収し、この
回収ニッケル塩をアルミニウム電解着色工程に再利用す
ることを特徴とするアルミニウム電解着色工程排水中の
ニッケル成分の回収再利用方法。 2 ニッケル成分の純度99%以上のニッケル塩水溶液
がニッケルイオン濃度12〜50g/l、カルシウムイ
オン濃度550mg/l以下およびナトリウムイオン濃
度100mg/l以下である特許請求の範囲第1項記載
のニッケル成分の回収再利用方法。
[Scope of Claims] 1. Wastewater from an aluminum electrolytic coloring process is treated with a chelating ion exchange resin, and the resin that adsorbs nickel ions in the wastewater is further treated with an aqueous nickel salt solution, and then the nickel ions are removed with an aqueous mineral acid solution. Recovery and reuse of nickel components in wastewater from an aluminum electrolytic coloring process, characterized in that the nickel components are desorbed and recovered as a nickel salt aqueous solution with a purity of 99% or more, and the recovered nickel salts are reused in the aluminum electrolytic coloring process. Method. 2. The nickel component according to claim 1, wherein the nickel salt aqueous solution with a purity of 99% or more has a nickel ion concentration of 12 to 50 g/l, a calcium ion concentration of 550 mg/l or less, and a sodium ion concentration of 100 mg/l or less. Collection and reuse method.
JP15553776A 1976-12-22 1976-12-22 Method for recovering and reusing nickel components in aluminum electrolytic coloring process wastewater Expired JPS593558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15553776A JPS593558B2 (en) 1976-12-22 1976-12-22 Method for recovering and reusing nickel components in aluminum electrolytic coloring process wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15553776A JPS593558B2 (en) 1976-12-22 1976-12-22 Method for recovering and reusing nickel components in aluminum electrolytic coloring process wastewater

Publications (2)

Publication Number Publication Date
JPS5378944A JPS5378944A (en) 1978-07-12
JPS593558B2 true JPS593558B2 (en) 1984-01-24

Family

ID=15608222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15553776A Expired JPS593558B2 (en) 1976-12-22 1976-12-22 Method for recovering and reusing nickel components in aluminum electrolytic coloring process wastewater

Country Status (1)

Country Link
JP (1) JPS593558B2 (en)

Also Published As

Publication number Publication date
JPS5378944A (en) 1978-07-12

Similar Documents

Publication Publication Date Title
US4119508A (en) Method of purifying the raw brine used in alkali salt electrolysis
CN106745887A (en) Industrial waste acid removal of impurities recovery process
CN110436482A (en) A kind of method of high potassium/sodium in removal ammonium chloride mother liquor
US4060465A (en) Method of purifying the raw brine used in alkali salt electrolysis
US2789036A (en) Purification of concentrated alkali metal hydroxide by ion exchange
JPS593558B2 (en) Method for recovering and reusing nickel components in aluminum electrolytic coloring process wastewater
JPH07232915A (en) Method for recovering fluorine in waste water
JP2001104807A (en) Method for recovering boron
JPH04231487A (en) Regeneration method of pickling waste liquor containing metal salt and acid
JP3375154B2 (en) Fluorine-containing water treatment equipment
JP4143707B2 (en) Method for producing high purity sodium chloride crystals
JP2012192341A (en) Treating method of fluoroborate-containing waste liquid
JP3364308B2 (en) Wastewater treatment method and apparatus
JPS596197B2 (en) Method for regenerating houfu compound wastewater treatment agent
JP3466646B2 (en) Method of treating water containing hydrogen fluoride and ammonium fluoride
JPS58174241A (en) Method for regenerating boron selective ion exchange resin
JPS60225689A (en) Treatment of waste boric acid solution
SU1281298A1 (en) Method of separating copper and zinc salts
SU638549A1 (en) Method of purifying electrolytic production waste liquids
JPH0889949A (en) Removing device for fluoride ion
SU762957A1 (en) Filtering material for purifying waste liquors from impurities of heavy and non-ferrous metals
SU1103891A1 (en) Method of regeneration of cation exchanger saturated with ions of heavy metals
JPS593405B2 (en) Salt water purification method
US3029143A (en) Recovery of mercury from brine containing mercury salts in solution
JPS5930454B2 (en) Exhaust gas treatment method