JPS5935091A - Method for liquid-phase epitaxial growth - Google Patents

Method for liquid-phase epitaxial growth

Info

Publication number
JPS5935091A
JPS5935091A JP14504782A JP14504782A JPS5935091A JP S5935091 A JPS5935091 A JP S5935091A JP 14504782 A JP14504782 A JP 14504782A JP 14504782 A JP14504782 A JP 14504782A JP S5935091 A JPS5935091 A JP S5935091A
Authority
JP
Japan
Prior art keywords
type
concentration
growth
epitaxial layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14504782A
Other languages
Japanese (ja)
Other versions
JPH0214317B2 (en
Inventor
Toshiharu Kawabata
川端 敏治
Susumu Furuike
進 古池
Toshio Matsuda
俊夫 松田
Hitoo Iwasa
仁雄 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14504782A priority Critical patent/JPS5935091A/en
Publication of JPS5935091A publication Critical patent/JPS5935091A/en
Publication of JPH0214317B2 publication Critical patent/JPH0214317B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To achieve the growth of an n type epitaxial layer having high crystallinity in the preparation of an n type semiconductor using a liquid-phase epitaxial growth method, by setting the concentration of the donor impurity for doping at a level above the concentration of the residual acceptor. CONSTITUTION:An n type GaP substrate doped with S as a donor impurity at 980 deg.C is made to contact with a GaP solution doped with Te as a donor impurity at the same concentration as that of S. The system is heated for >=10min to increase the concentration of the impurities at the interface of both components, and cooled slowly to effect the epitaxial growth of a GaP crystal. The growth of the n type epitaxial layer begins before the S diffused from the substrate into the solution is separated far from the n type GaP substrate, and consequently, the donor concentration in the n type epitaxial layer becomes high at the initiation of growth, and the formation of p type inversion layer can be prevented. An n type GaP epitaxial layer having low donor concentration and excellent crystallinity can be prepared by this process.

Description

【発明の詳細な説明】 産業−1−の利用分野 液相エピタキシャル成長方法は半導体エピタキシャル層
の成長に当り広く用いられている方法であり、特に燐化
ガリウム(GaP)や砒化ガリウム(GaAs ) 等
のo[−v化合物半導体のエピタキシャル成長には欠か
すことのできない方法である。
[Detailed Description of the Invention] Field of Application in Industry-1 The liquid phase epitaxial growth method is a method widely used for growing semiconductor epitaxial layers, especially for gallium phosphide (GaP), gallium arsenide (GaAs), etc. o[-v This is an indispensable method for epitaxial growth of compound semiconductors.

半導体のエピタキシャル層にはn型あるいはp型の電導
型を決定するために、ドナー不純物あるいはアクセプタ
不純物をドーピングする。そして、これらの不純物濃度
が低い程、一般に結晶性は良好となる。
A semiconductor epitaxial layer is doped with a donor impurity or an acceptor impurity to determine its conductivity type, n-type or p-type. Generally, the lower the concentration of these impurities, the better the crystallinity.

本発明は結晶性の良好な低不純物濃度のエピタキシャル
層を成長する方法を提供するものであり、以下木讃昶1
1湘ヰヤ≠、G a P緑色発光ダイオード(LED)
の製造か法を例示して説明する。
The present invention provides a method for growing an epitaxial layer with good crystallinity and low impurity concentration, and is described below as follows:
1 濘ヰiya≠、G a P green light emitting diode (LED)
The manufacturing method will be illustrated and explained.

従来例の構成とその問題点 G a P緑色LEDはn型Ga P基板J−に液相法
により所定電導型のG a Pエピタキシャル層を成長
させて形成される。このG a P緑色LEDは発光中
心として窒素(N)がドーピングされており、主にn層
で発光するが、n層中のドナー不純物はこの発光を妨け
るように作用する。したかって高発光効率のGaP緑色
LEDを得るためには低ドナー濃度のn型エピタキシャ
ル層を形成することか必要となる。
Conventional Structure and Problems The GaP green LED is formed by growing a GaP epitaxial layer of a predetermined conductivity type on an n-type GaP substrate J- by a liquid phase method. This GaP green LED is doped with nitrogen (N) as a luminescent center, and mainly emits light in the n layer, but donor impurities in the n layer act to prevent this light emission. Therefore, in order to obtain a GaP green LED with high luminous efficiency, it is necessary to form an n-type epitaxial layer with a low donor concentration.

ところで、このエピタキシャル1曽形成のために用いる
液相エピタキシャル成長用ボートのt=t I4には高
純度で耐熱性に優れていることか要求される。
By the way, t=t I4 of the liquid phase epitaxial growth boat used for forming this epitaxial layer is required to have high purity and excellent heat resistance.

現在、この要求を満たす材料としては石英とJy −ボ
ンたけである。しかしながら石英ボードを朗用する古、
石英か溶解液のガリウム(Ga)に溶け、シリコン(S
i)と酸素(0)がエピタキシャル層中にl戻入するた
め低不純物濃度層の成長は不5f能である。このため低
不純物濃度のエピタキシャル成長用ボートの材料として
はカーボンが用いられるが、カーボンには不純物に対し
て強い吸着作用かあり、純化処理を行ってもわずかな不
純物が残留している。これらの不純物のうち、亜鉛(Z
n)やマグネシウム(Mq)等のJll −V化合物半
導体のアクセプタとなる不純物が特に残留しやすい。ま
たボートの材料であるカーボンもわずかにGaに溶解し
エピタキシャル層中に混入しアクセプタとして働く。
Currently, quartz and Jy-bontake are materials that meet this requirement. However, in the old days when quartz boards were used,
Dissolved in quartz or gallium (Ga) solution, silicon (S
Since 1) and oxygen (0) return to the epitaxial layer, growth of a low impurity concentration layer is impossible. For this reason, carbon is used as a material for epitaxial growth boats with low impurity concentrations, but carbon has a strong adsorption effect on impurities, and even after purification treatment, a small amount of impurities remains. Among these impurities, zinc (Z
Impurities that serve as acceptors for Jll-V compound semiconductors, such as n) and magnesium (Mq), are particularly likely to remain. Further, carbon, which is a material of the boat, is slightly dissolved in Ga and mixed into the epitaxial layer, and acts as an acceptor.

このようなカーボンの性質により、カーボンボートを用
いてGaPの液相エピタキシャル1衣長を行った場合、
2X10  an  程度の残留アクセプタか混入する
ことは避けられない。したがって、ドナー濃度を残留ア
クセプタ濃度以−ドにすると、エピタキシャル層はp型
に反転する。特にエピタキシャル層の成長開始時にはド
ナー不純物かドーピングされにくい現象かあり、成長開
始直後に形成されるエピタキシャル層部分が高41L抗
層となること、あるいはp型反転層となるこ七などの現
象が発生しやすい。
Due to these properties of carbon, when liquid phase epitaxial growth of GaP is performed using a carbon boat,
It is unavoidable that about 2×10 an of residual acceptors are mixed in. Therefore, when the donor concentration is made equal to or higher than the residual acceptor concentration, the epitaxial layer is inverted to p-type. In particular, when the growth of the epitaxial layer begins, donor impurities are difficult to dope, and phenomena such as the epitaxial layer formed immediately after the start of growth become a high 41L antilayer or a p-type inversion layer occur. It's easy to do.

第1図にGaP緑色LEDの従来の液相エピタキシャル
成長の温度プログラムを示す。図中1はエピタキシャル
1戊長の主炉の温度を、2はアクセプタ不純物であるZ
nを加熱する副炉の温度を示す。
FIG. 1 shows a temperature program for conventional liquid phase epitaxial growth of a GaP green LED. In the figure, 1 is the temperature of the main furnace for epitaxial 1-length, and 2 is the acceptor impurity Z.
Indicates the temperature of the sub-furnace that heats n.

この温度プログラムによるエピタキシャル成長の実例は
り、下の通りである。まず、ドナー不純物としてイオウ
(S)が4×1o17ffi−3ドーピングされている
n型GaP基板を準備するとともに、エピタキシャル成
長用の溶融液として、ドナー不純物となるテルル(Te
)をドーピングした溶融液を弗備する。そして、溶融液
の冷却速度を1℃/分番こ定め、1000℃から900
℃まで徐冷すること番こよりn型エピタキシャル層を成
長させる。次し)で、上記溶融液にZnを気相てTe以
1−にドーピングし、この溶や液を上記と同様の冷却速
度で900℃から800℃まで徐冷することにより、p
型エピタキンヤル層を成長させる・ 第2図はGaに対してTea度を5X10−’wi  
%とした溶融液を用して形成したGaP緑色L 、E 
Dの不純物濃度分布を示ず図であり、図中、3はn型G
 a P Jk板、4はn型エピタキシャル、層そして
6はp型エピタキシャル層である。ところで、」二連し
たカーボンの性質によって、n型G a P基板の」一
番こ成長させたn型エピタキシャル層6の成長開始時に
、ドナー濃度が残留アクセプタ濃度よりも低くなり、こ
のため、図示するようにp型反転層6か発生している。
An example of epitaxial growth using this temperature program is shown below. First, an n-type GaP substrate doped with 4×1o17ffi-3 of sulfur (S) as a donor impurity is prepared, and tellurium (Te) as a donor impurity is prepared as a melt for epitaxial growth.
) is prepared. Then, the cooling rate of the melt was determined to be 1°C/min, and the cooling rate was set at 1°C/min.
An n-type epitaxial layer is grown by slow cooling to .degree. Then, by doping the above melt with Zn in the vapor phase to more than Te, and slowly cooling this solution from 900°C to 800°C at the same cooling rate as above, p
Growing a type epitaxial layer.
GaP green L, E formed using molten liquid with %
This figure does not show the impurity concentration distribution of D, and in the figure, 3 is n-type G.
a P Jk plate, 4 is an n-type epitaxial layer and 6 is a p-type epitaxial layer. By the way, due to the nature of double carbon, the donor concentration becomes lower than the residual acceptor concentration at the beginning of the growth of the first grown n-type epitaxial layer 6 of the n-type GaP substrate. A p-type inversion layer 6 is generated as shown in FIG.

高抵抗層あるいはp型反転層が発生すると、LEDの順
方向電圧が高くなる。従来はこの高抵抗層あるいはp型
反転層の発生を防1トするため、高ドナー濃塵層の成長
がなされており、このため低発光効率のGeP緑色LE
DLか得られていなかった。
When a high resistance layer or a p-type inversion layer occurs, the forward voltage of the LED increases. Conventionally, in order to prevent the generation of this high resistance layer or p-type inversion layer, a high donor concentration layer has been grown, and for this reason GeP green LE with low luminous efficiency has been grown.
I wasn't able to get DL.

発明の目的 本発明は高抵抗層あるいはp型反転層の発生を防止する
ことができ、しかも低ドナー濃度のエピタキシャル層を
成長することができる液相エピタキシャル成長方法を提
供するものである。
OBJECTS OF THE INVENTION The present invention provides a liquid phase epitaxial growth method that can prevent the formation of a high resistance layer or a p-type inversion layer and can grow an epitaxial layer with a low donor concentration.

発明の構成 本発明は高不純物濃度の結晶上にこれと同じ電導型の低
不純物濃度のエピタキシャル層を成長するにあたり、エ
ピタキシャル層の成長開始n;1に溶融液の温度を4−
昇させて上記高不純物濃度の結晶を溶融液中に溶解させ
、溶解した結晶中の不純物が溶除lfk中を拡散しない
うちに成長を開始することによ−)で、成長開始時のエ
ピタキシャル層中にドナー不純物を高濃度にドーピング
してドナー不純物11.Q、1度を残留アクセプタ濃度
以上に高め、高抵抗11・′1,1・)zlいは反fr
ri:@の発生を防止するものである。
Structure of the Invention In the present invention, when growing an epitaxial layer with a low impurity concentration of the same conductivity type on a crystal with a high impurity concentration, the temperature of the melt is set to 4-1 at the start of growth of the epitaxial layer.
The epitaxial layer at the start of growth is Donor impurity 11. is doped with a donor impurity at a high concentration. Q, 1 degree is raised above the residual acceptor concentration, and high resistance 11・′1,1・)zl or antifr
This is to prevent the occurrence of ri:@.

実施例の説明 第3図は、GaP緑色LEDを形成するための本発明の
液相エピタキシャル成長方法の温度プログラムを示す。
DESCRIPTION OF THE EMBODIMENTS FIG. 3 shows the temperature program of the liquid phase epitaxial growth method of the present invention for forming GaP green LEDs.

図中1および2は、第1図と同様、主炉と副炉の温度を
示す。本発明の方法では、先ず980℃でSがドーピン
グされているn型GaP基板と従来と同じ濃度にTeを
ドーピングした溶融液を接触させた。次に溶融液の71
.jX度を20℃ 1・竹させ、10分後に成長を開始
した。これ以後の成長は従来の方法と同一の条件で行っ
た。
In the figure, 1 and 2 indicate the temperatures of the main furnace and the auxiliary furnace, similar to FIG. 1. In the method of the present invention, first, an n-type GaP substrate doped with S was brought into contact with a melt doped with Te at the same concentration as in the prior art at 980°C. Next, 71 of the melt
.. 1. Bamboo was grown at 20°C, and growth started 10 minutes later. Subsequent growth was performed under the same conditions as in the conventional method.

このようにして形成したGaP緑色LEDの不純物濃度
分布を第4図に示す。本発明の方法では、」−記のよう
にn型エピタキシャル層4の成長開始前にn型GaP基
板3を溶融液と接触させてその表i′liI層を溶解さ
せているため、溶融液のn型G a P基板に接してい
る領域では溶解したn型GaP基板部分内のSが高濃度
となる。
FIG. 4 shows the impurity concentration distribution of the GaP green LED thus formed. In the method of the present invention, the n-type GaP substrate 3 is brought into contact with the melt to dissolve the surface i'liI layer before the growth of the n-type epitaxial layer 4 starts, as shown in "-". In the region in contact with the n-type GaP substrate, the concentration of S in the dissolved n-type GaP substrate portion is high.

このSが溶融液中を拡散してn型GaP基板3から遠く
離れないうちにn型エピタキシャル層の成長を開始させ
ているため、成長開始時のn型エピタキシャル層か高ド
ナー濃度となり、p型反’にに層の発生か防1にできた
Since this S diffuses in the melt and starts the growth of the n-type epitaxial layer before it is far from the n-type GaP substrate 3, the n-type epitaxial layer at the start of growth has a high donor concentration, and the p-type I was able to make it defense 1 due to the generation of a layer.

なお、昇温してから成長開始までの時間を、10分以上
に設定すると、溶融液中をドナー不純物であるSが一様
に拡散してしまい、成長開始直後のエピタキシャル層部
分にp型反転層が発生した。
Note that if the time from the temperature rise to the start of growth is set to 10 minutes or more, S, which is a donor impurity, will diffuse uniformly in the melt, causing p-type inversion in the epitaxial layer immediately after the start of growth. A layer occurred.

n型GaP基板と溶融液との接触、H温ならひに昇温か
ら成長開始までの時間の設定により、高抵抗層あるいは
p型反転層の発生を防出してかつ低ドナー濃度のエピタ
キシャル層の成長が可能となり、高発光効率のGaP緑
色LEDを得ることかできた。
By contacting the n-type GaP substrate with the melt and setting the time from the temperature rise to the start of growth, it is possible to prevent the formation of a high-resistance layer or a p-type inversion layer and to form an epitaxial layer with a low donor concentration. Growth became possible, and we were able to obtain a GaP green LED with high luminous efficiency.

なお、以上の実施例では、p型反転層の発生を抑圧して
低ドナー濃度のエピタキシャル層を成長させる場合を例
示したが、p型基板11に低アクセプタ濃度のエピタキ
シャル層を成長さぜるにあたり、カーボンボードにドナ
ー不純物が吸着されていると残留ドナー濃度の関係でn
型反転層の形成される場合があるが、本発明の方法によ
れば、このn型反転層の発生を抑えることかできる。
In the above embodiments, the case where an epitaxial layer with a low donor concentration is grown by suppressing the generation of a p-type inversion layer was exemplified, but when growing an epitaxial layer with a low acceptor concentration on the p-type substrate 11, , if donor impurities are adsorbed on the carbon board, n due to the residual donor concentration
Although a type inversion layer may be formed, the method of the present invention can suppress the formation of this n-type inversion layer.

発明の効果 以」二説明してきたところから明らかなように本発明の
方法によれば、p型反転層の発生を防止してかつ低ドナ
ー濃度のエピタキシャル層を、あるいは遂にn型反転層
の発生を防止してかね低アクセプタ濃度のエピタキシャ
ル層を成長することかできる。
Effects of the Invention As is clear from the above description, the method of the present invention can prevent the formation of a p-type inversion layer and form an epitaxial layer with a low donor concentration, or can finally form an n-type inversion layer. It is possible to grow an epitaxial layer with a low acceptor concentration to prevent this.

また、高不純物濃度のエピタキシャル層上に低不純物濃
度のエピタキシャル層を成長する場合にも本発明の方法
を適用するならば、同し効果かあることは明らかである
Furthermore, it is clear that the same effect can be obtained if the method of the present invention is applied to the case where an epitaxial layer with a low impurity concentration is grown on an epitaxial layer with a high impurity concentration.

かかる方法によれば、低不純物濃度で良質の結晶性、を
有するLED、あるいは他の半導体素子を安定して形成
することが可能となる。
According to such a method, it is possible to stably form an LED or other semiconductor element having low impurity concentration and good crystallinity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のGaP緑色LEDの液相エピタキシャ
ル成長の温度プログラムを示す図、第2図は第1図で示
すプログラムに従って形成したLEDの不純物濃度分布
を示す図、第3図は、本発明のGaP緑色LEDの液相
エピタキシャル成長の温度プログラムを示す図、第4図
は第3図に示すプログラムに従って形成I7たLEDの
不純物濃度分布を示す図である。 1・・・・・・液相エピタキシャルの主炉の温度プログ
ラム、2・・・・・・Zn加熱用の副炉のl!Fii度
プログラム、3・・・・・n型GaP基板、4・・・・
・・n型エピタキシャル層、5・・・・・・P型エピタ
キシャル層、6・・・・・・p型反転層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 詩閉 第2図 !ia+うノ21Fft (ptn )第 3FI!J 崎閘 @ 4 図 基」反枦ろの距廃K(/J町
FIG. 1 is a diagram showing a temperature program for liquid phase epitaxial growth of a conventional GaP green LED, FIG. 2 is a diagram showing an impurity concentration distribution of an LED formed according to the program shown in FIG. 1, and FIG. FIG. 4 is a diagram showing the impurity concentration distribution of the LED formed according to the program shown in FIG. 3. 1... Temperature program of main furnace for liquid phase epitaxial, 2... L of sub-furnace for Zn heating! Fii degree program, 3...n-type GaP substrate, 4...
. . . N-type epitaxial layer, 5 . . . P-type epitaxial layer, 6 . . . P-type inversion layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Illustration poem closing figure 2! ia+Uno21Fft (ptn) 3rd FI! J Sakiyan @ 4 Zuki” Anti-tankuro no Kaihai K (/J Town

Claims (4)

【特許請求の範囲】[Claims] (1)−導電型の半導体結晶体上に、これと同−導物を
ドープした溶融液とを接触させるとともに、これらを前
記半導体結晶体の一部が溶解しうる温度に加熱して所定
の時間保持して両者の界面の不純物調度を高め、次いで
、徐冷してエピタキシャル層の成長を開始することを特
徴とする液相エピタキシャル成長方法。
(1) A semiconductor crystal of a conductive type is brought into contact with a melt doped with the same conductor, and heated to a temperature at which a part of the semiconductor crystal can be melted to a predetermined temperature. A liquid phase epitaxial growth method characterized by holding for a time to increase the impurity content at the interface between the two, and then slowly cooling to start growing an epitaxial layer.
(2)加熱後の保持時間が10分以下であることを特徴
とする特許請求の範囲第1項に記載の液相エビター1−
/ヤル成長方法。
(2) The liquid phase evitor 1- according to claim 1, characterized in that the holding time after heating is 10 minutes or less.
/How to grow up.
(3)牢・り体結晶体か半導体結晶基板であることを特
徴とするTjrヱ[請求の第1項に記載・の液相エピタ
キシャル成長方・法。
(3) The liquid phase epitaxial growth method according to claim 1, characterized in that the crystal is a cell crystal or a semiconductor crystal substrate.
(4)半導体結晶体かエピタキシャル結晶層であること
を特徴とする特許請求の範囲第1項に記載の液相エピタ
キシャル成長方法。
(4) The liquid phase epitaxial growth method according to claim 1, wherein the method is a semiconductor crystal or an epitaxial crystal layer.
JP14504782A 1982-08-20 1982-08-20 Method for liquid-phase epitaxial growth Granted JPS5935091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14504782A JPS5935091A (en) 1982-08-20 1982-08-20 Method for liquid-phase epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14504782A JPS5935091A (en) 1982-08-20 1982-08-20 Method for liquid-phase epitaxial growth

Publications (2)

Publication Number Publication Date
JPS5935091A true JPS5935091A (en) 1984-02-25
JPH0214317B2 JPH0214317B2 (en) 1990-04-06

Family

ID=15376152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14504782A Granted JPS5935091A (en) 1982-08-20 1982-08-20 Method for liquid-phase epitaxial growth

Country Status (1)

Country Link
JP (1) JPS5935091A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133529A (en) * 1981-02-13 1982-08-18 Nippon Telegr & Teleph Corp <Ntt> Optical head
JPS6366739A (en) * 1986-09-09 1988-03-25 Canon Electronics Inc Optical head device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133480A (en) * 1978-04-07 1979-10-17 Toshiba Corp Growth method for liquid phase epitaxial
JPS5596629A (en) * 1979-01-17 1980-07-23 Matsushita Electric Ind Co Ltd Method of epitaxially growing in liquid phase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133480A (en) * 1978-04-07 1979-10-17 Toshiba Corp Growth method for liquid phase epitaxial
JPS5596629A (en) * 1979-01-17 1980-07-23 Matsushita Electric Ind Co Ltd Method of epitaxially growing in liquid phase

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133529A (en) * 1981-02-13 1982-08-18 Nippon Telegr & Teleph Corp <Ntt> Optical head
JPS6366739A (en) * 1986-09-09 1988-03-25 Canon Electronics Inc Optical head device

Also Published As

Publication number Publication date
JPH0214317B2 (en) 1990-04-06

Similar Documents

Publication Publication Date Title
US3960618A (en) Epitaxial growth process for compound semiconductor crystals in liquid phase
JPS6333294B2 (en)
US4904618A (en) Process for doping crystals of wide band gap semiconductors
US6144044A (en) Gallium phosphide green light-emitting device
EP0356059B1 (en) Process for doping crystals of wide band gap semiconductors
JPS5935091A (en) Method for liquid-phase epitaxial growth
JP2001015443A (en) Manufacture of iii group nitride-based compound semiconductor element
US4500367A (en) LPE Growth on group III-V compound semiconductor substrates containing phosphorus
Otsubo et al. Photoluminescence Study of Defects in GaAs Formed by Annealing in an H2 Gas Flow
US3619304A (en) Method of manufacturing gallium phosphide electro luminescent diodes
US3723177A (en) Method of producing a group iii-v semiconductor compound
US3648120A (en) Indium aluminum phosphide and electroluminescent device using same
JPS5816535A (en) Semiconductor device and its manufacture
JPS598383A (en) Znse green light emitting diode
JPH08139358A (en) Epitaxial wafer
JP4211897B2 (en) Liquid phase epitaxial growth method
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JPS6013317B2 (en) Manufacturing method of light emitting diode
JPH01234400A (en) Semiconductor crystal
JP2537296B2 (en) &lt;II&gt;-&lt;VI&gt; Intergroup compound semiconductor device manufacturing method
JP3992117B2 (en) GaP light emitting device substrate
JPH01315174A (en) Semiconductor light-emitting device
JPS6021894A (en) Process for liquid phase epitaxial growth
JPH05335621A (en) Gallium phosphide green light emitting diode
JP2841849B2 (en) Manufacturing method of epitaxial wafer