JPS5934231B2 - CVD device discharge device - Google Patents

CVD device discharge device

Info

Publication number
JPS5934231B2
JPS5934231B2 JP17871580A JP17871580A JPS5934231B2 JP S5934231 B2 JPS5934231 B2 JP S5934231B2 JP 17871580 A JP17871580 A JP 17871580A JP 17871580 A JP17871580 A JP 17871580A JP S5934231 B2 JPS5934231 B2 JP S5934231B2
Authority
JP
Japan
Prior art keywords
gas
flow path
discharge device
cvd apparatus
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17871580A
Other languages
Japanese (ja)
Other versions
JPS57104659A (en
Inventor
芳夫 後藤
衛 水橋
保治 岡島
一幸 明吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP17871580A priority Critical patent/JPS5934231B2/en
Publication of JPS57104659A publication Critical patent/JPS57104659A/en
Publication of JPS5934231B2 publication Critical patent/JPS5934231B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/453Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating passing the reaction gases through burners or torches, e.g. atmospheric pressure CVD

Description

【発明の詳細な説明】 本発明ぱ、移動する大面積の基板上に被膜を均一に、か
ク連続的に形成せしめるのに適したCVD装置の吐出装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a discharge device for a CVD apparatus suitable for uniformly and continuously forming a coating on a moving large-area substrate.

加熱された基板表面にガス状の原料物質を送り、気相と
固相の界面における化学反応、例えば熱分解反応、還元
反応、酸化反応などによつて、基体上に反応生成物せる
CVD法(ChemicalVaporDeposit
ion、化学蒸着法)が知らねている。
CVD method (CVD) in which a gaseous raw material is sent to the heated substrate surface and a reaction product is produced on the substrate through a chemical reaction at the interface between the gas phase and the solid phase, such as a thermal decomposition reaction, a reduction reaction, an oxidation reaction, etc. Chemical Vapor Deposit
ion, chemical vapor deposition method).

かかるCVD法は、スプレー法に比し、排ガス処理が容
易で着膜効率が高<、また真空蒸着法に比し、生産性が
高<、設備費も安価であるので、生産装置として有効で
あるとされている。これまで、CVD法における反応炉
への原料ガスあるいは反応ガスの導入は、通常反応炉壁
に単純な開口を複数箇設けて行なうか、または反応炉直
前でガスを混合して1箇の開口を用いて行なうかの方法
が〒般的であつた。
This CVD method is effective as a production device because it has easier exhaust gas treatment and higher film deposition efficiency than the spray method, and has higher productivity and lower equipment costs than the vacuum evaporation method. It is said that there is. Up until now, raw material gas or reaction gas has been introduced into the reactor in the CVD method by making multiple simple openings in the reactor wall, or by mixing the gases just before the reactor and opening one opening. The most common method was to use

この場合、フィルム化反応は、高温に保たれた基体表面
へ境界層の拡散を通して膜を形成する形で行なわれる。
このタイプでは、しばしば、境界層を通しての物質移動
を速めるために、基板を回転するなどの補助操作が同時
に行なわれることもある。また、特開昭54−3707
7号公報に記載されている様に原料ガスあるいは反応ガ
スを高速の粘性気流として基体面に吹き付ける方法や、
米国特許第4182783号明細書に記載されている様
にCVD原料ガスをスリットから乱流の形で基板面に吹
き付ける方法も提案されている。又、複数種のガスを反
応系に導入するCVD方式においてぱ、反応以前にガス
を低温域で混合する形式が行なわれてきた。
In this case, the film-forming reaction is carried out to form a film through the diffusion of a boundary layer onto the surface of the substrate kept at a high temperature.
In this type, auxiliary operations, such as rotating the substrate, are often performed at the same time to speed up the mass transfer through the boundary layer. Also, JP-A-54-3707
As described in Publication No. 7, a method of spraying raw material gas or reaction gas as a high-speed viscous gas stream onto the substrate surface,
As described in US Pat. No. 4,182,783, a method has also been proposed in which CVD raw material gas is sprayed onto a substrate surface in a turbulent flow through a slit. Furthermore, in CVD methods in which a plurality of gases are introduced into a reaction system, a method has been used in which the gases are mixed at a low temperature before the reaction.

あるいは叉、米国特許第4144684号明細書に記載
されている様に擬似的な線状吹出口から吹き出させる形
式も提案されている。これらの方法の欠点は、CVD原
料ガスが導人管内で混合される場合には、反応室内で気
相分解を起し易く、また境界層を通しての反応であるた
めに充分な着膜速度が得られないことであつた。
Alternatively, a method has been proposed in which air is blown out from a pseudo linear outlet, as described in US Pat. No. 4,144,684. The disadvantages of these methods are that when the CVD source gas is mixed in the guide tube, gas phase decomposition tends to occur in the reaction chamber, and because the reaction occurs through a boundary layer, it is difficult to obtain a sufficient film deposition rate. It was something I couldn't do.

また、反応を早めるためにガス流速を大きくすると反応
効率が低下するという欠点が知られている。本発明はか
かる欠点がな〈、大面積の基板上に被膜を均一に、かつ
連続的に形成せしめるのに適したCVD装置の吐出装島
を提供することを目的として研究の結果発明さねたもの
であり、その髪旨は、n種(n二1,2,・3・・・・
・・)のガスを層流の状態で吐出せしめるCVD装置の
吐出装置に卦いて、該吐出装置が各々のガスを分離して
導入するガス導入部と、該ガヌ導入部の各々に接続した
ガスの流路と、この流路内に設けられた流路抵抗部と、
各々のガス流路の先端に設けられたガスの噴出口と、こ
れら噴出口の外側に設けられたガスを吐出させるスリツ
ト状開口部とを備えていることを特徴とするCVD装置
の吐出装置に関するものである。以下、本発明を図面に
従つて更に具体的に説明する。
Furthermore, it is known that increasing the gas flow rate to accelerate the reaction has the disadvantage that the reaction efficiency decreases. The present invention is free from such drawbacks and was invented as a result of research for the purpose of providing a discharge device for a CVD apparatus suitable for uniformly and continuously forming a film on a large-area substrate. There are n types of hair (n21, 2, 3...
...) gas in a laminar flow state, the discharge device is connected to each of the gas introduction section that separates and introduces each gas, and the Ganu introduction section. A gas flow path, a flow path resistance section provided in this flow path,
Relates to a discharge device for a CVD apparatus, characterized in that it includes a gas jet port provided at the tip of each gas flow path, and a slit-shaped opening provided outside these jet ports for discharging gas. It is something. Hereinafter, the present invention will be explained in more detail with reference to the drawings.

本発明のCVD装置の吐出装置は、例えば原料ガス、反
応ガス、及び原料ガスと反応ガスの反応制御ガスの3種
のガス流が噴出口から加熱された基板表面の近傍へ吹出
されるまで完全に分離して供給される様に構成される。
例えば、SiH4を原料ガスとして、02を反応ガスと
して、又N2、を反応制御ガスとして利用し、CVD法
によりSiO2膜を形成する場合には、第1図の様に5
本の分離されたガス流路A,B,C,D,Eを設け基板
1の表面の近傍までSiH4ガスと02ガスが混合しな
い様に、ガス流路CからSiH4ガスを、又ガス流路A
,Eから02ガスを流すとともに、SiH4ガスと02
ガスとの間の反応を制御するために反応制御ガスとして
N2ガスをガス流路B,Dから流す様にする。又、Sn
ct4とSbct5を原料ガスとして、H2OとCH3
OHを反応ガスとして、又N2を反応制御ガスとして利
用し、CVD法により電導性SnO2膜を形成する場合
には、第2図の様に5本の分離されたガス流路A′,B
/,C′,D′,E′を設け、基板1の表面の近傍まで
SnCt4,SbCt5,H2O,CH3OHが混合し
ない様に、ガス流路C′からSnct4とSbct5の
ガスを、又ガス流路A,E′からH2OとCH3OHの
ガスを流すとともに、反応制御ガスN2をガス流路B,
Dから流す様にする。
The discharge device of the CVD apparatus of the present invention is completely operated until the three types of gas flows, for example, the raw material gas, the reaction gas, and the reaction control gas of the raw material gas and the reaction gas, are blown out from the jet port to the vicinity of the heated substrate surface. It is configured so that it can be supplied separately.
For example, when forming a SiO2 film by the CVD method using SiH4 as a source gas, 02 as a reaction gas, and N2 as a reaction control gas,
Separated gas channels A, B, C, D, and E are provided so that the SiH4 gas and the 02 gas do not mix near the surface of the substrate 1. A
, 02 gas flows from E, and SiH4 gas and 02
In order to control the reaction between the gas and the gas, N2 gas is made to flow from the gas flow paths B and D as a reaction control gas. Also, Sn
Using ct4 and Sbct5 as raw material gases, H2O and CH3
When forming a conductive SnO2 film by CVD using OH as a reaction gas and N2 as a reaction control gas, five separated gas channels A' and B are used as shown in Figure 2.
/, C', D', and E' are provided, and the gases of Snct4 and Sbct5 are supplied from the gas flow path C' to the gas flow path so that SnCt4, SbCt5, H2O, and CH3OH do not mix near the surface of the substrate 1. While flowing H2O and CH3OH gases from A and E', reaction control gas N2 is passed through gas flow paths B and
Make it flow from D.

この吐出装置2に卦いては、複数種のガスが別別に該吐
出装置内一、導入される様に各々のガスを導入するガス
導入部、3,4,5,6,7が設けられ、又このガス導
入部には該導入部と連通したガス流路8,9,10,1
1,12と、該ガス流路の先端にスリツト状のガス噴出
口13,14,15,16,17とその外側にスリツト
状開口部18が投けられている。これらガス流路には、
スl)ツト状のガス噴出口の全巾にわたり均一な流速、
流量、分布が得られる様に、流路抵抗部が設けられる。
This discharge device 2 is provided with gas introduction portions 3, 4, 5, 6, and 7 for introducing each gas so that a plurality of gases are separately introduced into the discharge device; In addition, this gas introduction section has gas passages 8, 9, 10, 1 communicating with the introduction section.
1 and 12, slit-shaped gas jet ports 13, 14, 15, 16, and 17 are provided at the tips of the gas passages, and a slit-shaped opening 18 is provided on the outside thereof. These gas flow paths include
sl) uniform flow velocity over the entire width of the gas outlet;
A flow path resistance section is provided so that the flow rate and distribution can be obtained.

第4,5図は、流路抵抗部が設けらねたガス流路の一汐
1であり、横方向に2列の凹状の溝部19の設けられた
溝付き仕切板20と上記溝部19と方向を異にする多数
の長方形状の切欠21の設けられた流路抵抗板22と、
もう一枚の基板23とを縦方向に積層して流路抵抗部を
形成したものである。こねに卦いては上記溝部19と切
欠21によつて形成される縦方向の迷路状のガス流路に
よつてガス導入口24から供給されたガス流が絞らねた
り拡げらねたり、曲げられたりして整流され、均一な流
速、流量、分布のガス流が得らねる。この吐出装置は、
5つのガス流路が形成される様に、上記タイプの溝部付
き仕切板と切欠付きの流路抵抗板と、基板とを複数枚順
次積層したものである。
4 and 5 show one side of the gas flow path in which a flow path resistance section is not provided, and a grooved partition plate 20 provided with two rows of concave grooves 19 in the horizontal direction, and a grooved partition plate 20 having two rows of concave grooves 19 in the horizontal direction. a flow path resistance plate 22 provided with a large number of rectangular notches 21 in different directions;
Another substrate 23 is stacked vertically to form a flow path resistance section. In kneading, the gas flow supplied from the gas inlet 24 is not constricted, expanded, or bent by the vertical maze-like gas flow path formed by the groove 19 and the notch 21. Gas flow with uniform velocity, flow rate, and distribution cannot be obtained. This discharge device is
A plurality of the above-mentioned types of partition plates with grooves, flow path resistance plates with notches, and substrates are sequentially laminated so that five gas flow paths are formed.

な卦、上記基板は、図示した様に溝部付き仕切板の溝部
の形成されていない反対面の平面を利用してもよいし、
又別の基板を用いてもよい。この様に本発明の流路抵抗
部は1枚の溝付き仕切板と1枚の流路抵抗板を基本単位
とする積層構造により構成されている。本発明に卦ける
吐出装置のガス流路の流路抵抗部の形状は、上記した流
路抵抗仮の縦方向の多数本の長方形の溝部と該溝部の上
下に卦いて交差する横方向に形成された複数個の長方形
の凹状部によつて形成される流路抵抗部付きガス流路に
限らず、その他各種の形状であつても差し支えないが、
安定した縦方向のスリット状の層流のガス流が得られる
様に流路抵抗部を設計するのが最適である。
Furthermore, the above substrate may utilize the flat surface of the opposite side of the grooved partition plate where the grooves are not formed, as shown in the figure.
Alternatively, another substrate may be used. In this manner, the flow path resistance section of the present invention has a laminated structure in which the basic unit is one grooved partition plate and one flow path resistance plate. The shape of the flow path resistance portion of the gas flow path of the discharge device according to the present invention is formed in a horizontal direction that intersects with a large number of rectangular grooves in the vertical direction of the above-mentioned flow path resistance tentatively. The gas flow path is not limited to a gas flow path with a flow path resistance portion formed by a plurality of rectangular concave portions, but may have various other shapes.
It is optimal to design the flow path resistance section so that a stable longitudinal slit-like laminar gas flow can be obtained.

又、上記流路抵抗板は、流路抵抗の働きをしてガスの流
れの均一化をはかるとともに、噴出口のスリツト巾の保
持という二つの機能を兼ね備えるものであり、高い寸法
精度が要求される。上記仕切板}よび流路抵抗板の積層
は、接着剤ろう付け、溶接等により接合してもよいが、
ガス流路の壁にスケールが付着した際、容易に分解して
掃除できる様にボルト締め、その他各種取外し可能な取
付け手段により行うのが保守上特に好ましい。
In addition, the flow path resistance plate has two functions: to act as a flow path resistance to equalize the gas flow, and to maintain the slit width of the jet nozzle, so high dimensional accuracy is required. Ru. The above-mentioned partition plate} and flow path resistance plate may be laminated together by adhesive brazing, welding, etc.
In order to facilitate easy disassembly and cleaning when scale adheres to the walls of the gas flow path, it is particularly preferable for maintenance to be carried out by tightening bolts or using various other removable attachment means.

図示した例は、5つのガス流がガス吹出口まで分離して
気相分隔が起らずに送られる様に、流路抵抗部付きガス
流路を5つ設けた場合について説明したが、5つのガス
流に限らず、ガス流の数が増減した場合には、そのガス
流の数に応じて流路抵抗部付きガス流路の数を増減する
In the illustrated example, five gas flow paths with flow path resistance sections are provided so that the five gas flows are separated and sent to the gas outlet without causing gas phase separation. If the number of gas flows is increased or decreased, the number of gas flow paths with flow path resistance portions is increased or decreased in accordance with the number of gas flows.

な卦、本発明の吐出装置により複数のガス流路にガスを
流してCVD法により被膜を形成する場合には、中央の
ガス流路を中心にして流されるガスの種類が左右対称と
なる様にするのが好ましい。
Furthermore, when forming a film by the CVD method by flowing gas through a plurality of gas flow channels using the discharge device of the present invention, the types of gas flowed are symmetrical with respect to the central gas flow channel. It is preferable to

例えば、5つのガス流路から、A(反応ガス)、B(不
活性ガス),C(原料ガス)の3種のガスを流す場合に
は、A,B,C,B,Aとなる様な左右対称の順番で各
ガスを5つのガス流路から流すのが好ましい。又6つの
ガス流路から同上のガスを流す場合には、A,B,C,
C,B,Aとなる様な左右対称な順番で各ガスを6つの
ガス流路から流すのが好ましい。又、各種ガスのガス流
路の先端のガス噴出口13,14,15,16,17は
平行な細長い形状で、かつスリツト状の開口部に平行で
あるのが好ましく、このスリット状のガス噴出口のそれ
ぞれは、平行に配されて卦り基板の近傍で接近して開口
▲れて卦り、ガス噴出口付近でそれぞれ完全に分離され
て流れてきたガスが拡散混合され、瞬間的な熱分解と同
時に基板面に被膜が形成される様にされている。
For example, when three types of gas, A (reactant gas), B (inert gas), and C (raw material gas), flow from five gas flow paths, the following gases will flow: A, B, C, B, A. It is preferable to flow each gas through the five gas channels in a symmetrical order. In addition, when flowing the same gas from six gas flow paths, A, B, C,
It is preferable to flow each gas through the six gas channels in a symmetrical order such as C, B, and A. Further, the gas jet ports 13, 14, 15, 16, and 17 at the ends of the gas flow paths for various gases preferably have parallel elongated shapes and are parallel to the slit-shaped opening. The outlets are arranged parallel to each other and open close to each other near the substrate, and the gases that have been completely separated near the gas outlet are diffused and mixed, resulting in instantaneous heat generation. A film is formed on the substrate surface simultaneously with the disassembly.

このガス噴出口付近に}いては、複数種のガスが混合さ
れて基板面に制御された流れとして供給される様に、そ
の外側に第2のスリツト18を設けて2重のスリツト状
とし、より完全なスリツト状のガス流が吹出さねる様に
するのが最適である。な卦、各ガス流路のガス噴出口の
13,14,15,16,17の幅aは、ガスの吹出し
気流の状態が不均一とならず、又すじが発生したりしな
い様に、1つのガス気流につき0.5TWL〜5順たす
るのが好ましい。
Near this gas outlet, a second slit 18 is provided on the outside to form a double slit shape so that multiple types of gases are mixed and supplied to the substrate surface as a controlled flow. It is optimal to blow out a more complete slit-shaped gas flow. In addition, the width a of the gas jet ports 13, 14, 15, 16, and 17 of each gas flow path is set to 1 so that the state of the gas blowing airflow does not become uneven and that no streaks occur. Preferably, the range is 0.5 TWL to 5 per gas flow.

更に、スリツト状開口部18の幅bは吐出ガスの種類を
nとすれば、n/2i〜10n!iの範囲とするのが、
ガスの吹出し気流の均一性という点から好ましい。例え
ば、スリツト状開口部の巾が大となると、吹出し風速が
低下して、吹出し気流の安定性力状きく損なわれる。又
、各ガスの吐出流速を開口部の長さ方向全般にわたつて
均一にするための積層構造タイプのガス流路が熱的に変
形しない様に、あるいはCVDガスが熱分解しない様に
ガス流路の両側の側面に水冷又は空冷式の冷却装置25
を設けることができる。本発明のCVD装置の吐出装置
により被膜を形成するに当つては、吹出しガスの流速、
流量、分布の均一が高くなり、又低流量でも使用でき、
高い付着効率が得られる様に、ガスを層流として流すこ
とが必髪である。
Furthermore, the width b of the slit-shaped opening 18 is n/2i to 10n, where n is the type of discharged gas! The range of i is
This is preferable from the viewpoint of uniformity of gas blowing airflow. For example, when the width of the slit-like opening becomes large, the blowing air velocity decreases, and the stability of the blowing airflow is seriously impaired. In addition, the gas flow is controlled so that the gas flow path, which has a laminated structure to make the discharge flow velocity of each gas uniform throughout the entire length of the opening, is not thermally deformed, or the CVD gas is not thermally decomposed. Water-cooled or air-cooled cooling devices 25 are installed on both sides of the road.
can be provided. When forming a film using the discharge device of the CVD apparatus of the present invention, the flow rate of the blown gas,
The flow rate and distribution are more uniform, and it can be used even at low flow rates.
In order to obtain high deposition efficiency, it is essential to flow the gas in a laminar flow.

この様にすることにより、均一性の高い被膜を得ること
ができる。本発明のCVD装置の吐出装置は、基板が移
動しながらCVD法による化合物のコーテイングを行う
方法に卦いて、原料ガスと反応ガスを混合することなく
別々の系統を通して供給し、更にガス相互の干渉が起ら
ない様に原料ガスと反応ガス間にN2やArなどの不活
性ガスを供給して仕切を設けることができ、又ガス導入
仮とスベーサ一とを積層して迷路状の縦方向にガスが流
ねるガス流路を多数本設け、反応ガス、原料ガス、不活
性ガスが吹き出すまで混合しない様な構造とし、又ガス
流路の先端が巾の狭いスリツト状となつているので、原
料ガスの気相分解を防止することができるとともに、各
ガス気流の流速、流量、及び吹き出し分布の均一性を高
度にすることができ、又高い付着効率を確保するために
低流量でも使用することができる。
By doing so, a highly uniform coating can be obtained. The discharge device of the CVD apparatus of the present invention is suitable for a method of coating a compound by CVD method while a substrate is moving, supplies raw material gas and reaction gas through separate systems without mixing them, and furthermore, the gases interfere with each other. In order to prevent this from occurring, a partition can be provided by supplying an inert gas such as N2 or Ar between the raw material gas and the reaction gas, and a gas inlet and a spacer can be stacked to create a maze-like vertical structure. There are many gas channels through which the gases flow, and the structure is such that the reactant gas, raw material gas, and inert gas do not mix until they are blown out. Also, the ends of the gas channels are shaped like narrow slits, so that the raw material It can prevent the gas phase decomposition of the gas, and it can improve the uniformity of the flow rate, flow rate, and blowout distribution of each gas stream, and it can also be used at low flow rates to ensure high adhesion efficiency. I can do it.

又上記構造のほかガス流路が取外し可能なガス導入板と
スベーサ一の積層構造となつているので、スケールが付
着しにくく、保守が容易であり、又熱変形にも強く、ス
ケールアツプしやすく、更に製作が容易であるという利
点、及び膜厚、特性について均一な被膜を得ることがで
きるという利点を有している。
In addition to the above structure, the gas flow path is made of a laminated structure consisting of a removable gas introduction plate and a spacer, making it difficult for scale to adhere, easy to maintain, and resistant to thermal deformation, making it easy to scale up. Furthermore, it has the advantage that it is easy to manufacture, and that it is possible to obtain a film that is uniform in thickness and properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のCVD装置用吐出装置の概略図を示
したもので、第2図は他の具体例に係る吐出装置の概略
図であり、aは側面図、bは正面図を示したものであり
、第3図は他の具体例に係る吐出装置の側面断面図を示
したものであり、第4図は他の具体例に係る吐出装置の
1部断面斜視図を示したものであり、第5図は同吐出装
置の流路抵抗部付きガス流路の一例に係る組立図を示す
ものである。 1;基板、2;CVD装置a吐出装置、3,4,5,6
,7;ガス導入部、8,9,10,11,12;ガス流
路、13,14,15,16,17;噴出口、18:ス
リツト状開口部、19;溝部、20;溝付き仕切板、2
1;切欠、22;流路抵抗板、23;基板、24:ガス
導入口、25;冷却装置。
FIG. 1 shows a schematic diagram of a discharge device for a CVD apparatus according to the present invention, and FIG. 2 shows a schematic diagram of a discharge device according to another specific example, in which a is a side view and b is a front view. 3 shows a side sectional view of a discharge device according to another specific example, and FIG. 4 shows a partially sectional perspective view of a discharge device according to another specific example. FIG. 5 shows an assembly diagram of an example of a gas flow path with a flow path resistance section of the same discharge device. 1; Substrate, 2; CVD device a discharge device, 3, 4, 5, 6
, 7; Gas introduction part, 8, 9, 10, 11, 12; Gas flow path, 13, 14, 15, 16, 17; Spout, 18: Slit-shaped opening, 19; Groove, 20; Grooved partition board, 2
1: Notch, 22: Flow path resistance plate, 23: Substrate, 24: Gas inlet, 25: Cooling device.

Claims (1)

【特許請求の範囲】 1 n種(n=1、2、3‥‥)のガスを層流の状態で
吐出せしめるCVD装置の吐出装置において、該吐出装
置が各々のガスを分離して導入するガス導入部と、該ガ
ス導入部の各々に接続したガス流路と、この流路内に設
けられた流路抵抗部と、各々のガス流路の先端に設けら
れたガスの噴出口と、これら噴出口の外側に設けられた
ガスを吐出させるスリット状開口部とを備えていること
を特徴とするCVD装置の吐出装置。 2 流路抵抗部が1枚の溝付き仕切板と1枚の流路抵抗
板を基本単位とする積層構造を有することを特徴とする
特許請求の範囲第1項記載のCVD装置の吐出装置。 3 噴出口がスリット状開口部に平行な細長い形状をし
ており、その噴出口の幅は、1つのガス気流につき0.
5mm〜5mmであることを特徴とする特許請求の範囲
第1項記載のCVD装置の吐出装置。 4 スリット状開口部の幅は、吐出ガスの種類がnの場
合n/2〜10n(mm)であることを特徴とする特許
請求の範囲第1項記載のCVD装置の吐出装置。 5 冷却装置を付設したことを特徴とする特許請求の範
囲第1項記載のCVD装置の吐出装置。
[Claims] 1. In a discharge device of a CVD apparatus that discharges n types of gases (n=1, 2, 3...) in a laminar flow state, the discharge device separates and introduces each gas. a gas introduction section, a gas flow path connected to each of the gas introduction sections, a flow path resistance section provided within the flow path, and a gas jet port provided at the tip of each gas flow path; A discharge device for a CVD apparatus, characterized in that it includes a slit-shaped opening provided on the outside of these jet ports and through which gas is discharged. 2. The discharge device for a CVD apparatus according to claim 1, wherein the flow path resistance section has a laminated structure in which a basic unit is one grooved partition plate and one flow path resistance plate. 3 The jet nozzle has an elongated shape parallel to the slit opening, and the width of the jet nozzle is 0.0 mm per gas flow.
A discharge device for a CVD apparatus according to claim 1, characterized in that the diameter is 5 mm to 5 mm. 4. The discharge device for a CVD apparatus according to claim 1, wherein the width of the slit-like opening is n/2 to 10n (mm) when the type of discharged gas is n. 5. A discharge device for a CVD apparatus according to claim 1, characterized in that a cooling device is attached.
JP17871580A 1980-12-19 1980-12-19 CVD device discharge device Expired JPS5934231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17871580A JPS5934231B2 (en) 1980-12-19 1980-12-19 CVD device discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17871580A JPS5934231B2 (en) 1980-12-19 1980-12-19 CVD device discharge device

Publications (2)

Publication Number Publication Date
JPS57104659A JPS57104659A (en) 1982-06-29
JPS5934231B2 true JPS5934231B2 (en) 1984-08-21

Family

ID=16053293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17871580A Expired JPS5934231B2 (en) 1980-12-19 1980-12-19 CVD device discharge device

Country Status (1)

Country Link
JP (1) JPS5934231B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714362Y2 (en) * 1985-07-27 1995-04-05 日電アネルバ株式会社 Thin film forming equipment
JPH0645881B2 (en) * 1986-03-28 1994-06-15 日本鋼管株式会社 Silicidation treatment method for steel plate in continuous treatment line
JPH0643631B2 (en) * 1987-02-10 1994-06-08 旭硝子株式会社 Gas introduction nozzle for atmospheric pressure CVD
JPS63190171A (en) * 1987-02-03 1988-08-05 Asahi Glass Co Ltd Improved nozzle for introducing gas for cvd
JP2679073B2 (en) * 1987-01-27 1997-11-19 旭硝子株式会社 Gas introduction nozzle for atmospheric pressure CVD
EP0276796B1 (en) * 1987-01-27 1992-04-08 Asahi Glass Company Ltd. Gas feeding nozzle for a chemical vapor deposition apparatus
JPS63199432A (en) * 1987-02-16 1988-08-17 Toshiba Corp Gas dispersing head for cvd device
JP5046334B2 (en) * 2004-10-11 2012-10-10 ソレラス・アドヴァンスト・コーティングス・ナムローゼ・フェンノートシャップ Long gas distribution system
JP4957625B2 (en) * 2008-04-04 2012-06-20 旭硝子株式会社 Method for forming transparent substrate

Also Published As

Publication number Publication date
JPS57104659A (en) 1982-06-29

Similar Documents

Publication Publication Date Title
US4834020A (en) Atmospheric pressure chemical vapor deposition apparatus
KR100355058B1 (en) Single body injector and deposition chamber
US4524718A (en) Reactor for continuous coating of glass
KR100190355B1 (en) Single body injector and method for delivering gases to a surface
US5041150A (en) Process for coating glass
TWI484063B (en) Chemical vapor deposition flow inlet elements and methods
FI97731C (en) Method and apparatus for making thin films
JP2008255493A (en) Atomic layer deposition apparatus and process
JP2003133243A (en) Modular injector and exhaust assembly
JP2012522901A (en) Semiconductor process reactor and components thereof
JPH04348031A (en) Chemical vapor growth equipment
JPS5934231B2 (en) CVD device discharge device
HU210280B (en) Method and apparatus for coating hot glass surface
JP4426180B2 (en) Fluid distribution unit for distributing fluid flow into a plurality of partial flows and fluid distribution device for a plurality of fluids
JP2745316B2 (en) Gas injection device for chemical vapor deposition reactor
JP3081860B2 (en) Chemical vapor deposition apparatus and method for manufacturing semiconductor device
JP2679073B2 (en) Gas introduction nozzle for atmospheric pressure CVD
JP2943407B2 (en) Continuous transportation treatment device of high-temperature melt and its method
EP0369602B1 (en) Glass coating apparatus
JPS63195269A (en) Improved gas injection nozzle for atmospheric cvd
JPS62263971A (en) Vapor phase growth device
CN111647876B (en) Chamber cooling device and reaction chamber
KR20020006776A (en) Atomic thin layer deposition appratus
JPS63190171A (en) Improved nozzle for introducing gas for cvd
JPH10226887A (en) Gas injection head