JPS5932656A - Nozzle for booster engine - Google Patents

Nozzle for booster engine

Info

Publication number
JPS5932656A
JPS5932656A JP14301282A JP14301282A JPS5932656A JP S5932656 A JPS5932656 A JP S5932656A JP 14301282 A JP14301282 A JP 14301282A JP 14301282 A JP14301282 A JP 14301282A JP S5932656 A JPS5932656 A JP S5932656A
Authority
JP
Japan
Prior art keywords
nozzle
pressure
valve
altitude
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14301282A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nakabashi
中橋 和博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP14301282A priority Critical patent/JPS5932656A/en
Publication of JPS5932656A publication Critical patent/JPS5932656A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/80Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by thrust or thrust vector control

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To facilitate to reform the existing nozzle with a simple mechanism, increase a propulsive efficiency and permit to increase a thrust by a method wherein a valve, opening and closing by a pressure difference between the outlet pressure of the first stage nozzle and an atmospheric pressure, is provided at a step part between first and second stages in the device equipped with the nozzle of two stages. CONSTITUTION:The outside pressure Pa is higher than the inside pressure k1Pe1 during launching and low-altitude flying, therefore, the valve 3 is kept in an opened condition, atmospheric air is introduced into the nozzle 2 through a step- like clearance and the generation of the thrust is performed by the nozzle 1 principally. Next, the pressure Pa is decreased as the flying altitude is increased, however, the outlet pressure of the nozzle 1 is constant, therefore, the valve 3 is opened automatically by the difference between the inside and outside pressures of the valve 3 when the altitude, in which the pressure K1Pe1 is higher than or equal to the pressure Pa, is achieved. Thereafter, gas, generated in a combustion chamber, flows through the nozzle 1 and the nozzle 2 fully, whereby, the nozzles operate as the nozzle having a capacity corresponing to the nozzle having a large opening ratio.

Description

【発明の詳細な説明】 この発明はブースタエンジン用のノズルに関し、/持に
詳述す7tば、高度補償のrjJ化なブースタ用エンジ
ンのノズルに関スル。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nozzle for a booster engine, and more specifically, to a nozzle for a booster engine with RJJ altitude compensation.

ブースタ用エンジンのように地上で発射され高空へ飛行
し2ていくロケットエンジンでは、各高度において、ノ
ズル流が最適膨張するよう、ノズル面積死金変化させる
ことが望ましいことは理論的に解明されている。しかし
、このノズル向檀此の変化は、実際上かなり困難でめり
て、たとえV:j”、引き出しノズルや二重ノズル寺が
提案さ庇ているとは云え実用に碕 致っていない。このため、従来の実#は大気圧下での発
射時のノズル流の剥離全防止するためVc1a′いノズ
ル面積比?採用し、高度が上昇した通人空域では、ノズ
ル流が不足膨張となることが避けられないよう設計され
てい不。
It has been theoretically clarified that in rocket engines such as booster engines that are launched from the ground and then fly to high altitudes, it is desirable to vary the nozzle area so that the nozzle flow optimally expands at each altitude. There is. However, this change in nozzle orientation is quite difficult in practice and has not been put into practical use, even though V:j'', pull-out nozzles and double nozzle designs have been proposed. For this reason, the conventional real # adopts a high nozzle area ratio of Vc1a' in order to completely prevent separation of the nozzle flow during firing under atmospheric pressure, and the nozzle flow will be under-expanded in the airspace where the altitude has increased. It is not designed to be unavoidable.

これは、低高度および高尚jILでのめるイ・M度の性
能損失をi悟したものであるが、ロケットの飛翔が全燃
焼時11JJ中の約4/4が近A空域でるること業者*
すると、この性能損失は、無視できない値であり、従来
の作動機構が復雑で高重量の引き出しノズールや二重ノ
ズル番で代る新規なブースタ用エンジンのノズルがイ(
−t。
This was done in recognition of the loss of performance at low altitudes and high altitudes, but it is clear that approximately 4/4 of the 11JJ will be in the near-A airspace when the rocket's flight is fully burned.
Therefore, this performance loss is a non-negligible value, and the new booster engine nozzle is now available instead of the conventional pull-out nozzle or double nozzle, which has a complicated operating mechanism and is heavy.
-t.

でいる。I'm here.

この発明は、このような要望?hたすべく開発されたも
ので、基本的V′c、は、第1段ノズルと、これよシ大
径の第2段ノズルとからなり、41段ノズルと第2段ノ
ズルとの段状部にバルブ全配!る構成?用い、低高度で
はバルブが大気圧により開となp段状隙間よυ外!15
仝気?第2段ノズル内に尋人し第2段ノズルの内周面に
沿う望気ノ##全作り、第1段ノズルにより推力?得る
ようにし、^々農でeよバルブが閉じ、第1投ノズルと
ノズル面積比の犬なる第2段ノズルにより推力を借る作
用?成し−Cいる。
Is this invention a request like this? The basic V'c consists of a first-stage nozzle and a second-stage nozzle with a larger diameter, and the step-like structure of the 41st-stage nozzle and the second-stage nozzle. Fully equipped with valves! configuration? At low altitudes, the valve opens due to atmospheric pressure and the p-step gap is outside! 15
Do you mind? The air flow along the inner circumferential surface of the second stage nozzle is fully created, and the thrust is exerted by the first stage nozzle. Then, the valve closes and the second stage nozzle, which has the same nozzle area ratio as the first throw nozzle, borrows thrust. Nashi-C is here.

この発明によiLば、バルブとL’l< 1段ノズル出
口圧とノズル外部雰囲気圧との差圧によp開閉するもの
で良いからその開閉慎構はきわめて簡単となり、又、既
イfのノズル?第1段ノズルとし、これに第2段ノズル
?付けるか。
According to this invention, since the valve and L'l<p need only be opened and closed by the differential pressure between the first-stage nozzle outlet pressure and the nozzle external atmospheric pressure, the opening and closing mechanism is extremely simple. nozzle? Is this the first stage nozzle and then the second stage nozzle? Should I attach it?

或いは、既存ノズル全改良17゛C第工および第2段ノ
ズルに容易に変更OJ能であり、ざらに、本発明のノズ
ルシュ、発射時および低市度上昇時のバルブ3が開の時
には、エジェクター効果による外部空気導入ンノニノズ
ルの平均スイ気運片ケ下げて推進効率r高め、また専人
孕気と不足酸素燃焼による燃焼カスとの化学反応により
推力が上昇すると天う、二次的な効果が期待出来る等の
利点音生しめ。
Alternatively, it is possible to easily change the existing nozzle to the 17゛C 1st stage and 2nd stage nozzles. The secondary effect is expected to be that the average air flow of the noni nozzle is lowered by the effect, and the propulsion efficiency is increased, and the thrust is increased due to the chemical reaction between the expert's air and the combustion scum caused by oxygen-deficient combustion. Advantages such as being able to produce sound.

この発明の*tfmFillk励付図而r−照して説図
面る。
The tfmFillk excitation scheme of this invention will now be described.

M1図は木兄ψ」の−例のノズノ(・の斜視図であるか
、ノズルは、海面上大気圧ドにおいて最適膨脂もしくQ
ユ剥St制限内Cの過膨l辰状7.+、3HIc設計さ
れた第1段ノズル1と、その後部に段状隙間ケ持って取
り(・Jけられ6度から8度程度の開き角を持つ円1に
j状の第2段ノズル2おまひ両ノズル間の段状隙間に装
着された差圧作動型のバルブ3:、+1−する。
Diagram M1 is a perspective view of the nozzle (・) of Ki-ni ψ.
Excessive expansion of C within the limit of exfoliation St 7. +, 3HIc designed first stage nozzle 1, with a stepped gap at the rear (J-shaped second stage nozzle 2 in a circle 1 with an opening angle of about 6 to 8 degrees) Differential pressure operated valve 3 installed in the stepped gap between both nozzles: +1-.

段状原lJに装屑δれたバルブ3は、支点4で支えられ
ていて支点ヰのまわりに自由に回転するようVζ装装屑
扛でおり、第1段ノズル1の出[]ノノー−pel)と
ノズル外部3¥ 1j11気ノに(りa)との差圧によ
り開閉する機構な:持つ。
The valve 3 loaded with waste δ on the stepped base lJ is supported by a fulcrum 4 and is equipped with a waste holder Vζ so as to freely rotate around the fulcrum 4, and the valve 3 loaded with waste δ of the first stage nozzle 1 is A mechanism that opens and closes by the differential pressure between the nozzle (pel) and the outside of the nozzle (ria).

このパルプ開閉俄構と17ては、公9dlのバタノライ
型バルブの開閉(幾構r適用できる。
This pulp opening/closing mechanism and the opening/closing of a standard 9dl Batanorai type valve (several types can be applied).

冗射時ふ゛よび低r坊度飛翔申vc h−いてばp〉k
+pe+(k+はo < k、 < 1なる自11止保
敗りであるためバルブ3 ij:曲の状、17μに維持
でtll、段状隙間より外Iii全シ(が第2服ノズル
2の内部に導入される(第3図−a)。その結果、推力
の発生eま主にノズル1で受は持たlシ、第2段ノズル
2は単なるダクトとしての役割のAi持つ。
At the time of firing, the low-speed flight occurs.
+pe+(k+ is o < k, < 1, so the valve 3 ij: curved, maintained at 17μ, tll, all cylinders outside the stepped gap (but of the second nozzle 2) (Fig. 3-a).As a result, the thrust force is generated.The nozzle 1 mainly has a receiver, and the second stage nozzle 2 has a role of a mere duct.

飛翔高度が上がるに伴ない外部雰囲気圧(pa)が減少
する。他方、ノズル1の出目圧は高度に無関係に一短で
るる事から、p ≦札pa         el となるAlfが存在し、この高度に達するとバルブ3の
内側圧(kIpe、)と外側圧(pa)との差によりバ
ルブ3eま目動的にlfjの状態となる第3図−b)。
As the flight altitude increases, the external atmospheric pressure (pa) decreases. On the other hand, since the output pressure of the nozzle 1 is short or short regardless of the altitude, there exists an Alf such that p ≦ pa el, and when this altitude is reached, the inner pressure (kIpe, ) and the outer pressure ( 3-b), the valve 3e dynamically enters the state lfj due to the difference between the valve 3e and lfj.

第2段ノズル2Cま、出[」開口比がバルブ3が閉とな
る尚涙において剥離制限内の過#脹となるような値余持
ち、まfc犯2段ノズル内圧力金推力に変換するために
過l此の開き角金持っている。段状隙j用のバルブ3が
閉じらねた後は、燃焼端内で発生じたガスがノズル1と
ノズル2ケフルに流れ、大きな開口比のノズルにほぼ匹
敵する性能耐荷つノズルとして作動する。
The opening ratio of the second stage nozzle 2C is such that when the valve 3 is closed, there is a surplus value that causes excessive swelling within the peeling limit, and the pressure inside the second stage nozzle is converted into a thrust force. Because of this, I have a square metal with an opening like this. After the valve 3 for the stepped gap j fails to close, the gas generated within the combustion end flows into the nozzle 1 and nozzle 2 kefle, and the nozzle operates as a load-carrying nozzle with performance almost comparable to a nozzle with a large opening ratio. .

を」1 燃焼呈圧p(2= 35Kg/ d a 、第1段ノズ
ル開ロ比ξI−8.基底部圧袖正係数に+ =(+、 
3 。
1 Combustion pressure p (2 = 35Kg/da, 1st stage nozzle opening ratio ξI-8. Base pressure sleeve positive coefficient + = (+,
3.

ノズル剥虚阪界圧比1)e/I)a= 0.3とした。Nozzle stripping slope pressure ratio 1) e/I) a = 0.3.

この結果第2段ノズル開口比ねξ2−45とする事が出
きる。この条件のもとに飛翔高度との関連?調べた結果
、外気圧■)か0.18kg/i。
As a result, the second stage nozzle opening ratio can be set to ξ2-45. Is there a relationship with flight altitude under this condition? As a result of the investigation, the outside pressure ■) is 0.18 kg/i.

でバルブが+;Bじ、これはA IJtに換算して約1
2kmの大気L[−にa当する。従って^度12km迄
は開El比8の第1段ノズルが推力に蚕与し、そ汎以上
の高度でけバルブが閉じて開口比45のノズルとして作
動する。これは、発射時の大気川下でのノズル内の流n
の剥屋1がなく、父、近A空域での不足)彫脹による推
力損失全防ぐに光分なもので^るっ 4図面の間弔な1況明 6g1図はこの発明の−り11のノズルの斜視図、第2
図はバルブを示す陣r 1mj図、第3図(alはパル
プ開の゛伏爬ゲ示す〃テ面図、第3図tblは筒々! 
Uバルブ閉の状、■を示す〜r而面である。
So the valve is +; B is the same, which is about 1 when converted to A IJt.
2 km of atmosphere L[- corresponds to a. Therefore, up to 12 km, the first stage nozzle with an opening ratio of 8 contributes to the thrust, and above that point the valve closes and operates as a nozzle with an opening ratio of 45. This is the flow n in the nozzle downstream of the atmosphere at the time of launch.
There is no stripper 1, and my father is short in the near A airspace) It is light enough to prevent all thrust loss due to engraving. Perspective view of the nozzle, second
The figure shows the valve, Figure 3 (Al is the side view showing the open pulp, and Figure 3 TBL is the cylindrical side view).
The U-valve is closed, and the ~r surface shows ■.

図’i’:1・・第1段ノズル、2・・第2段ノズル、
S ・ハ(tし−〕゛′ 第1図 −) 第3図 (b) 329−
Figure 'i': 1...1st stage nozzle, 2...2nd stage nozzle,
S・ha(tshi-]゛' Fig. 1-) Fig. 3(b) 329-

Claims (1)

【特許請求の範囲】[Claims] 第1段ノズルと第2段ノズルとの1田の段状1 step shape of 1st stage nozzle and 2nd stage nozzle
JP14301282A 1982-08-18 1982-08-18 Nozzle for booster engine Pending JPS5932656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14301282A JPS5932656A (en) 1982-08-18 1982-08-18 Nozzle for booster engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14301282A JPS5932656A (en) 1982-08-18 1982-08-18 Nozzle for booster engine

Publications (1)

Publication Number Publication Date
JPS5932656A true JPS5932656A (en) 1984-02-22

Family

ID=15328891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14301282A Pending JPS5932656A (en) 1982-08-18 1982-08-18 Nozzle for booster engine

Country Status (1)

Country Link
JP (1) JPS5932656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138147A (en) * 1984-07-24 1986-02-24 メツセルシユミツト‐ベルコウ‐ブローム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Rocket engine for space flight

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3032974A (en) * 1956-08-24 1962-05-08 United Aircraft Corp Exhaust nozzle
US3062003A (en) * 1959-04-06 1962-11-06 United Aircraft Corp Variable area exhaust nozzle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3032974A (en) * 1956-08-24 1962-05-08 United Aircraft Corp Exhaust nozzle
US3062003A (en) * 1959-04-06 1962-11-06 United Aircraft Corp Variable area exhaust nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6138147A (en) * 1984-07-24 1986-02-24 メツセルシユミツト‐ベルコウ‐ブローム・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Rocket engine for space flight

Similar Documents

Publication Publication Date Title
JPS62288352A (en) Rocket propulsion device capable of sucking air
US3252281A (en) Rocket system and method
FR2599428A1 (en) COMBINED PROPULSION DEVICE FOR AIRCRAFT, IN PARTICULAR FOR SPACE AIRCRAFT.
US3747339A (en) Reaction propulsion engine and method of operation
US6357700B1 (en) Electrically powered spacecraft/airship
US4724738A (en) Space entry actuator launch system
US2547936A (en) Ducted rocket propulsion means for aircraft
US3049876A (en) Annular rocket motor and nozzle configuration
US4244294A (en) Stowable nozzle plug and method for air breathing missile
US3040519A (en) Jet propulsion unit with cooling means for incoming air
US3733826A (en) Fuel cooled ram air reaction propulsion engine
JPS5932656A (en) Nozzle for booster engine
US5836543A (en) Discus-shaped aerodyne vehicle for extremely high velocities
US3038408A (en) Combination rocket and ram jet power plant
US3403873A (en) Guided missile
EP0880645B1 (en) Rocket engine nozzle
CN205592035U (en) Combined cycle engine
JPH1182173A (en) Ejector rocket
CN113153580B (en) Combined spray pipe of solid rocket engine
JP2615413B2 (en) Combined cycle rocket engine
US3173250A (en) Reverse flow thrust chamber
US4007586A (en) Spin nozzle and thrust augmentor mechanism
GB597954A (en) Improvements in or relating to aerodynamic propelling means operating through directreaction jet and sweeping
US2950593A (en) Compound engine
US2953900A (en) Combined open-cycle closed-cycle powerplant for aircraft