JPS593256A - Array type probe - Google Patents

Array type probe

Info

Publication number
JPS593256A
JPS593256A JP57112066A JP11206682A JPS593256A JP S593256 A JPS593256 A JP S593256A JP 57112066 A JP57112066 A JP 57112066A JP 11206682 A JP11206682 A JP 11206682A JP S593256 A JPS593256 A JP S593256A
Authority
JP
Japan
Prior art keywords
ultrasonic
type probe
array type
probe
ultrasonic vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57112066A
Other languages
Japanese (ja)
Inventor
Kuniharu Uchida
内田 邦治
Satoshi Nagai
敏 長井
Ichiro Furumura
古村 一朗
Taiji Hirasawa
平沢 泰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57112066A priority Critical patent/JPS593256A/en
Publication of JPS593256A publication Critical patent/JPS593256A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To make it possible to closely bring a probe surface into contact with an object to be inspected easily regardless of the configuration thereof, by a method wherein plural ultrasonic vibrator sets are roughly arranged and the spaces between each ultrasonic vibrator sets are respectively connected by connecting materials in a bendable and deformable manner. CONSTITUTION:An array type probe 1 is constituted from N numbers of ultrasonic vibrator sets 2(1)-2(N) arranged in parallel relation to each other and the aforementioned each sets are respectively constituted from M numbers of ultrasonic vibrators 3(1)-3(M). In adition, flexible connecting rods 7 are attached between each ultrasonic vibrator sets 2(1)-2(N). By this connecting rods 7, the distances between each ultrasonic vibrator elements 2(1)-2(N) are kept constant and each ultrasonic vibrator sets are constituted so as to be subjected to free and mutual positional displacement in the arranged direction thereof. By this method, a probe surface can be brought into contact with an object to be inspected closely and easily regardless of the configuration thereof.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、金属材料、非金属材料およびこれらの材料で
構成される構造物の内部欠陥および不連続形状部の検査
を電子走査型超音波探傷法で探傷する時に使用されるア
レイ型探触子の改良に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention uses electronic scanning ultrasonic flaw detection to inspect internal defects and discontinuous shapes of metallic materials, non-metallic materials, and structures made of these materials. This paper relates to improvements to array-type probes used for flaw detection by method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電子走査型超音波探傷法は複数個の超音波Wを配列した
プレイ型探触子を用い、 各振動子による超音波送信および超音波受信タイミング
を電子的に制御することによって、超音波ビームを任意
の方向に偏向させたリ、集束させたりすることを可能と
するものである。
The electronic scanning ultrasonic flaw detection method uses a play-type probe in which multiple ultrasonic waves W are arranged, and by electronically controlling the timing of ultrasonic transmission and reception by each transducer, the ultrasonic beam is This allows it to be deflected in any direction and focused.

このため、一般に電子走査型超音波探傷法によれば、被
検査物の形状に合せて、超音波ビームの送受信を行うこ
とが可能であり、超音波探傷精度も大幅に向上するもの
である。
For this reason, generally, according to the electronic scanning ultrasonic flaw detection method, it is possible to transmit and receive ultrasonic beams in accordance with the shape of the object to be inspected, and the accuracy of ultrasonic flaw detection is also greatly improved.

しかしながら、一般にアレイ型探触子は複数の超音波振
動子を密に一方向に並べて配列した構造であるため、超
音波の送受を行ダう探触面側は平らであり、そのため被
検査物の探触子接触面の形状が曲面形状となっている場
合にはアレイ型探触子の探触面全面を一様に被検査物に
接触させることは困難である。とくに、厚板材を電子走
査法によって探傷する場合で、厚板部に超音波ビームを
斜めに入射させ、かつ超音波集束させ石には、所望探傷
領域が、超音波ビーム偏向方向に投影されたアレイ型探
触子開口寸法と使用した超音波の周波数および被探傷物
の音速によって決定される近距離音場限界距離以内にあ
ることが必要となること及び超音波ビームの集束点での
指向性向上のためにはアレイ型探触子の寸法はどうして
も大きくとらなければならなくなり、高価でしかも一層
、アレイ型探触子の曲面形状被検査物への一様な接触が
困難となって探傷精度が悪くなる。
However, array type probes generally have a structure in which multiple ultrasonic transducers are closely arranged in one direction, so the probe surface side that transmits and receives ultrasonic waves is flat, so When the probe contact surface of the array type probe has a curved shape, it is difficult to uniformly bring the entire probe surface of the array type probe into contact with the object to be inspected. In particular, when detecting thick plate materials using the electronic scanning method, an ultrasonic beam is incident obliquely on the thick plate part, and the ultrasonic waves are focused so that the desired flaw detection area is projected onto the stone in the direction of deflection of the ultrasonic beam. It must be within the near field limit distance determined by the array type probe aperture size, the frequency of the ultrasound used, and the sound speed of the object to be tested, and the directivity at the focal point of the ultrasound beam. In order to improve flaw detection, the size of the array type probe must be increased, which is expensive, and furthermore, it becomes difficult for the array type probe to uniformly contact the curved surface of the object to be inspected, resulting in poor flaw detection accuracy. becomes worse.

このため、従来、プレイ型探触子の超音波送受面にアク
リル樹脂、又は金属、非金属材のシューを取付け、他端
面な被検査物の曲面形状に合せて加二[シ、被検査物と
の音響的結合の改良を計ったり、水又は油などの液体を
介して被検査物との超音波送受信効率の向上を計ってい
る。
For this reason, conventionally, a shoe made of acrylic resin, metal, or non-metallic material is attached to the ultrasonic transmitting/receiving surface of a play-type probe, and a shoe made of acrylic resin, metal, or non-metallic material is attached to the ultrasonic transmitting/receiving surface of the play-type probe, and the shoe is adjusted to fit the curved shape of the object to be inspected. The aim is to improve the acoustic coupling with the object to be inspected, and to improve the efficiency of ultrasonic transmission and reception with the object to be inspected via liquids such as water or oil.

しかしながら、これらの方法によれば、被検査物の形状
毎にシューな用意する必要があり、収 また被検査物の形清か随時変化すると追従して常時安定
な音響的結合を取ることが困難である。
However, according to these methods, it is necessary to prepare a shoe for each shape of the object to be inspected, and it is difficult to follow changes in the shape of the object to be inspected and maintain stable acoustic coupling at all times. It is.

さらに、水または油などの液体を介した、所謂る水浸探
傷法によっても、常に安全な前記液体の確保を行うには
複雑な治具が必要となり、特にアレイ型探触子を広範囲
に移動させながら探傷するには一層困難を生じていた。
Furthermore, even with the so-called water immersion flaw detection method, which uses liquids such as water or oil, complex jigs are required to ensure a safe liquid at all times, and in particular, array type probes must be moved over a wide range. It became even more difficult to perform flaw detection while

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みなされたものであり、キ2 探触面を被検査物の形状にかかわり容易に密着し得るア
レイ型探触子を提供することを目的としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an array type probe in which the probe surface can be easily brought into close contact with the shape of the object to be inspected.

〔発明の概要〕[Summary of the invention]

即ち、本発明は上記目的を達成するため、複数の超音波
振動子を並設して成り、これら各超音振動子の送受信タ
イミングを制御することにより超音波ビームを任意に偏
向、集束させる電子走査型超音波探傷法に使用されるア
レイ型探触子において、複数の超音波振動子を密に並設
した複数の超音波振動子組を粗に並べ、これら各超音波
振動子粗間はそれぞれ連結材で折曲変形可能に連結した
構成として、探触子の開口寸法を少ない超音波振動子数
で大きくとることができるようにし、超音波ビームの集
束点での指向性の向上を図って探傷精度の向上を図るこ
とができるようにし、また探触子は連結材により折曲変
形可能として曲面形状の構造部利であっても探触子を全
体的に接触させることができるようにする。
That is, in order to achieve the above object, the present invention consists of a plurality of ultrasonic transducers arranged in parallel, and an electronic system that arbitrarily deflects and focuses an ultrasonic beam by controlling the transmission/reception timing of each ultrasonic transducer. In an array-type probe used in scanning ultrasonic flaw detection, multiple sets of ultrasonic transducers are arranged closely in parallel, and the distance between each ultrasonic transducer is Each probe is connected with a connecting material so that it can be bent and deformed, making it possible to increase the aperture size of the probe with a small number of ultrasonic transducers, thereby improving the directivity at the focal point of the ultrasonic beam. In addition, the probe can be bent and deformed by the connecting material, so that the probe can be brought into contact with the entire structure even if the structure has a curved surface. do.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例について図面を参照しながら説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明のアレイ型探触子の構成例を示すもので
あり、(83図は全体図、(b1図は超音波振動子組の
単体を示す図である。第1図において1はアレイ型探触
子であり、このアレイ型探触子1は、並列されるN個の
超音波振動子組2(1)〜、1 (Nlによって構成さ
れており、前記各組はそれぞれ前記並列方向に順に並設
されたM個の超音波振動子&(11,・・・3 (MJ
から構成される。
FIG. 1 shows an example of the configuration of the array type probe of the present invention. is an array-type probe, and this array-type probe 1 is composed of N ultrasonic transducer sets 2(1) to 1 (Nl) arranged in parallel, and each set is composed of the M ultrasonic transducers &(11,...3 (MJ
It consists of

ここで、前記各超音波振動子組!(13,・・・2(刈
は、第1図(b)の如くそれぞれ超音波振動子J(Il
l・・・3に)を保護し、かつ被検査物4との音響的結
合を良好とするためのコーテイング材5と、振動子の送
受信面と裏面側に振動子からの音と吸収させるためのダ
ンピング材6が付けられている。 ?さらに、各超音波
振動子組2(カ、・・・2(N)の間には可撓性を有す
る連結棒7が取り付けられている。前記連結棒7は、各
超音波振動子線X(1)。
Here, each ultrasonic transducer set mentioned above! (13,...2) The ultrasonic transducer J (Il
a coating material 5 for protecting the oscillator (l...3) and improving acoustic coupling with the object to be inspected 4; A damping material 6 is attached. ? Furthermore, a flexible connecting rod 7 is attached between each ultrasonic transducer set 2 (F, . . . 2 (N). The connecting rod 7 (1).

・・・2(N)間の距離を一定に保つとともに、各超音
波振動子線が組配列方向に自由に相対位置変位を生じる
ような構成を有している。すなわち、本発明の実施例で
は連結棒7の両端側にそれぞれ回転自在のヒンジ8を設
けて超音波振動子線と結合させているが、前記連結棒7
の代りに可撓性のあるバネ材もしくはゴム材を用いるこ
とも可能である。
. . 2 (N) is kept constant, and each ultrasonic transducer wire is configured to freely cause relative positional displacement in the group arrangement direction. That is, in the embodiment of the present invention, rotatable hinges 8 are provided at both ends of the connecting rod 7 to connect the ultrasonic transducer wire.
It is also possible to use a flexible spring material or rubber material instead.

本発明はまた第2図に示す如く構成しても良い。即ち、
連結棒7の長さを伸縮可能とするため、第2図(aJ、
(b月二示すように、連結棒7には7971部9を設け
て伸縮自在な構成としてあり、このシリンダ部9を伸ば
すことにより第2図(aJの如く超音波振動子線の分布
を粗くして見かけの超音波探触子開口寸法を大きくした
り、またシリンダ部9を用いて連結棒7を縮めることに
より探触子開口寸法を第2図(bJの如く小さくしたり
することを可能としている。ここで、シリンダ部9には
空気又は液体シリンダを用いることができる。また、シ
リン/の代りに、ネジ付き棒を付け、パルスモータ等で
回転させて連結棒の長さを自在に変えることができるよ
うにすれば各振動子線間の距離を電子的にコントロール
することも可能である。この場合には、各紐間の相対距
離を自在に与え、前記相対距離に応じて各超音波振動子
への超音波送受時間タイミングを制御させることも可能
である。
The present invention may also be constructed as shown in FIG. That is,
In order to make the length of the connecting rod 7 expandable and retractable,
(As shown in Figure 2, the connecting rod 7 is provided with a 7971 part 9 and has a telescopic structure. By extending this cylinder part 9, the distribution of the ultrasonic transducer beam can be coarsened as shown in Figure 2 (aJ). It is possible to increase the apparent aperture size of the ultrasonic probe, or to reduce the aperture size of the probe as shown in Figure 2 (bJ) by shrinking the connecting rod 7 using the cylinder part 9. Here, an air or liquid cylinder can be used for the cylinder part 9.In addition, a threaded rod can be attached instead of the cylinder, and the length of the connecting rod can be adjusted freely by rotating it with a pulse motor or the like. If it is possible to change the distance between each transducer wire, it is also possible to electronically control the distance between each transducer wire.In this case, the relative distance between each string can be freely given, and each wire can be adjusted according to the relative distance. It is also possible to control the ultrasonic transmission/reception time timing to the ultrasonic transducer.

次に上記構成の本装置の作用について、第3図を参照し
ながら説明する。第3図(a)は、1つのアレイ型探触
子2(iJを拡大した図で2Aはその開口寸法、即ち、
探触子の送受面の持つ幅である。
Next, the operation of this apparatus having the above structure will be explained with reference to FIG. FIG. 3(a) is an enlarged view of one array type probe 2 (iJ), and 2A is its aperture size, that is,
This is the width of the transmitting and receiving surface of the probe.

通常、アレイ型探触子2 (IIを構成する超音波振動
子、9(11,,9(2)I・・・3(的の間隔dは、
下式に示すように、電子走査法により超音波ビームUB
を所望の方向θ。(尚、UBInは主ビーム方向を示す
)へ偏向させる場合に、所望方向以外への超音波発生、
即ちグレーティングロブ(Jの発生を防止するため制限
を受ける。
Usually, the array type probe 2 (ultrasonic transducers constituting II, 9 (11,, 9 (2) I...3 (target spacing d is
As shown in the formula below, the ultrasonic beam UB is
the desired direction θ. (UBIn indicates the main beam direction), ultrasonic waves are generated in directions other than the desired direction,
That is, it is limited in order to prevent the occurrence of grating lobes (J).

ここで、λは使用する超音波振動子の周波数と、被検査
物の音速によって定まる超音波の波長である。
Here, λ is the wavelength of the ultrasonic wave determined by the frequency of the ultrasonic transducer used and the sound speed of the object to be inspected.

したがって、一般にアレイ型探触子の振動子配列間隔d
は十分大きく取ることはできない。
Therefore, in general, the transducer arrangement interval d of an array type probe is
cannot be large enough.

すなわち、超音波振動子の幅寸法すも必然的にdより小
さくアレイ型探触子の開口寸法2人を大きくするには、
多数の超音波振動子を配列する必要がある。
In other words, the width of the ultrasonic transducer must necessarily be smaller than d, and in order to increase the aperture size of the array probe,
It is necessary to arrange a large number of ultrasonic transducers.

一方、グレーティングロブGEの発生は、−超音波振動
子からの音場指向性が小さく、被検査物4の内部で音が
広範囲に広がることによって生じるものであり、音場指
向性の強い場合にはグレーティングロブGJの発生も抑
制される。
On the other hand, the generation of grating lobe GE is caused by - The sound field directivity from the ultrasonic transducer is small and the sound spreads over a wide range inside the inspected object 4, and when the sound field directivity is strong. The generation of grating lobes GJ is also suppressed.

本発明のアレイ型探触子によれば、各超音波振動子線2
(IJ、2(2J、・・・2(N)による超音波ビーム
UBは第3図(blに示す如く各々電子走査法によって
強い指向性を与えることが可能であり、このため、各超
音波振動子紐間のグレーティングロブ発生を抑制するこ
とができる。また、超音波振動子線zQ)、 !(2J
、・・・2(ロ)による各々の超音波ビームUBを第3
図(bJの如く1つの所望の探傷領域TGに集束させる
べく、超音波送受信を制御することによって所望領域T
Gでの良好な超音波音場が生じるものである。したがっ
て、これにより従来のアレイ型探触子に比べ、探触子構
成振動子数を少なくして、探触子開口寸法2人を大きく
することが可能となる。
According to the array type probe of the present invention, each ultrasonic transducer beam 2
(IJ, 2 (2J, . . . 2 (N)) The ultrasonic beam UB due to It is possible to suppress the generation of grating lobes between the transducer strings.In addition, the ultrasonic transducer beams zQ), !(2J
,... Each ultrasonic beam UB according to 2 (b) is
In order to focus on one desired flaw detection area TG as shown in Figure (bJ), the desired area
A good ultrasonic sound field at G is generated. Therefore, this makes it possible to reduce the number of transducers constituting the probe and increase the probe aperture size for two people compared to the conventional array type probe.

この探触子開口寸法2人を大きくすることによる効果は
、一つには、超音波集束させた時の集束強度D = A
m/λFが向上し、さらに、集束点近傍での指向角β=
gin−”(λ/2A)が小さくなるため、超音波ビー
ムの検出能と分解能の向上をもたらすものである。なお
、Fは超音波集束距離である。
One of the effects of increasing the probe aperture size is that the focusing strength D = A when focusing ultrasonic waves
m/λF is improved, and the directivity angle near the focal point β=
gin-'' (λ/2A) becomes smaller, thereby improving the detectability and resolution of the ultrasonic beam. Note that F is the ultrasonic focusing distance.

本発明の他の特徴は第4図に示すように、各超音波振動
子線2(1)〜2(N)が、とンジ8の効果によって、
平らでない被検査物4であってもその表面形状に合わせ
それぞれ被検査物4に接触させることができることであ
る。従って、この場合、各超音波振動子A6.2 (1
1、・・・、2 (Nlは向きがばらばらとなるがいず
れの振動子線も被検査物4に接触させることができるの
で、あらかじめ、被検査物4の探触子接触面形状を知っ
ていれば、本発明のアレイ型探触子の配置位置に応じて
、各振動子線2(ト)、・・・2(N)の各振動子s 
(11e・・・3に)による超音波液送受信時のタイミ
ングを制御することにより、所望の方向および領域TG
に超音波ビーム偏向および集束させて超音波探傷するこ
とが可能となるものである。
Another feature of the present invention is that, as shown in FIG. 4, each ultrasonic transducer beam 2(1) to 2(N) is
Even if the inspected object 4 is not flat, it can be brought into contact with the inspected object 4 according to its surface shape. Therefore, in this case, each ultrasonic transducer A6.2 (1
1,...,2 (Although the directions of Nl vary, any transducer beam can be brought into contact with the object 4 to be inspected, so the shape of the probe contact surface of the object 4 to be inspected is known in advance. According to the arrangement position of the array type probe of the present invention, each transducer s of each transducer line 2 (G), . . . 2 (N)
By controlling the timing of ultrasonic liquid transmission and reception by (11e...3), desired direction and area TG
This makes it possible to perform ultrasonic flaw detection by deflecting and focusing the ultrasonic beam.

さらに、本発明の特徴とするところは、第2因の構成と
することにより各超音波振動子組X(X>*・・・2 
(NJの相対距離間隔を自在に変更し得るところにある
。このようにすることができる利点は次の通りである。
Furthermore, the feature of the present invention is that each ultrasonic transducer set X (X>*...2
(The relative distance interval of NJ can be changed freely.The advantages of doing so are as follows.

即ち、第5図(a) 、 (bJに示すように、近距離
および遠距離を探傷する場合に同一の超音波ビーム幅a
を与える場合には、探触子1の開口寸法2人は次式によ
って与えられる。
That is, as shown in Fig. 5(a) and (bJ), the same ultrasonic beam width a is used when detecting short and long distances.
In this case, the aperture size of the probe 1 is given by the following equation.

A=λT / (a cos’ θ0)・・・・・・・
・・・・・・・・・・・(2)すなわち、超音波集束を
被検査物4の表面よりTの深さで、超音波ビームUBを
θ。度だけ偏向させて行う場合には、深さTおよび偏向
角θ。が大きいほど大きな開口寸法2人が必要となるこ
とがわかる。逆に、上式に沿って探触子開口寸法を変更
すれば、被検査物4のすべての領域で同一の超音波音場
特性を得ることができることとなり、したがって、本発
明の第2図の如き、超音波振動子紐間距離可変形構造の
アレイ型探触子により、第2式に従って超音波探触子開
口寸法を設定すれば大幅な探傷精度向上を計ることがで
きる。
A=λT/(a cos' θ0)・・・・・・
(2) That is, the ultrasonic beam UB is focused at a depth T from the surface of the object 4 to be inspected. If the deflection is performed by deflecting by a degree, the depth T and the deflection angle θ. It can be seen that the larger the opening size, the larger the opening size and the need for two people. Conversely, if the probe aperture size is changed according to the above formula, it is possible to obtain the same ultrasonic sound field characteristics in all regions of the object to be inspected 4. Therefore, as shown in FIG. With such an array type probe having a structure in which the distance between the ultrasonic transducer strings is variable, if the ultrasonic probe aperture size is set according to the second equation, it is possible to significantly improve flaw detection accuracy.

なお、本発明の探触子は、超音波振動子数2山が間隔d
をおいて配置されているため、超音波振動子3山が連続
的に配置された場合と探触子1の開口寸法2人は実質的
に一致はしないが実験又は解析的に容易に補正修正でき
るものである。
In addition, in the probe of the present invention, two peaks of ultrasonic transducers have an interval d.
Because the three ultrasonic transducers are arranged in series, the aperture dimensions of the two probes 1 do not substantially match, but they can be easily corrected experimentally or analytically. It is possible.

尚、本発明の実施例においては、アレイ型探触子を一探
触子法として使用する例についてだけ示したが、本発明
のアレイ型探触子を分割型又は二探型探触子として使用
することも可能である。すなわち各超音波振動子組2(
1)〜J (Nlのいずれの一つまたは複数個の組を送
信用探触子とし、他の組を受信用探触子として使用する
ものである。
In the embodiments of the present invention, only an example in which the array type probe is used as a one-probe method is shown, but the array type probe of the present invention may be used as a split type or two-probe type probe. It is also possible to use That is, each ultrasonic transducer set 2 (
1) to J (Nl), any one or more sets are used as transmitting probes, and the other sets are used as receiving probes.

また、本発明の実施例では、各超音波振動子組は同数の
超音波振動子から構成されるものをしたが、必ずしも同
数の超音波振動子でなくてもよい。とくに各組の超音波
振動子数を異ならせ、各々の組をそれぞれ単独の探触子
として扱い、所望の探傷領域でいずれの振動子線からの
超音波ビームも同一の超音波ビーム集束点幅(焦点幅)
aを持たせるようにすることにより、より探傷精度を向
上させることができる。
Further, in the embodiments of the present invention, each ultrasonic transducer set is composed of the same number of ultrasonic transducers, but it does not necessarily have to be the same number of ultrasonic transducers. In particular, the number of ultrasonic transducers in each set is different, each set is treated as an individual probe, and the ultrasonic beam from each transducer line has the same ultrasonic beam focal point width in the desired flaw detection area. (focal width)
By giving a, the flaw detection accuracy can be further improved.

なお本発明は上記し且つ図面に示す実施例に限定するこ
となくその要旨を変更しない範囲内で適宜変形して実施
し得るものであり、本発明の応用は基盤目状に配列した
アレイ型振動子および円盤状のアレイ型振動子について
も、同様に適用し得ることは言うまでもない。
Note that the present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within the scope of the gist thereof. Needless to say, the present invention can be similarly applied to array type vibrators in the form of disks and discs.

以上、本発明のアレイ型探触子によれば、アレイ型探触
子の開口寸法を少ない振動子数で大きく取ることができ
るため、超音波の集束点での指向性を向上させることが
容易となる。
As described above, according to the array type probe of the present invention, the aperture size of the array type probe can be made large with a small number of transducers, so it is easy to improve the directivity at the focal point of ultrasonic waves. becomes.

また、本発明のアレイ型探触子は自在に変形し得るため
、曲面形状の構造部材にも容易に一様に接触し得るもの
であり、探傷能力が大幅に向上する。
Further, since the array type probe of the present invention can be freely deformed, it can easily and uniformly contact even curved structural members, and its flaw detection ability is greatly improved.

さらにまた、探触子の開口寸法を自由に変更し得るため
、遠距離から近距離まで所望の超音波ビームで探傷する
ことが可能となり、アレイ型探触子の適用性能が向上す
るものである。
Furthermore, since the aperture size of the probe can be changed freely, it becomes possible to detect flaws from long distances to short distances with a desired ultrasonic beam, improving the application performance of array type probes. .

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明は複数の超音波振動子を並設
して成り、これら各超音波振動子の送受信タイミ゛ング
を制御することにより超音波ビームを任意に伯向、集束
させる電子走査型超音波探傷法に使用されるアレイ型探
触子において、複数の超音波振動子を密に並設した複数
の超音波振動子数を粗に並べ、これら各超音波振動子紐
間はそれぞれ連結材で折曲変形可能に連結した構成どし
たので、探触子の開口寸法を少ない超音波振動子数で大
きくとることができるため、安価でしかも超音波ビーム
の集束点での指向性を向上させることができ、分解能向
上が図れ、且つグレーティングロブの発生を抑制でさて
探傷精贋の向上を図ることができる他、本装置の探触子
は折曲変形可能であることから曲面形状の構造部材であ
っても探触子を全体的に接触させることができ、探傷が
可能となり、また連結材の長さを可変できるので、探傷
深さに対応した探触子開口寸法とすることができ異なる
深さでも良好な探傷精度が得られるなど優れた特徴を有
するアレイ型探触子を提供することができる。
As described in detail above, the present invention consists of a plurality of ultrasonic transducers arranged in parallel, and by controlling the transmission/reception timing of each of these ultrasonic transducers, an electronic beam can be directed and focused as desired. In an array type probe used in scanning ultrasonic flaw detection, a plurality of ultrasonic transducers are arranged closely in parallel, and the number of ultrasonic transducers is arranged roughly, and the distance between each ultrasonic transducer string is Since each structure is connected with a connecting material so that it can be bent and deformed, the aperture size of the probe can be made large with a small number of ultrasonic transducers, which is inexpensive and has good directivity at the focal point of the ultrasonic beam. In addition to improving flaw detection accuracy by suppressing the generation of grating lobes, the probe of this device can be bent and deformed, so it has a curved shape. The probe can be brought into contact with the entire structure of the structural member, making flaw detection possible.Also, since the length of the connecting material can be varied, the probe aperture size can be adjusted to correspond to the flaw detection depth. It is possible to provide an array type probe having excellent features such as being able to obtain good flaw detection accuracy even at different depths.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al (blは本発明のアレイ型探触子の構成
例を示す図、第2図(a) (bJは本発明のアレイ型
探触子の開口変化状態を示す図、第3図(a)(b)は
本発明の詳細な説明するための図、第4図は本発明のア
レイ型探触子の被検査物への接触状態を示す図、第5図
(a) (b)は本発明の詳細な説明する図である。 1・・・アレイ型探触子、2(11〜2(N)・・・振
動子組、3(1)〜3に)・・・超音波振動子、4・・
・被検査物、5・・・コーテイング材、6・・・ダンピ
ング材、7・・・連結棒、8・・・ヒンジ、9・・・シ
リンダ。 出願人代理人  弁理士 鈴 江 武 彦第3図 (a) 2(i) 第4図 第5図 (a)     (b)
Figure 1 (al) (bl is a diagram showing a configuration example of the array type probe of the present invention, Figure 2 (a) (bJ is a diagram showing the state of aperture change of the array type probe of the present invention, Figure 3 Figures (a) and (b) are diagrams for explaining the present invention in detail, Figure 4 is a diagram showing the state of contact of the array type probe of the present invention with an object to be inspected, and Figure 5 (a) ( b) is a diagram illustrating the present invention in detail. 1... Array type probe, 2 (11-2(N)... Transducer set, 3(1)-3)... Ultrasonic transducer, 4...
・Object to be inspected, 5... Coating material, 6... Damping material, 7... Connecting rod, 8... Hinge, 9... Cylinder. Applicant's representative Patent attorney Takehiko Suzue Figure 3 (a) 2 (i) Figure 4 Figure 5 (a) (b)

Claims (1)

【特許請求の範囲】 11)  複数の超音波振動子を並設して成り、これら
各超音波振動子を送受信タイミング制御することにより
超音波ビームを任意に偏向、集束、させる電子走査型超
音波探傷法に使用されるアレイ型探触子において、複数
の超音波振動子を密に並設した複数の超音波振動子組を
粗に並べ、これら各超音波振動子紐間はそれぞれ連結材
で折曲変形可能に連結したことを特徴とするアレイ型探
触子。 (2)連結材は両端側をヒンジにより枢支させる棒状体
で形成することを特徴とする特許請求の範囲第1項記載
のアレイ型探触子。 (3)連結材はバネで形成することを特徴とする特許請
求の範囲第1項記載のアレイ型探触子。 (4)連結材はゴム材で形成することを特徴とする特許
請求の範囲第1項記載のアレイ型探触子。 (5)連結材は長さを可変調整可能の構成することを特
徴とする特許請求の範囲第1項記載のアレイ型探触子。 (6)連結材はシリンダ装置を用い長さを可変調整可能
に構成することを特徴とする特許請求の範囲第5項記載
のプレイ型探触子。
[Claims] 11) Electronic scanning ultrasound, which consists of a plurality of ultrasonic transducers arranged in parallel, and allows the ultrasonic beam to be arbitrarily deflected and focused by controlling the transmission and reception timing of each ultrasonic transducer. In array-type probes used in flaw detection, multiple sets of ultrasonic transducers are arranged closely in parallel, and each ultrasonic transducer string is connected with a connecting material. An array type probe characterized by being connected so that it can be bent and deformed. (2) The array type probe according to claim 1, wherein the connecting member is formed of a rod-shaped body whose both ends are pivotally supported by hinges. (3) The array type probe according to claim 1, wherein the connecting member is formed of a spring. (4) The array type probe according to claim 1, wherein the connecting member is made of a rubber material. (5) The array type probe according to claim 1, wherein the length of the connecting member can be variably adjusted. (6) The play-type probe according to claim 5, wherein the connecting member is configured to be variably adjustable in length using a cylinder device.
JP57112066A 1982-06-29 1982-06-29 Array type probe Pending JPS593256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57112066A JPS593256A (en) 1982-06-29 1982-06-29 Array type probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112066A JPS593256A (en) 1982-06-29 1982-06-29 Array type probe

Publications (1)

Publication Number Publication Date
JPS593256A true JPS593256A (en) 1984-01-09

Family

ID=14577194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112066A Pending JPS593256A (en) 1982-06-29 1982-06-29 Array type probe

Country Status (1)

Country Link
JP (1) JPS593256A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642523A1 (en) * 1989-02-02 1990-08-03 Aerospatiale Ultrasonic inspection head and its application to inspecting articles whose shape changes during manufacture
US4948930A (en) * 1988-04-26 1990-08-14 Ab Volvo Length-adjusting device on a switch
FR2647904A2 (en) * 1989-02-02 1990-12-07 Aerospatiale ULTRASONIC CONTROL HEAD
CN1042013C (en) * 1993-01-12 1999-02-10 图博工业株式会社 Method for manufacturing thermoplastic synthetic resin impalpabale powder and apparatus for the same
JP2007017164A (en) * 2005-07-05 2007-01-25 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection system
JP2008039555A (en) * 2006-08-04 2008-02-21 Nec Corp Synthetic aperture sonar system and method for controlling length of transducer
JP2017167107A (en) * 2016-03-18 2017-09-21 三菱日立パワーシステムズ株式会社 Ultrasonic wave probe sensor and ultrasonic wave probe method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948930A (en) * 1988-04-26 1990-08-14 Ab Volvo Length-adjusting device on a switch
FR2642523A1 (en) * 1989-02-02 1990-08-03 Aerospatiale Ultrasonic inspection head and its application to inspecting articles whose shape changes during manufacture
FR2647904A2 (en) * 1989-02-02 1990-12-07 Aerospatiale ULTRASONIC CONTROL HEAD
CN1042013C (en) * 1993-01-12 1999-02-10 图博工业株式会社 Method for manufacturing thermoplastic synthetic resin impalpabale powder and apparatus for the same
JP2007017164A (en) * 2005-07-05 2007-01-25 Hitachi Ltd Ultrasonic flaw detection method and ultrasonic flaw detection system
JP2008039555A (en) * 2006-08-04 2008-02-21 Nec Corp Synthetic aperture sonar system and method for controlling length of transducer
JP2017167107A (en) * 2016-03-18 2017-09-21 三菱日立パワーシステムズ株式会社 Ultrasonic wave probe sensor and ultrasonic wave probe method

Similar Documents

Publication Publication Date Title
Prada et al. Time reversal techniques in ultrasonic nondestructive testing of scattering media
JP4728620B2 (en) Two-dimensional phased array for volumetric ultrasound inspection and method of use thereof
US20070068253A1 (en) Uni-index variable angle phased array probe
US6923066B2 (en) Ultrasonic transmitting and receiving apparatus
JPH0851689A (en) Ultrasonic wave transducer
JPS58625B2 (en) Ultrasonic imaging method and system
US4784147A (en) Method and apparatus for sidelobe suppression in scanning imaging systems
JPS593256A (en) Array type probe
US20220003714A1 (en) Ultrasound scanning apparatus for scanning non-planar surfaces
JP3606132B2 (en) Ultrasonic flaw detection method and apparatus
JP2000146921A (en) Method and device for ultrasonic crack detection
KR100970948B1 (en) 2-dimensional virtual array probe for 3-dimensional ultrasonic imaging
Mahaut et al. New features for phased array techniques inspections: simulation and experiments
Fang-Qing et al. Radiation acoustic field of a linear phased array on a cylindrical surface
JPH0419504B2 (en)
Holmes et al. Post-processing of ultrasonic phased array data for optimal performance
Schwarz et al. Development of a new ultrasonic circular array for endoscopic application in medicine and NDT
JPS6264949A (en) Method for ultrasonic flaw detection
KR102331585B1 (en) Device for collimation of ultrasound and method using the same
Kažys et al. Investigation of focusing possibilities of convex and cylindrical phased arrays
Mondal et al. Design and evaluation of two dimensional phased array ultrasonic transducers
Meyer Design Considerations for the Use of Ultrasonic Phased Array Probes in Weld Inspection
JP3606146B2 (en) Ultrasonic flaw detection method and apparatus
Song et al. Calculations of radiation field of phased array transducers using boundary diffraction wave model
Grga et al. Advanced UT techniques