JPS5932549B2 - Cathode for chlorine-alkali electrolyzer - Google Patents

Cathode for chlorine-alkali electrolyzer

Info

Publication number
JPS5932549B2
JPS5932549B2 JP52015575A JP1557577A JPS5932549B2 JP S5932549 B2 JPS5932549 B2 JP S5932549B2 JP 52015575 A JP52015575 A JP 52015575A JP 1557577 A JP1557577 A JP 1557577A JP S5932549 B2 JPS5932549 B2 JP S5932549B2
Authority
JP
Japan
Prior art keywords
cathode
water
temperature
reducing agent
complexing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52015575A
Other languages
Japanese (ja)
Other versions
JPS52110282A (en
Inventor
マイケル・クラムペルト
ロバ−ト・パウル・マイランド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Corp
Original Assignee
BASF Wyandotte Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF Wyandotte Corp filed Critical BASF Wyandotte Corp
Publication of JPS52110282A publication Critical patent/JPS52110282A/en
Publication of JPS5932549B2 publication Critical patent/JPS5932549B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound

Description

【発明の詳細な説明】 本発明は塩素一アルカリ電解槽、特に離膜式又は薄膜式
の電解槽における苛性アルカリおよび塩素の製造のため
の陰極部材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cathode member for the production of caustic alkali and chlorine in a chlorine-mono-alkali electrolytic cell, in particular a membrane or thin film electrolytic cell.

また本発明は鋼製陰極をち密かつ非多孔質の無電解ニツ
ケルめつき被覆物により被覆する方法を提供するもので
ある。塩素−アルカリ電解槽用の陰極としては通常被覆
しない鋼製の金鋼片又はエキスパンドメタルが用いられ
ている。
The present invention also provides a method for coating a steel cathode with a dense, non-porous electroless nickel plating coating. As the cathode for chlor-alkali electrolysers, gold billet or expanded metal, usually made of uncoated steel, is used.

燃料電池技術においては、鋼製陰極の性能はニツケル被
覆の適用によつて改善できることが知られている。ニツ
ケル被覆された鋼製陰極の場合は、水素過電圧がより低
くなり、他の場合に要する電力量よりも少ない電力量で
電解槽を運転することができるが、その効果は短命であ
ることが知られている。塩素−アルカリ工業において寸
法安定性のよい陰極が広く採用されている今日では、塩
素−アルカリ電解槽を数か月にわたつて連続運転するこ
とができる。先行技術によるニツケル被覆を行なつても
長期にわたつてエネルギーの節減を維持することは不可
能であり、電解槽への電力供給が中断することがあるよ
うな場合には特にそうである。本発明以前に、プラズマ
溶射設備の使用に少なからぬ費用を要し、そして燃料電
池技術におけるニツケル被覆鋼製陰極使用の結果が失望
的なものであるにもかかわらず、プラズマ溶射を用いた
ニツケル被覆(5こよる塩素−アルカリ電解槽の陰極の
改善が提案された。
It is known in fuel cell technology that the performance of steel cathodes can be improved by applying a nickel coating. Nickel-coated steel cathodes provide a lower hydrogen overvoltage and allow the electrolyzer to operate with less electricity than would otherwise be required, but this effect has been found to be short-lived. It is being Nowadays, with the widespread adoption of dimensionally stable cathodes in the chlor-alkali industry, chlor-alkali electrolysers can be operated continuously for several months. Even with prior art nickel coatings, it is not possible to maintain energy savings over long periods of time, especially if the power supply to the electrolyzer can be interrupted. Prior to the present invention, nickel coatings using plasma spraying had been developed, despite the considerable expense involved in using plasma spray equipment and the disappointing results of using nickel coated steel cathodes in fuel cell technology. (5) Improvements to the cathode of chlor-alkali electrolyzers have been proposed.

しかしその工業的実施の要望がきわめて少ないこの提案
の方法を用いて、満足すべき結果が得られるかどうかは
明らかでない。無電解めつき技術において、鋼へのニツ
ケルめつきは塩化ニツケル又は硫酸ニツケルのようなニ
ツケル塩、および次亜燐酸ナトリウム又は水素化硼素ナ
トリウムのような化学的還元剤の溶液を用いて行なわれ
ることが以前から知られている。この被覆は比較的迅速
に進行するが、得られた被覆は海綿状又は多孔質になり
やすい。このような被覆を施した塩素一アルカリ電解槽
用陰極を使用可能にするには、あらかじめその陰極を「
焼鈍」、すなわち被覆がち密化して非海綿状になるよう
に陰極を加熱することが必要である。しかし焼鈍工程は
電極の製造費を著しく増加させる。ニツケルの電気めつ
きにおいては、ニツケル塩とともにアンモニアを供給す
るか、又は硫酸ニツケルアンモニウムのような複塩から
出発することが望ましいか又は必要であることが古くか
ら知られている。
However, it is not clear whether satisfactory results can be obtained using this proposed method, which has very little demand for industrial implementation. In electroless plating techniques, nickel plating on steel is carried out using a solution of a nickel salt, such as nickel chloride or nickel sulfate, and a chemical reducing agent, such as sodium hypophosphite or sodium borohydride. has been known for a long time. Although this coating progresses relatively quickly, the resulting coating tends to be spongy or porous. In order to be able to use a cathode for a chlorine-alkali electrolyzer with such a coating, the cathode must be
It is necessary to anneal, ie heat the cathode so that the coating becomes dense and non-spongy. However, the annealing process significantly increases the manufacturing cost of the electrode. It has long been known that in nickel electroplating it is desirable or necessary to supply ammonia with the nickel salt or to start from a double salt such as nickel ammonium sulfate.

この電気めつき被覆は本発明による無電解めつきよりも
迅速に施すことができるが、その被覆は短期間で腐食す
るため目的を満足し得ない。本発明によれば塩素一アル
カリ電解槽用の鋼製陰極は、ニツケルによるち密で非多
孔質の無電解めつきを施すことによつて作られる。
Although this electroplated coating can be applied more quickly than the electroless plating according to the present invention, the coating corrodes in a short period of time, making it unsatisfactory. According to the invention, a steel cathode for a chlor-alkali electrolyzer is made by applying a dense, non-porous electroless plating of nickel.

この被覆は、陰極を20〜70℃の温度に保つた浴中に
2〜24時間好ましくは約5時間浸漬することによつて
行なわれ、その際浴は塩化ニツケル()又は硫酸ニツケ
ル()のようなニツケル塩()、水、アンモニア、エチ
レンジアミン、くえん酸又はグリコール酸のような錯化
剤、ならびに水素化硼素ナトリウム又はヒドラジン水化
物のような還元剤を含有する。なお、めつき速度は遅い
が生成したニツケル被覆が硬くかつ非多孔質になるよう
に無電解ニツケルめつき浴の温度を制御することによつ
て、より低い水素過電圧を示し、かつその低い水素過電
圧を長期間たとえば何力明も維持できる鋼製陰極が得ら
れる。従つてこの陰極を用いた塩素一アルカリ電解槽に
よる塩素および苛性アルカリの製造に際しては、著しい
電力の節減を達成することができる。次に本発明の好ま
しい実施態様を説明する。
This coating is carried out by immersing the cathode in a bath maintained at a temperature of 20 to 70° C. for 2 to 24 hours, preferably for about 5 hours, the bath being of nickel chloride () or nickel sulfate (). It contains a nickel salt such as water, ammonia, ethylenediamine, a complexing agent such as citric acid or glycolic acid, and a reducing agent such as sodium borohydride or hydrazine hydrate. Although the plating speed is slow, by controlling the temperature of the electroless nickel plating bath so that the formed nickel coating is hard and non-porous, it exhibits a lower hydrogen overvoltage. A steel cathode that can maintain its brightness for a long period of time, for example, can be obtained. Significant power savings can therefore be achieved in the production of chlorine and caustic in a chlorine-alkali electrolyzer using this cathode. Next, preferred embodiments of the present invention will be described.

ニツケルの無電解めつきを鋼製陰極に施すに先立ち、鋼
製陰極を注意深く清浄化することが重要である。さもな
いと生成した被覆の付着性が悪くなり、その他の点でも
不満足なものになりやすい。清浄処理は当業者に公知の
種々の方法によつて行なうことができ、たとえば陰極を
数分間塩酸中に浸漬することによつて満足すべき結果が
得られる。無電解ニツケルめつき浴を作る際に、浴の成
分として必要なものの一つは適当なニツケル塩である。
塩化ニツケル(次は硫酸ニツケル()又は硫酸ニツケル
アンモニウムを用いて良好な結果を得ることででき、こ
のような塩は浴中に11当たりたとえば10〜40y含
まれる。浴の第二の成分は水である。
Before electroless plating of nickel is applied to a steel cathode, it is important to carefully clean the steel cathode. Otherwise, the resulting coating is likely to have poor adhesion and to be unsatisfactory in other respects. The cleaning treatment can be carried out by various methods known to those skilled in the art; for example, satisfactory results are obtained by immersing the cathode in hydrochloric acid for a few minutes. When preparing an electroless nickel plating bath, one of the necessary bath components is a suitable nickel salt.
Good results can be obtained using nickel chloride (then nickel sulfate) or nickel ammonium sulfate, such salts being present in the bath, for example 10 to 40 y per 11. The second component of the bath is water. It is.

浴の第三の成分は適当な錯化剤、たとえばアンモニア、
エチレンジアミン、グリコール酸、くえん酸その他であ
る。通常この種の錯化剤の含有量は、たとえば存在する
水の量の2〜20%程度である。水11当たり370〜
570mfの高濃度のアンモニア水を用いて良好な結果
が得られる。水11当たり509のエチレンジアミンを
用いる場合にも良好な結果が得られる。無電解めつき浴
のさらに他の成分は、還元剤たとえば水素化硼素ナトリ
ウム、ヒドラジン水化物、次亜燐酸ナトリウム、亜ジチ
オン酸ナトリウムその他である。
The third component of the bath is a suitable complexing agent, such as ammonia,
These include ethylenediamine, glycolic acid, citric acid, and others. Usually the content of this type of complexing agent is, for example, about 2 to 20% of the amount of water present. 370~ per water 11
Good results are obtained using highly concentrated ammonia water of 570 mf. Good results are also obtained when using 509 parts of ethylenediamine per 11 parts of water. Further components of the electroless plating bath are reducing agents such as sodium borohydride, hydrazine hydrate, sodium hypophosphite, sodium dithionite, and others.

このような還元剤の含有量は通常は比較的少量、たとえ
ば水11当たり2〜50f1である。被覆された鋼製電
極のより低い水素過電圧の維持に関する性能は、選ばれ
た還元剤に一部依存すると思われる。ヒドラジン水化物
の使用によつて特に良好な結果が得られるので、これを
使用することが好ましい。亜ジチオン酸ナトリウムを還
元剤として用いた試験では、電圧の節減が次第に低下す
るような被覆された陰極が得られた。無電解めつき浴を
調製した後、これを適当な温度に調節し、この温度に保
持する。選択すべき温度はある程度浴中に用いられた特
定の成分の選択に依存する。場合によつては20℃のよ
うな低い温度、そして70℃のような高い温度でもよい
。存在する還元剤および錯化剤の種類、活性および割合
に応じて、めつき作業を過度に引き延ばす必要があるほ
ど低くない温度を、そしてまた成長が速すぎて、海綿状
で付着性の悪い析出物を生ずるほど高くない温度を選ぶ
ことが必要である。当業者は簡単な実験を最少限度行な
うことによつて適当な温度を選択することができる。還
元剤としての水素化硼素ナトリウム又はヒドラジン水化
物と組み合わせて錯化剤としてアンモニアを用いた浴の
場合には、たとえば30〜40℃の温度が好ましいが、
40℃を用いる場合には海綿状で付着性の劣る被覆が得
られることもある。鋼製?極を無電解めつき浴に浸漬す
る時間は広範囲で、たとえば2時間から24時間まで変
えることができる。
The content of such reducing agents is usually relatively small, for example 2 to 50 fl/11 water. The performance of the coated steel electrode in maintaining lower hydrogen overpotentials appears to depend in part on the reducing agent chosen. Particularly good results are obtained with the use of hydrazine hydrate, so it is preferred to use this. Tests using sodium dithionite as the reducing agent resulted in coated cathodes with progressively lower voltage savings. After preparing the electroless plating bath, it is adjusted to a suitable temperature and maintained at this temperature. The temperature that should be selected will depend in part on the selection of the particular components used in the bath. In some cases, temperatures as low as 20°C and as high as 70°C may be used. Depending on the type, activity and proportion of reducing and complexing agents present, the temperature should not be so low that it is necessary to overly prolong the plating operation, and also to prevent deposits that grow too fast, spongy and poorly adherent. It is necessary to choose a temperature that is not so high as to cause problems. A person skilled in the art will be able to select an appropriate temperature using a minimum of simple experimentation. In the case of baths using ammonia as a complexing agent in combination with sodium borohydride or hydrazine hydrate as a reducing agent, temperatures of e.g. 30-40°C are preferred;
If a temperature of 40° C. is used, spongy and poorly adherent coatings may be obtained. Made of steel? The time that the electrode is immersed in the electroless plating bath can vary over a wide range, for example from 2 hours to 24 hours.

一般に5時間の浸漬によつて良好な結果が得られる。厚
さ1〜15ミクロン、通常は約12ミクロンの硬いニツ
ケル被覆が得られる。必ずしも必要ではないが、鋼琳極
がめつき浴中に浸漬されている間は、その陰極を振動さ
せる手段を用いることが望ましい。前記のように定めら
れた無電解めつき浴中でニツケル被覆を施した後、鋼製
陰極を乾燥させ、次いでこれを塩素一アルカリ電解槽中
に設置し、この種の電解槽中で鋼製陰極を使用する場合
に常用される先行技術に従つて使用する。
Good results are generally obtained with a 5 hour soak. A hard nickel coating is obtained with a thickness of 1 to 15 microns, usually about 12 microns. Although not necessary, it is desirable to use means to vibrate the steel cathode while it is immersed in the plating bath. After applying the nickel coating in an electroless plating bath as defined above, the steel cathode is dried and then placed in a chlorine-alkali electrolytic cell. The use is in accordance with the prior art customary when using cathodes.

このようなニツケル被覆された鋼製陰極を無被覆のもの
の代りに使用すると、一定の組み合わされた条件による
電解槽の運転に要する電圧は、たとえば0.15ないし
0.16ボルトだけ減少することが知られた。これは無
被覆の鋼製陰極を用いたときに通常要する電圧(約3.
2ポルト)と比較されるものである。その結果、電解槽
の運転における電力節約は約4.7%に達する。塩水の
電解に使用される電力量は莫大なものであるから、その
量のわずか10I)の節約でも経済上きわめて重要であ
る。実施例 1 76.2?×152.4HRの鋼製金網片を塩酸中で洗
浄した。
If such a nickel-coated steel cathode is used in place of an uncoated one, the voltage required to operate the cell under certain combined conditions can be reduced by, for example, 0.15 to 0.16 volts. known. This is the voltage normally required when using an uncoated steel cathode (approximately 3.
2 Porto). As a result, the power savings in operating the electrolyzer amounts to about 4.7%. Since the amount of electricity used for electrolysis of salt water is enormous, even saving just 10 I) of that amount is extremely important economically. Example 1 76.2? A piece of steel wire mesh measuring 152.4 HR was washed in hydrochloric acid.

NiCl2l8fl、水800dおよび濃アンモニア水
450dを含む浴を調製し、この溶液に水素化硼素ナト
リウム39を添加したのち、鋼製金網を浸漬し、溶液の
温度を28℃に保つた。鋼製金網を5〜10サイクル/
秒の速さでその面に対して垂直方向に振動させ、浴中に
5時間浸漬した。こうして金網片の表面に厚さ12ミク
ロンの均一で硬い被覆が生成された。次いでこの金網を
、80℃の温度で運転さべ水酸化ナトリウムを18重量
%含む希薄な電解槽液を生成する塩素−アルカリ電解槽
中に設置したところ、この電解槽は無被覆の鋼製金網を
用いて同様に運転した場合に比べて、0.15ボルトだ
け低い電圧で運転された。比較実験 A 実施例1と同様に操作し、ただし温度を18℃に保つた
ところ鋼製金網片上には認め得るほどの被覆は生成され
なかつた。
A bath containing 8 fl of NiCl, 800 d of water, and 450 d of concentrated ammonia water was prepared, and after adding 39 d of sodium borohydride to this solution, a steel wire mesh was immersed, and the temperature of the solution was maintained at 28°C. Steel wire mesh 5-10 cycles/
It was vibrated perpendicular to its surface at a speed of seconds and immersed in the bath for 5 hours. A uniform, hard coating of 12 microns thick was thus produced on the surface of the piece of wire mesh. This wire mesh was then placed in a chlor-alkali electrolytic cell operating at a temperature of 80° C. to produce a dilute electrolytic cell solution containing 18% by weight of sodium hydroxide. was operated at a voltage 0.15 volts lower than a similar operation using Comparative Experiment A When operated as in Example 1, but maintaining the temperature at 18° C., no appreciable coating was produced on the steel wire mesh pieces.

比較実験 B 実施例1と同様に操作し、ただし浴温を40℃に保つた
ところ、2時間の浸漬後に試験片上に容易に拭きとれる
海綿状の黒い被覆が生じた。
Comparative Experiment B Working as in Example 1, but keeping the bath temperature at 40° C., a spongy black coating formed on the specimen after 2 hours of immersion, which was easily wiped off.

実施例 2実施例1と同様にして鋼製金網片を洗浄した
Example 2 A steel wire mesh piece was washed in the same manner as in Example 1.

NiCl2l89、水800艷、アンモニア水300w
11.およびヒドラジン水化物30f1を含む浴を調製
した。この浴を30℃に保ち、鋼製金網片を浴中に5時
間浸漬したのち取出し、塩素一アルカリ電解槽中で試験
した。電圧は無被覆の鋼製陰極の場合に比べて0.16
ボルトだけ低く、この低い電圧は数か月間維持された。
比較実験 C 実施例2と同様に操作し、ただしヒドラジン水化物の代
りに亜ジチオン酸ナトリウム3f1を使用した。
NiCl2l89, water 800g, ammonia water 300w
11. A bath containing hydrazine hydrate and hydrazine hydrate 30f1 was prepared. The bath was maintained at 30° C., and the steel wire mesh pieces were immersed in the bath for 5 hours, then taken out and tested in a chlorine-alkali electrolytic bath. The voltage is 0.16 compared to the uncoated steel cathode.
volts lower, and this low voltage was maintained for several months.
Comparative Experiment C The procedure was as in Example 2, except that sodium dithionite 3f1 was used instead of hydrazine hydrate.

良好な被覆が得られたが、この陰極を用いた場合には電
圧の節減量は次第に低下し、2か月後には意味のないも
のになつた。実施例 3 実施例2と同様に操作し、ただしアンモニア水の代わに
エチレンジアミン509を用い、ヒドラジン水化物の使
用量を309の代りに゛759とし、浴温を40℃に高
めたところ、すぐれた性能を示描極が得られた。
Although good coverage was obtained, the voltage savings with this cathode gradually decreased and became insignificant after two months. Example 3 The procedure was carried out in the same manner as in Example 2, except that ethylenediamine 509 was used instead of aqueous ammonia, the amount of hydrazine hydrate used was changed to ``759'' instead of 309, and the bath temperature was raised to 40°C. A model demonstrating the performance was obtained.

以上に本発明の実施態様を数例示したが、本発明の精神
と範囲を逸脱しない限り、どのような実施例の変更又は
修正も本発明に含まれるものである。
Although several embodiments of the present invention have been illustrated above, any changes or modifications to the embodiments are included in the present invention as long as they do not depart from the spirit and scope of the present invention.

Claims (1)

【特許請求の範囲】 1 ち密かつ非多孔質の固着した金属ニッケルの無電解
めつき被覆物を表面に有する鋼素地から成る塩素−アル
カリ電解槽用陰極。 2 被覆物が鋼素地を20〜70℃の温度に保つた無電
解ニッケルめつき浴中に2〜24時間浸漬することによ
つて鋼素地上に作られたものであり、その際前記浴が水
、水1l当り10〜40gの水溶性2価ニッケル塩、有
効量の錯化剤および有効量の還元剤から成り、そして同
等の無被覆鋼製陰極を使用した場合に比べて実質的によ
り低い電圧の適用下に塩素−アルカリ電解槽内における
前記陰極の使用を可能にする厚さの固着した非多孔質の
金属ニッケル被覆物を鋼素地上に生成するように、前記
浸漬の温度および時間、ならびに前記還元剤および錯化
剤の種類および濃度が相互に関係づけられることを特徴
とする、特許請求の範囲第1項記載の陰極。 3 還元剤がヒドラジン水化物であることを特徴とする
、特許請求の範囲第2項に記載の陰極。 4 錯化剤がアンモニアであり、そして温度が20〜4
0℃の範囲にあることを特徴とする、特許請求の範囲第
2項に記載の陰極。 5 鋼素地を20〜70℃の温度に保つた浴中に電流の
適用なしに2〜24時間浸漬し、その際前記浴が水、水
1l当り10〜40gの水溶性2価ニッケル塩、有効量
の錯化剤および有効量の還元剤から成り、そして前記浸
漬温度および時間、ならびに前記還元剤および錯化剤の
種類および濃度を、鋼素地上に固着した非多孔質の金属
ニッケル被覆物が生成されるように相互に関係づけるこ
とを特徴とする、ち密かつ非多孔質の固着した金属ニッ
ケルの無電解めつき被覆物を表面に有する鋼素地から成
る塩素−アルカリ電解槽用陰極の製法。 6 2価ニッケル塩が塩化第一ニッケルであることを特
徴とする、特許請求の範囲第5項に記載の方法。 7 還元剤がヒドラジン水化物であることを特徴とする
、特許請求の範囲第5項に記載の方法。 8 錯化剤がアンモニアであり、そして温度が20〜4
0℃の範囲にあることを特徴とする、特許請求の範囲第
5項記載の方法。 9 水、水1l当り10〜40gの水溶性2価ニッケル
塩、有効量の錯化剤および有効量の還元剤から成り、そ
の際錯化剤がアンモニア、エチレンジアミン、くえん酸
および硫酸から成る群から選ばれ、そして還元剤が水素
化硼素ナトリウム及びヒドラジン水化物から成る群から
選ばれた組成物を使用することを特徴とする、特許請求
の範囲第5項に記載の方法。
[Scope of Claims] 1. A cathode for a chlor-alkali electrolytic cell consisting of a steel substrate having on its surface a dense, non-porous, fixed electroless plated coating of metallic nickel. 2. The coating is made on a steel substrate by immersing the steel substrate in an electroless nickel plating bath maintained at a temperature of 20 to 70°C for 2 to 24 hours, the bath being water, 10 to 40 g of a water-soluble divalent nickel salt per liter of water, an effective amount of a complexing agent, and an effective amount of a reducing agent, and is substantially lower than when using an equivalent uncoated steel cathode. the temperature and duration of said immersion so as to produce on the steel substrate a fixed, non-porous metallic nickel coating of a thickness that enables the use of said cathode in a chlor-alkali electrolyzer under the application of an electric voltage; 2. A cathode according to claim 1, characterized in that the type and concentration of the reducing agent and complexing agent are interrelated. 3. The cathode according to claim 2, wherein the reducing agent is hydrazine hydrate. 4 The complexing agent is ammonia and the temperature is between 20 and 4
A cathode according to claim 2, characterized in that the temperature is in the range of 0°C. 5. The steel substrate is immersed for 2 to 24 hours without the application of an electric current in a bath maintained at a temperature of 20 to 70 °C, said bath containing water, 10 to 40 g of water-soluble divalent nickel salt per liter of water, effective of a complexing agent and an effective amount of a reducing agent, and the soaking temperature and time, and the type and concentration of the reducing agent and complexing agent are controlled so that the non-porous metallic nickel coating fixed to the steel substrate is 1. A method for producing a cathode for a chlor-alkali electrolytic cell consisting of a steel substrate having on its surface a dense, non-porous, fixed, electrolessly plated coating of metallic nickel, characterized in that the cathode is interrelated in such a way that it is produced. 6. The method according to claim 5, characterized in that the divalent nickel salt is nickel chloride. 7. The method according to claim 5, characterized in that the reducing agent is hydrazine hydrate. 8 The complexing agent is ammonia and the temperature is between 20 and 4
A method according to claim 5, characterized in that the temperature is in the range of 0°C. 9 water, 10 to 40 g per liter of water of a water-soluble divalent nickel salt, an effective amount of a complexing agent and an effective amount of a reducing agent, where the complexing agent is from the group consisting of ammonia, ethylenediamine, citric acid and sulfuric acid. 6. Process according to claim 5, characterized in that the reducing agent is selected from the group consisting of sodium borohydride and hydrazine hydrate.
JP52015575A 1976-02-17 1977-02-17 Cathode for chlorine-alkali electrolyzer Expired JPS5932549B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65853876A 1976-02-17 1976-02-17
US000000658538 1976-02-17

Publications (2)

Publication Number Publication Date
JPS52110282A JPS52110282A (en) 1977-09-16
JPS5932549B2 true JPS5932549B2 (en) 1984-08-09

Family

ID=24641660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52015575A Expired JPS5932549B2 (en) 1976-02-17 1977-02-17 Cathode for chlorine-alkali electrolyzer

Country Status (7)

Country Link
JP (1) JPS5932549B2 (en)
CA (1) CA1074952A (en)
DE (1) DE2706577A1 (en)
FR (1) FR2341671A1 (en)
GB (1) GB1566194A (en)
IT (1) IT1082690B (en)
NL (1) NL7701589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166549U (en) * 1984-10-04 1986-05-07

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384928A (en) * 1980-11-24 1983-05-24 Mpd Technology Corporation Anode for oxygen evolution
JPS58136787A (en) * 1982-02-04 1983-08-13 Kanegafuchi Chem Ind Co Ltd Corrosion resistant electrolytic cell
FR2590595B1 (en) * 1985-11-22 1988-02-26 Onera (Off Nat Aerospatiale) HYDRAZINE BATH FOR THE CHEMICAL DEPOSITION OF NICKEL AND / OR COBALT, AND METHOD FOR MANUFACTURING SUCH A BATH.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166549U (en) * 1984-10-04 1986-05-07

Also Published As

Publication number Publication date
FR2341671B3 (en) 1980-12-19
IT1082690B (en) 1985-05-21
NL7701589A (en) 1977-08-19
GB1566194A (en) 1980-04-30
FR2341671A1 (en) 1977-09-16
CA1074952A (en) 1980-04-08
DE2706577A1 (en) 1977-08-25
JPS52110282A (en) 1977-09-16

Similar Documents

Publication Publication Date Title
KR950011405B1 (en) Cathode for electrolysis and process for producing the same
RU2268324C2 (en) Electrode for production of hydrogen (versions) and method of its manufacture (versions)
US4326930A (en) Method for electrolytic deposition of metals
US4789437A (en) Pulse electroplating process
KR890003513B1 (en) Electrode for electro chemical processes and method for preparing the same
US4162204A (en) Plated metallic cathode
US4240895A (en) Raney alloy coated cathode for chlor-alkali cells
US4250004A (en) Process for the preparation of low overvoltage electrodes
US4370361A (en) Process of forming Raney alloy coated cathode for chlor-alkali cells
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
CA1072915A (en) Cathode surfaces having a low hydrogen overvoltage
US4518457A (en) Raney alloy coated cathode for chlor-alkali cells
US4767509A (en) Nickel-phosphorus electroplating and bath therefor
US3503799A (en) Method of preparing an electrode coated with a platinum metal
US4214954A (en) Plated metallic cathode with porous copper subplating
JPS5932549B2 (en) Cathode for chlorine-alkali electrolyzer
JPH10130878A (en) Electrolytic nickel plating method
US3639219A (en) Iridium plating
US4419208A (en) Raney alloy coated cathode for chlor-alkali cells
JPS6341994B2 (en)
JPH0631167A (en) Oxidation catalyst and its production
US4177129A (en) Plated metallic cathode
US4405434A (en) Raney alloy coated cathode for chlor-alkali cells
JPS589988A (en) Electrolytic cell
US4394228A (en) Raney alloy coated cathode for chlor-alkali cells