JPS5932173A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS5932173A
JPS5932173A JP14193382A JP14193382A JPS5932173A JP S5932173 A JPS5932173 A JP S5932173A JP 14193382 A JP14193382 A JP 14193382A JP 14193382 A JP14193382 A JP 14193382A JP S5932173 A JPS5932173 A JP S5932173A
Authority
JP
Japan
Prior art keywords
layer
compound semiconductor
semiconductor layer
gate
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14193382A
Other languages
Japanese (ja)
Inventor
Yasutami Tsukurida
造田 安民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP14193382A priority Critical patent/JPS5932173A/en
Publication of JPS5932173A publication Critical patent/JPS5932173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To obtain an FET which employs a compound semiconductor without variation in the characteristics due to a reaction between a metal and the semiconductor even by a self-aligning method due to an ion implantation and a heat treatment by employing an MISFET which uses as a gate electrode the semiconductor. CONSTITUTION:An i-type GaAs active layer 221, an n type GaAlAs layer 222, a semi-insulating GaAlAs layer 23, and an n type GaAs layer 24 are laminated by an electron beam epitaxial method on a semi-insulating GaA substrate 21. This structure is etched to the vicinity of the layer 221 with a gate region as a mask 25. Then, Si ions are implanted, the structure is then heat treated so as to form n type source 26 and drain 27. The mask 25 is removed, a CVD SiO2 film 28 is covered, a hole is opened, and ohmic Au-Ge electrodes 29-31 are formed. The layer 24 becomes a gate electrode, the layer 23 becomes a gate insulating film, and the current of the channel 221 can be controlled. According to this structure, a self-aligning technique in an MOSFET of Si gate is applied, and an FET which has high integration and high performance can be obtained with a compound semiconductor.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、GRAs等の化合物半導体を用いた電界効果
トランジスタ(FET )の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a field effect transistor (FET) using a compound semiconductor such as GRAs.

〔発明の技術的背景〕[Technical background of the invention]

GaAsはSiに比べて電子移動度が数倍高く、高速動
作が可能なデバイス利料として注目されている。GaA
 sを用いてFETを作る場合、Slにおけるような良
質の界面特性を示すケ゛−ト絶縁膜がないため、通常、
金属−半導体接触を利用したショットキータート構造が
採用される。このようなショットキーゲート型FETは
通常MES(Metal Sem1conductor
 ) FETと呼ばれる。
GaAs has an electron mobility several times higher than that of Si, and is attracting attention as a material for devices capable of high-speed operation. GaA
When making FETs using S, there is no gate insulating film that exhibits good interfacial properties like in Sl, so usually
A Schottky tart structure using metal-semiconductor contact is adopted. Such Schottky gate type FET is usually MES (Metal Sem1 conductor).
) called FET.

第1図ケま一般イIL、JなMl・;5FEi’を示し
ている。1ノがCrドープの半絶縁性GaAs基板、1
2が活性層となる11型不純物ド一グGIIAFI層で
あシ、このGaAq層I2層表2にオーミックTinで
あるソース短枠J、?、ドレイン縦極14およびショッ
トキー電極でを)るり゛−ト電極1,5が形成されてい
る。
Figure 1 shows general IL, J Ml, ;5FEi'. 1 is a Cr-doped semi-insulating GaAs substrate;
2 is the 11-type impurity doped GIIAFI layer which becomes the active layer, and the source short frame J, which is ohmic Tin, is on this GaAq layer I2 layer Table 2. , the vertical drain electrode 14 and the Schottky electrode) form the vertical electrodes 1 and 5.

第1図のMFES FE’l”の改良形として、第2図
に示すt14′造が知られている。これは、第1図の活
性層となるn型GaAs)@12の部分を、アンド−f
GaAs層J21 とこれよりバンドギヤノブの広いn
型不純物ドーゾGnA8層122の積層構造としだもの
である。この構造のMES FP;Tは第1図のものよ
り高速動作がDJ能である。その理由は1、ヤVリアが
走行するチャネル領域となるGaAsj冑12Iがアン
ドープ0w)えに”r4Q子移動Iρニが非常に高いた
めである。アンドーノ’GaAs層121で虎ヤリアと
なるit<子はへテロ接合を介してn型GaA]A8層
122から供給されることになる。
As an improved version of the MFES FE'l'' shown in Fig. 1, the t14' structure shown in Fig. 2 is known. -f
GaAs layer J21 and wider band gear knob than this
It has a laminated structure of eight GnA layers 122 doped with type impurities. The MES FP;T having this structure can operate faster than the one shown in FIG. 1 for DJ performance. The reason for this is 1. The GaAsj layer 12I, which becomes the channel region where the layer runs, is undoped and has a very high r4Q transfer Iρ. The child will be supplied from the n-type GaA]A8 layer 122 via the heterojunction.

〔背景技術の問題点〕[Problems with background technology]

第1図、第2図に7j<すMES FETを作るには、
ソース、ドレイン電極1 ;? 、 14とデート電極
15とに別々の金属を用いるだめ、それぞれの電極形成
に光蝕剤工程を必要とする。そのためにはマスク合せの
余裕をとることが必要である。
To make the MES FET shown in Figures 1 and 2,
Source, drain electrode 1 ;? , 14 and the date electrode 15, a photoetching process is required to form each electrode. For this purpose, it is necessary to allow a margin for mask alignment.

例えば、ダートD:恰幅2μmに対して、ケ8−1・電
極15とソース、ドレイン電極1 、? 、 74の間
にそれぞれ211mのすき間を設けなりればならない。
For example, dirt D: 2 μm in width, electrode 15, source electrode 1, drain electrode 1, ? , 74, each with a gap of 211 m.

このことは、第1に、この種のMgS FET ヲ一枚
のウェハ土に集積する場合に高集積化を妨げ不ことにな
る。第2にり−1・とソース、ドレインの間にり−トで
制御されない抵抗がチャネル抵抗に1^列に入るため、
高速動作の妨げとなり、また高い1(Inが得られない
的・、FET 7時性を悪化させる。
First, this will impede high integration when this type of MgS FET is integrated on a single wafer. Since the resistance that is not controlled by the gate between the second gate and the source and drain enters the channel resistance,
This impedes high-speed operation, and also worsens the FET's 7-hour performance because high 1 (In) cannot be obtained.

このような問題を解決するには、81ケ゛−トMO8F
ETで用いられているように、ケ′−ト市、極をマスク
としてイオン注入を行ってケ゛−ト電極に自己整合され
た低抵抗のソース、ドレイン領域を形成することが考え
られる。しかしながら、イオン注入を行った場合にはそ
の後注入不純物イオンの活性化のために必ず熱処理工程
を必要とする。第1図あるいtま第2図に示すようなM
ES FETでは、ケ゛−ト電極形成後に熱処理工程が
入ると、り゛−ト電極金属 半導体間で反応をおこし、
シ、7トキー障壁特性を劣化させるつ従ってMIJS 
)11Tでは、イオン注入による自己整合技術を用いる
ことが困Jilである。
To solve this problem, 81-gate MO8F
As used in ET, it is conceivable to perform ion implantation using the gate electrode as a mask to form low-resistance source and drain regions self-aligned with the gate electrode. However, when ion implantation is performed, a heat treatment step is always required to activate the implanted impurity ions. M as shown in Figure 1 or Figure 2
In an ES FET, when a heat treatment process is performed after forming the gate electrode, a reaction occurs between the back electrode metal and the semiconductor.
7, which degrades the barrier properties and therefore MIJS.
)11T, it is difficult to use self-alignment technology using ion implantation.

〔発明の目的〕[Purpose of the invention]

本発明は、GaAsのような化合物半嗜体を用いて、s
+ダグ−MDS I”ETにおけるような自己整合技術
を適用して商東栢化および、F/、 (’I:能化を川
141としたFgTのνJ造方法を提供することを目的
とする。
The present invention uses compound semi-solids such as GaAs to
+Doug-MDS The purpose is to apply self-alignment technology such as in I"ET to provide a νJ construction method for FgT with F/, ('I:Nenga as river 141). .

〔発明の概すμ〕[Summary of the invention μ]

本発明tま、り゛−ト絶縁膜およびケ゛−ト’i(1,
碓に半導体を用いたMis (Metal Inqul
l、or Spmi−conductor ) FET
構造を導入することにより、イオンi+−人法による自
己整合技術の適用をdj能とする。即ち本発明において
は、まず半絶縁性基板上に活性層となるvJlの化合物
半導体層を形成し、その上にり゛−ト絶縁膜として働く
半絶縁性の第2の化合物半導体層を積層形成し、更にそ
の上にケ゛−ト電極として働く一導電型の不純物をドー
プ′した第3の化合物半導体層を1*層形成する。次に
この積層構造のケ゛−ト領域にマスクを形成して第2お
よび第3の化合物半導体層をゲート領域にのみ残すよう
にエツチング除去し、イオン注入と熱処理を行って低抵
抗のソース、ドレイン領域を形成する。
According to the present invention, a straight insulating film and a gate'i (1,
Mis (Metal Inqul) using semiconductors
l, or Spmi-conductor) FET
By introducing the structure, it is possible to apply the self-alignment technique using the ion i+- method. That is, in the present invention, first, a compound semiconductor layer of vJl is formed as an active layer on a semi-insulating substrate, and a second semi-insulating compound semiconductor layer that acts as a base insulating film is laminated thereon. Further, a 1* layer of a third compound semiconductor layer doped with an impurity of one conductivity type is formed thereon to serve as a gate electrode. Next, a mask is formed on the gate region of this stacked structure, and the second and third compound semiconductor layers are etched away leaving only the gate region.Ion implantation and heat treatment are performed to form low resistance sources and drains. Form a region.

し発明の効果〕 本発明によれば、半導体をケ゛−ト電極とするMIS 
FET構造を用いるから、イオン注入と熱処理工程によ
る自己整合技術を適用しでも金属半漕体間の反応による
特性の変化はない。そして本発明によれば、自己整合技
術の適用によp、FETの高集積化が可能となυ、また
よシ一層の高速動作化が可能となる。
[Effects of the Invention] According to the present invention, an MIS using a semiconductor as a gate electrode
Since the FET structure is used, there is no change in characteristics due to reactions between metal semi-circular bodies even if self-alignment technology using ion implantation and heat treatment steps is applied. According to the present invention, by applying self-alignment technology, it is possible to increase the integration of pFETs, υ, and further increase the speed of operation.

〔発明の実施例〕[Embodiments of the invention]

本発明を、GaAs−GaAlAsへテロ接合を利用し
たFET K適用した一実施例について、第3図(a)
〜(d)を参照して説明する。まず(8)に示すように
、Crドーゾの半絶縁性GaAs基板2ノを用意し、こ
の上に活性層22としてアンドーグ’ GnAs/d 
22 lとn型不純物ドープGaAlAs層222を積
層し、更に0ドーフ0の半絶縁性GaAlAs層23、
n型不純物ドーfGRA8層24を順次積層形成する。
FIG. 3(a) shows an example in which the present invention is applied to an FET K using a GaAs-GaAlAs heterojunction.
This will be explained with reference to (d). First, as shown in (8), two semi-insulating GaAs substrates with Cr dosing are prepared, and undoped GnAs/d is formed as an active layer 22 on this.
22 l and an n-type impurity doped GaAlAs layer 222, and further a semi-insulating GaAlAs layer 23 with 0 dope 0,
Eight n-type impurity-doped fGRA layers 24 are sequentially stacked.

このようなGaAs−GaAlAsの積層構造は分子線
エピタキシー法により容易に形成することができる。
Such a GaAs-GaAlAs stacked structure can be easily formed by molecular beam epitaxy.

アンドーノuGaAs層221はチャネル領域として機
能する層、n IJjj、 GaAlAs層222はこ
のアンドーグGaAl!層221にキャリア(電子)を
供給するだめの層であって、この2層がFETの活性層
22を構成することになる。例えば、アンドーグGaA
sJ@22 I は厚さ4000λ、n型GaAlAs
層222はノリ、さ1000久でドナー濃度I X 1
 (,1cm  のSlドーグGao、7A10.5A
s層、0ドープの半絶縁性GaAlAs層23は厚さ2
000人のG Ro 5A 10 、5 A 11層、
n型GRAIL層24は+rlさ5000 、gでドナ
ー濃度I X l (118cm−3のSiド−fGa
AII層とする。
The undo uGaAs layer 221 is a layer functioning as a channel region, and the undo uGaAs layer 222 is a layer functioning as a channel region. This layer serves to supply carriers (electrons) to the layer 221, and these two layers constitute the active layer 22 of the FET. For example, Andorg GaA
sJ@22 I is 4000λ thick, n-type GaAlAs
The layer 222 has a donor concentration of I x 1 after 1000 years.
(,1cm Sl Dawg Gao, 7A10.5A
The s-layer, 0-doped semi-insulating GaAlAs layer 23 has a thickness of 2
000 G Ro 5A 10, 5A 11 layer,
The n-type GRAIL layer 24 has a +rl height of 5000 g and a donor concentration of I
It is assumed to be AII layer.

この後、(b)に示すようにケ゛−ト領域をマスク25
でおおい、アンドーグGaAs 22 lの近くまでエ
ツチングする。次いで(c)に示すように、n型不純物
をイオンYト人し熱処理を行って低抵抗のンース頭載2
6およびドレイン領域27を形成する。注入する不純物
はSiとし、熱処理は80 (l C、1(1分として
ソース頭載26およびドレインを1域27のドナー濃度
ヲ5 X ] Ocm以上にす2.)。/Cお、このイ
オン注入工程でマノ・り25を除去し、ケ゛−トとなる
n型GaAs層24に同時にn型不純物が注入されるよ
うにしでもよい。
After that, as shown in (b), the gate area is covered with a mask 25.
and etched close to the undoped GaAs 22 l. Next, as shown in (c), the n-type impurity is ionized and heat-treated to form a low resistance N-type
6 and a drain region 27 are formed. The impurity to be implanted is Si, and the heat treatment is 80 (l C, 1 (1 minute, the source head 26 and the drain are made to have a donor concentration of 5 x ] Ocm or more in the region 27)./C, this ion The manhole 25 may be removed in the implantation step, and the n-type impurity may be simultaneously implanted into the n-type GaAs layer 24 serving as the cathode.

このr&(d)に示すように、CVD法で全面に80 
(l fl X)Si0211fi 2 B ヲ堆ft
’t L、コンタyトホールをあけで、ソース、ドレイ
ン領域26゜27およびダート領域のn型GaA*f@
 24にそれぞれオーミックコンタクトするAu −G
e を極29 。
As shown in this r & (d), the entire surface was coated with 80% by CVD method.
(l fl X) Si0211fi 2 B
't L, open the contact hole and remove the n-type GaA*f@ source, drain region 26゜27 and dirt region.
Au-G in ohmic contact with 24 respectively
e to pole 29.

30および3ノを形成する。Form 30 and 3 no.

こうして形成されたFETは、n型GaAs層24がケ
°−ト電極、半絶縁性GaAlAs71i12 、?が
ケ゛−ト絶縁膜の役割をして、MOS FETと同様に
ソース、ドレイン間の電流を制御することができる。実
測によれば、チャネル長2μm1チャネル幅100μm
として室温で電子移動度 6000 cm / y 、 s e cが得られた。
In the FET thus formed, the n-type GaAs layer 24 is a gate electrode, and the semi-insulating GaAlAs layer 24 is a gate electrode. serves as a gate insulating film, and can control the current between the source and drain in the same way as a MOS FET. According to actual measurements, channel length is 2 μm, channel width is 100 μm.
An electron mobility of 6000 cm/y, sec was obtained at room temperature.

前述のように、MES FETの場合ショットキーケ゛
−ト電極として金属を用いるため、ダート電極形成後に
高温の熱工程を入れることができなかった。本実施例に
よれば、り゛−ト電極として半導体を用いているためケ
゛−ト翫極形成後にイオン注入と熱処理を行う自己整合
技術を適用することができる。従って本実施例によれば
、第2図のものに比べてGaAsを用いたFETの高集
積化と高速化を図ることができる。
As mentioned above, in the case of MES FETs, since metal is used as the Schottky gate electrode, a high temperature thermal process cannot be performed after forming the dirt electrode. According to this embodiment, since a semiconductor is used as the base electrode, it is possible to apply a self-alignment technique in which ion implantation and heat treatment are performed after the base electrode is formed. Therefore, according to this embodiment, higher integration and higher speed of the FET using GaAs can be achieved compared to the one shown in FIG.

第4図(8)〜(d)は本発明の別の実施例の一# 義
工程を示す図である。この実施例では、活性)@22と
なる第1の化合物半導体層としてn型GaAs層の単層
を用いている他、先の実施例と変らない。
FIGS. 4(8) to 4(d) are diagrams showing one installation process of another embodiment of the present invention. This embodiment is the same as the previous embodiment except that a single n-type GaAs layer is used as the first compound semiconductor layer which becomes active)@22.

従って対応する部分には第3図と同一符号を付して詳細
な説明を省く。この実施例の」4合、チャネル領域の電
子移動度が先の実施例の構造に比べて劣るが、従来の第
1図に示すMES FEi’に比べると高集積化と高速
化の点でやを」−り大きな効果が得られる。
Therefore, corresponding parts are given the same reference numerals as in FIG. 3, and detailed description thereof will be omitted. Although the electron mobility in the channel region of this embodiment is inferior to that of the structure of the previous embodiment, it is superior in terms of higher integration and higher speed than the conventional MES FEi' shown in FIG. A great effect can be obtained by doing this.

なお、以上の実施例でU’、 、 GaA!+基板上に
GaAs −GaA IA sへテロ接合構造を形成す
る場合を説明したが、本発明はこれに限られるものでv
、1なく、他のII −V族化合物半導体、例えは半絶
縁性Inl・基板にInT’ −InGaAsヘテロ接
合構造を形成して同様のFETを得る場合にも適用する
ことができる。
In addition, in the above examples, U', , GaA! Although the case where a GaAs-GaA IA s heterojunction structure is formed on a + substrate has been described, the present invention is not limited to this.
, 1, and can also be applied to other II-V group compound semiconductors, for example, when forming an InT'-InGaAs heterojunction structure on a semi-insulating Inl substrate to obtain a similar FET.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来のIIS FE’l’を示す
図、第3図(11)〜(d)は本発明の一実施例のFE
T製造工程を示す図、第4図(a)〜(4)は他の実施
例のFET製造工程を示す図である。 2ノ・・・半絶縁性GIIAs基板、22・・・活性層
(第1の化合物半導体層)、221・・・アンドーグG
aAs7*、222−n型不純物ドー7’GaAlAs
層、2 、?−0ドーフ0半絶縁++GaAl、L+I
m (第2の化合物半導体層)、24・・・n型不純物
ドーfGaAs層(第3の化合物半導体層)、25・・
・マスク、26・・・ソース領域、27・・・ドレイン
領域、28・・・CVD 5i02膜、2 y 〜、?
 ? −= An−Ge nfk。 出願人代理人 弁理士 鈴 江 武 毘第1図 第2図 3 第3図 第3図 1 第4図 第4図
Figures 1 and 2 are diagrams showing the conventional IIS FE'l', and Figures 3 (11) to (d) are diagrams showing the FE of an embodiment of the present invention.
FIGS. 4(a) to 4(4) are diagrams showing the FET manufacturing process of other embodiments. 2 No. Semi-insulating GIIAs substrate, 22 Active layer (first compound semiconductor layer), 221 Andog G
aAs7*, 222-n type impurity doped 7'GaAlAs
Layer 2? -0 Dorf 0 Semi-insulating++GaAl, L+I
m (second compound semiconductor layer), 24... n-type impurity doped fGaAs layer (third compound semiconductor layer), 25...
- Mask, 26... Source region, 27... Drain region, 28... CVD 5i02 film, 2 y ~, ?
? -=An-Genfk. Applicant's representative Patent attorney Takehiro Suzue Figure 1 Figure 2 Figure 3 Figure 3 Figure 1 Figure 4 Figure 4

Claims (1)

【特許請求の範囲】 (υ 半絶縁性基板上に活性層となる第1の化合物半導
体層、半絶縁性の第2の化合物半導体層および一導電型
の不純物をドーグした第3の化合物半導体)〆をこの順
に積層形成する工程と、この後グーi・領域にマスクを
形成して前記第2および第3の化合物半導体層をケ゛−
ト領域にのみ残すようにエツチング除去する工程と、こ
の後イオン注入と熱処理を行ってソースおよびドレイン
領域を形成する工程と、この後前記ケ゛−ト領域の第3
の化合物半導体層および前記ソース、ドレイン領域にそ
れぞれオーミックコンタクトする電極を形成する工程と
を備えだことを特徴とする電界効果トランジスタの製造
方法。 (2)前記第1の化合物半導体層は、チャネル領域とな
るアンドーグ半導体層とこれにキャリアを供給するこれ
よシバンドギャップの広いn型不純物ドープ半導体層の
へテロ接合構造である特許請求の範囲第1項記載の電界
効果トランジスタの製造方法。 (3)前記第1の化合物半導体層はn型不純物ドーグ半
導体層である特許請求の範囲第1項記載の電界効果トラ
ンジスタの製造方法0
[Claims] (υ A first compound semiconductor layer serving as an active layer on a semi-insulating substrate, a semi-insulating second compound semiconductor layer, and a third compound semiconductor doped with impurities of one conductivity type) After that, a mask is formed in the goo region to cover the second and third compound semiconductor layers.
a step of etching away the source and drain regions so as to leave them only in the gate region; a step of performing ion implantation and heat treatment to form the source and drain regions; and a step of removing the third region of the gate region.
A method for manufacturing a field effect transistor, comprising the step of forming electrodes in ohmic contact with the compound semiconductor layer and the source and drain regions, respectively. (2) The first compound semiconductor layer has a heterojunction structure of an undoped semiconductor layer serving as a channel region and an n-type impurity-doped semiconductor layer having a wide band gap that supplies carriers to the undoped semiconductor layer. 2. A method for manufacturing a field effect transistor according to item 1. (3) The method for manufacturing a field effect transistor according to claim 1, wherein the first compound semiconductor layer is an n-type impurity dope semiconductor layer.
JP14193382A 1982-08-16 1982-08-16 Manufacture of field effect transistor Pending JPS5932173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14193382A JPS5932173A (en) 1982-08-16 1982-08-16 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14193382A JPS5932173A (en) 1982-08-16 1982-08-16 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS5932173A true JPS5932173A (en) 1984-02-21

Family

ID=15303520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14193382A Pending JPS5932173A (en) 1982-08-16 1982-08-16 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS5932173A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184870A (en) * 1984-10-03 1986-04-30 Hitachi Ltd Semiconductor device
JPS61176161A (en) * 1985-01-31 1986-08-07 Nec Corp Heterogate field-effect transistor
JPS61184887A (en) * 1984-09-28 1986-08-18 テキサス インスツルメンツ インコ−ポレイテツド Hetero junction apparatus
JPS62274783A (en) * 1986-05-23 1987-11-28 Nec Corp Semiconductor device
JPS62293780A (en) * 1986-06-13 1987-12-21 Nec Corp Semiconductor device
JPS63244779A (en) * 1987-03-20 1988-10-12 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Field effect transistor
US4839310A (en) * 1988-01-27 1989-06-13 Massachusetts Institute Of Technology High mobility transistor with opposed-gates
US5037769A (en) * 1985-08-26 1991-08-06 Matsushita Electric Industrial Co., Ltd. Method of manufacturing semiconductor device
JP2018536293A (en) * 2015-12-03 2018-12-06 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ Optoelectronic device comprising a light emitting element and a transistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119671A (en) * 1982-01-09 1983-07-16 Agency Of Ind Science & Technol Field effect transistor and integrated circuit wherein it is used

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119671A (en) * 1982-01-09 1983-07-16 Agency Of Ind Science & Technol Field effect transistor and integrated circuit wherein it is used

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61184887A (en) * 1984-09-28 1986-08-18 テキサス インスツルメンツ インコ−ポレイテツド Hetero junction apparatus
JPS6184870A (en) * 1984-10-03 1986-04-30 Hitachi Ltd Semiconductor device
JPH0812909B2 (en) * 1984-10-03 1996-02-07 株式会社日立製作所 Semiconductor device
JPS61176161A (en) * 1985-01-31 1986-08-07 Nec Corp Heterogate field-effect transistor
US5037769A (en) * 1985-08-26 1991-08-06 Matsushita Electric Industrial Co., Ltd. Method of manufacturing semiconductor device
JPS62274783A (en) * 1986-05-23 1987-11-28 Nec Corp Semiconductor device
JPS62293780A (en) * 1986-06-13 1987-12-21 Nec Corp Semiconductor device
JPS63244779A (en) * 1987-03-20 1988-10-12 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Field effect transistor
US4839310A (en) * 1988-01-27 1989-06-13 Massachusetts Institute Of Technology High mobility transistor with opposed-gates
JP2018536293A (en) * 2015-12-03 2018-12-06 コミサリア ア エナジー アトミック エ オックス エナジーズ オルタネティヴ Optoelectronic device comprising a light emitting element and a transistor

Similar Documents

Publication Publication Date Title
JP3229012B2 (en) Method for manufacturing semiconductor device
EP0206274B1 (en) High transconductance complementary ic structure
US4729000A (en) Low power AlGaAs/GaAs complementary FETs incorporating InGaAs n-channel gates
JPH0669229A (en) Manufacture of semiconductor element provided with gold structure
JPH0260063B2 (en)
JPS5932173A (en) Manufacture of field effect transistor
JPS5891682A (en) Semiconductor device
KR900000073B1 (en) Field effect transistor
JPS5932174A (en) Manufacture of field effect transistor
KR930000603B1 (en) Metal semiconductor field effect transistor
JPS63122177A (en) Semiconductor device and its manufacture
JPH06120524A (en) Dual-gate metal semiconductor field-effect transistor and its manufacture
JP3653652B2 (en) Semiconductor device
JPS61187277A (en) Manufacture of field-effect transistor
JPS60218876A (en) Manufacture of field effect transistor
JPH0349242A (en) Field effect transistor and its manufacture
JPH03280552A (en) Manufacture of field effect transistor
JP2616032B2 (en) Method for manufacturing field effect transistor
JPS6332273B2 (en)
JP2000307100A (en) Field effect semiconductor device
JPH01162378A (en) Semiconductor device
JP2889240B2 (en) Compound semiconductor device and method of manufacturing the same
JPS62145779A (en) Field effect transistor
JPS59161878A (en) Manufacture of compound semiconductor device
JPS59175161A (en) Insulated gate semiconductor device and manufacture thereof