JPS5931776B2 - optical reader - Google Patents

optical reader

Info

Publication number
JPS5931776B2
JPS5931776B2 JP51047616A JP4761676A JPS5931776B2 JP S5931776 B2 JPS5931776 B2 JP S5931776B2 JP 51047616 A JP51047616 A JP 51047616A JP 4761676 A JP4761676 A JP 4761676A JP S5931776 B2 JPS5931776 B2 JP S5931776B2
Authority
JP
Japan
Prior art keywords
optical
displacement
reading
data carrier
optical reading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51047616A
Other languages
Japanese (ja)
Other versions
JPS51134604A (en
Inventor
クロード・ピューシュ
クロード・ブリコ
ジャン・ピエール・ラコット
フランソワ・ル・カルベネック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson-Brandt SA
Original Assignee
Thomson-Brandt SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson-Brandt SA filed Critical Thomson-Brandt SA
Publication of JPS51134604A publication Critical patent/JPS51134604A/en
Publication of JPS5931776B2 publication Critical patent/JPS5931776B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【発明の詳細な説明】 本発明は円板またはテープのような可動データ担体上の
トラツク中に記録された情報を光学的に読取る装置、特
に光学的焦点を用いた読取装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for optically reading information recorded in tracks on a movable data carrier, such as a disk or a tape, and in particular to a reading device using an optical focus.

高密度で記録された情報の光学的読取は非常に小さな寸
法の点により照明されることを要する上記トラツク上に
光ビームの正確な焦点を結ばせる点に問題があつた。
Optical reading of densely recorded information has been problematic in accurately focusing a light beam onto the track, which requires illumination by a point of very small size.

上記焦点の上下方向への変位と関連せしめられ、上記焦
点と上記トラツクとの間の上下方向の距離を表わす誤差
信号を受けて上記光学的読取装置の1要素を変位せしめ
ることはよく知られている。
It is well known to displace an element of the optical reading device in response to an error signal associated with a vertical displacement of the focal point and representative of the vertical distance between the focal point and the track. There is.

この種の光学的読取装置は上記焦点の変位を上記誤差の
緩やかな変化に従つて制御することを可能にするか上記
誤差が急速に変化する場合上記焦点の誤差を補償するた
めにはこれら装置の速度は余りに遅かつた。本発明によ
り、可動担体により支持されるトラツクに溢つて記録さ
れたデータを読取るに適した光学的読取装置が設けられ
、この光学的読取装置は共通の光軸をもちこの光軸に溢
つて変位される第1および第2の光学要素よりなる光学
的読取ヘツドを含み、上記読取ヘツドは読取用輻射線を
上記トラツク上に投射し上記第1および第2の光学要素
の変位により上記輻射線の焦点位置を変位せしめ、上記
光学的読取装置はさらに上記データ担体から得られる読
取輻射線を検出し、かつ上記焦点と上記トラック間の距
離に相当する誤差信号を送出するに適する検出装置と、
この誤差信号を受けてある制限周波数よりも低い周波数
および高い周波数をもつた第1および第2の制御信号を
供給するに適したフイルタ装置と、上記第1および第2
の制御信号をそれぞれ受けて上記第1および第2の光学
要素の変位をそれぞれ制御するに適した第1および第2
の変位装置を含んでいる。
Optical reading devices of this kind make it possible to control the displacement of the focus according to gradual changes in the error, or to compensate for the error in the focus if the error changes rapidly. The speed was too slow. According to the invention, an optical reading device is provided which is suitable for reading data recorded over a track supported by a movable carrier, which optical reading device has a common optical axis and is displaced over this optical axis. an optical read head comprising first and second optical elements, the read head projecting read radiation onto the track, and displacing the first and second optical elements, the read head comprising a first and a second optical element; a detection device suitable for displacing the focal point position, the optical reading device further detecting the reading radiation obtained from the data carrier and emitting an error signal corresponding to the distance between the focal point and the track;
a filter device suitable for receiving the error signal and supplying first and second control signals having frequencies lower and higher than a certain limit frequency;
first and second optical elements suitable for respectively receiving control signals and controlling displacements of said first and second optical elements, respectively;
displacement device.

以下添付の図面により本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

読取用光ビームによりデータ担体上のトラツクからデー
タを読取る本発明による反射光学的データ読取装置を示
す第1図において、コピーラットな光源から得られる光
ビーム1は光ビーム1の光学軸上にその中心を有する鏡
2により受取られる。
In FIG. 1, which shows a reflective optical data reading device according to the invention for reading data from a track on a data carrier by means of a reading light beam, a light beam 1 obtained from a copylat light source is located on the optical axis of the light beam 1. It is received by a mirror 2 having a center.

上記鏡2は軽量に作られかつピエゾ電気要素上に取付け
られ、この要素が高周波の交番電気信号による制御の下
に振動せしめられる時上記鏡2は数10ミクロン以下の
小振幅で振動せしめられる。鏡2上に受取られた光線は
上記入射ビーム1を通過せしめる円形の窓をもつた鏡4
に向け反射される。鏡4は光ビーム1の光軸上にその中
心をもつている。鏡2および4の曲率半径は、鏡4から
の上記反射光線が静止状態において入射ビーム1の光軸
上の1点0に収束するよう選らばれている。トラツク7
を支持するデータ和体6は当初の時点で上記点0が上記
トラツク上に位置するよう配置されている。上記鏡4は
支持具5上に取付けられる。トラツク7により回折され
かつ担体6を透過した輻射線はその一方が上記光軸のト
ラツクの進行方向に関して前方にその他方が同じく後方
に上記光学系の光軸に関して対称に配置された2個の光
電検知器8および9により検出される。これらの検知器
から得られる電気信号からよく知られた装置を用いてビ
ームの焦点0と読取られるべきトラツクとの間の距離を
示す誤差信号を得ることができ、このような装置として
例えば位相比較器10が用いられる。上記焦点誤差信号
はフイルタ11および12に加えられ、前者は遮断周波
数F。
The mirror 2 is made lightweight and mounted on a piezoelectric element, and when this element is oscillated under the control of high-frequency alternating electrical signals, the mirror 2 is oscillated with a small amplitude of less than a few tens of microns. The light beam received on mirror 2 is passed through mirror 4, which has a circular window through which the incident beam 1 passes.
reflected towards. The mirror 4 has its center on the optical axis of the light beam 1. The radii of curvature of the mirrors 2 and 4 are chosen such that the reflected ray from mirror 4 converges at a point 0 on the optical axis of the incident beam 1 in the stationary state. Truck 7
The data summation 6 supporting the is initially arranged so that the point 0 is located on the track. The mirror 4 is mounted on a support 5. The radiation diffracted by the track 7 and transmitted through the carrier 6 is transmitted to two photoelectrons arranged symmetrically with respect to the optical axis of the optical system, one of which is in front with respect to the traveling direction of the track of the optical axis and the other with respect to the rear. Detected by detectors 8 and 9. From the electrical signals obtained from these detectors an error signal indicating the distance between the focus 0 of the beam and the track to be read can be obtained using well-known devices, such as e.g. A container 10 is used. The focus error signal is applied to filters 11 and 12, the former having a cutoff frequency F.

の低域沢波器であり、後者は同じく遮断周波数F。をも
つた高域沢波器である。従つて低域沢波器11からの出
力信号は焦点誤差の緩やかな変化に対応し一方高域沢波
器12からの出力信号はその急速な変化に対応する。前
者の出力信号は電気力学的コイル13に加えられ後者の
出力はピエゾ電気結晶3に加えられる。2つの沢波器1
1および12の通過帯域を規定する上記共通の周波数F
This is a low-frequency wave generator, and the latter also has a cut-off frequency of F. It is a high frequency wave device with Therefore, the output signal from the low frequency waveform generator 11 corresponds to gradual changes in the focus error, while the output signal from the high frequency waveform generator 12 corresponds to its rapid changes. The output signal of the former is applied to the electrodynamic coil 13 and the output of the latter is applied to the piezoelectric crystal 3. Two sawnami devices 1
The above common frequency F defining passbands 1 and 12
.

は上記低速装置の動作帯域およびこの周波数での上記装
置の位相変化によつて定められ、例えば150Hz程度
であつてもよい。第1の制御範囲はその中に飽和領域を
含まないよう慎重に制限され、このため制御信号の振幅
が本装置の吸引範囲に達する時上記制御は急速に作用す
る。
is determined by the operating band of the low-speed device and the phase change of the device at this frequency, and may be, for example, on the order of 150 Hz. The first control range is carefully limited to include no saturation region within it, so that the control acts rapidly when the amplitude of the control signal reaches the suction range of the device.

高周波数で生じる焦点の変位に対してはそれが相当な加
速に相当するため軽量の光学要素のみが変位せしめられ
る。
For focal displacements occurring at high frequencies, only light optical elements are displaced, since this corresponds to a considerable acceleration.

本装置はまた可聴周波数範囲内で相当な容積の変位によ
り発生される騒音の量を減少せしめることができる。
The device is also capable of reducing the amount of noise generated by significant volume displacements within the audio frequency range.

この光学装置は後述される装置と同様によく規定された
一対の物体および像位置に対し設計されており、本装置
の1あるいはそれ以上の要素の変位は種々の収差を生じ
て読取用のスポツトを劣化せしめる。
This optical device, like the devices described below, is designed for a well-defined pair of object and image positions, and displacement of one or more elements of the device produces various aberrations that change the reading spot. cause deterioration.

本装置は従つて高性能のものでなければならず、かつ回
折によつて制限される。変位は常に10分の数ミリメー
トルよりも少いがこれにより収差の導入は回折スポツト
の中心における輻射線強度を減少せしめ回折リングの強
度を増加する効果をもつている。上記スポツトの中心に
おける強度の低下が最大強度の20%以下であれば収差
による回折スポツトの変形は少ないものと仮定して支障
がない。本光学装置の各要素は従つてデータ担***置の
上下方向変化およびデータ担体上のトラツクの変形によ
り定められる範囲内で良質の焦点がえられるよう定めら
れる。
The device must therefore be of high performance and is limited by diffraction. The displacement is always less than a few tenths of a millimeter, so that the introduction of aberrations has the effect of reducing the radiation intensity at the center of the diffraction spot and increasing the intensity of the diffraction ring. If the decrease in intensity at the center of the spot is 20% or less of the maximum intensity, it is assumed that the deformation of the diffraction spot due to aberration is small and there is no problem. Each element of the optical device is thus defined in such a way that a good focus is obtained within the range defined by the vertical variation of the data carrier position and the deformation of the tracks on the data carrier.

実施に当つて沢波器11および12から得られる出力信
号は増幅され、電気力学的コイルおよびピエゾ電気要素
にそれぞれ加えられる電圧は上記誤差信号による偏差を
補償した焦点の変位を与える。
In practice, the output signals obtained from waveforms 11 and 12 are amplified and the voltages applied to the electrodynamic coil and piezoelectric element, respectively, provide a focal displacement that compensates for deviations due to the error signals.

かくてピエゾ電気要素に加えられる電圧は数ミクロンの
変位に対し数百ボルトの程度である。第2図は本発明に
よる屈折光学的読取装置の光学部分を示す。光ビーム1
は収束レンズ14、第2の収束レンズ15、収束メニス
カスレンズ16、および第2のメニスカスレンズ17よ
りなる読取ヘツドを用いてデータ担体6に支持されるト
ラツク7上の点0に収束せしめられる。
The voltage applied to the piezoelectric element is thus on the order of a few hundred volts for a displacement of a few microns. FIG. 2 shows the optical part of a refractive optical reader according to the invention. light beam 1
is focused to point 0 on the track 7 carried on the data carrier 6 using a reading head consisting of a converging lens 14, a second converging lens 15, a converging meniscus lens 16 and a second meniscus lens 17.

要素14,16、および17は第1図に示されたと同様
な電気力学的装置により本光学系の光軸に平行に低周波
数で変位せしめられる枠18に取付けられている。
Elements 14, 16 and 17 are attached to a frame 18 which is displaced at low frequency parallel to the optical axis of the optical system by an electrodynamic device similar to that shown in FIG.

収束レンズ15はまた支持部18により支持されると共
にこの支持部18に対して系の光軸に平行に変位せしめ
られる。
The converging lens 15 is also supported by a support 18 and is displaced relative to this support 18 parallel to the optical axis of the system.

このために環状のピエゾ電気要素19がレンズ15に固
定され、この要素19に電気信号が加えられるときレン
ズ15を上記ピエゾ電気要素19の運動に追従せしめる
。枠およびレンズ15が同時に変位せしめられるとき焦
点に関する限りその変位は枠の変位とレンズ15の変位
とによる変位量に等しい。p 横方向の拡大率がG−[メiここでpはレンズ中心より物
体までの距離、p▼は同じく像までの距離)である光学
装置に対しては1対の物体および像位置に対する軸方向
拡大率はG2に等しい。
For this purpose, an annular piezoelectric element 19 is fixed to the lens 15, causing the lens 15 to follow the movement of said piezoelectric element 19 when an electrical signal is applied to said element 19. When the frame and the lens 15 are simultaneously displaced, the displacement is equal to the displacement of the frame and the lens 15 as far as the focal point is concerned. p For an optical device whose lateral magnification is G-[Mei, where p is the distance from the lens center to the object, and p▼ is the distance to the image, there is a pair of axes for the object and image positions. The directional magnification factor is equal to G2.

輻射線源は固定されている故この光学装置が光軸方向△
Xだけ移動せしめられるとこれに応じる像位置の変位は
△X−△X/G2に等しい。上述の光学装置組立体は2
つの要素に分割し得、その第1のものは大きな拡大率G
を有し、軽量の要素15を除いた読取ヘツドの組立体に
より構成され、それによる像位置はIであり、その第2
の要素は1より小さな拡大率GVをもつたレンズ15に
より構成される。
Since the radiation source is fixed, this optical device
When the image is moved by X, the corresponding displacement of the image position is equal to △X - △X/G2. The above-mentioned optical device assembly consists of two
can be divided into two elements, the first of which is a large magnification factor G
and consists of an assembly of the reading head excluding the lightweight element 15, the image position being I and its second
The element is constituted by a lens 15 with a magnification GV smaller than 1.

枠18を△Xだけ変位せしめると像位置1は第1の要素
によりdだけ変位せしめられ、このdはほ\△Xに等し
い。軽量要素もまたそれが枠18に取付けられるため△
Xだけ変位せしめられ、レンズ15に対しては物***置
に相当する上記像位置1と上記レンズ15の中心との間
の距離はレンズ15の変位がない限り一定である。また
△X/G2は無視しうるため上記に応じた焦点の変位は
ほぼ△Xに等しい。もしもレンズ15が上記と同時に△
Xiだけ変位されたとすると、焦点0のそれによる変位
は△X!が無L−ΔA視しうるため丁百に等しい。
When the frame 18 is displaced by ΔX, the image position 1 is displaced by d by the first element, and this d is approximately equal to △X. The lightweight element is also △ since it is attached to the frame 18.
The distance between the image position 1, which corresponds to the object position with respect to the lens 15, and the center of the lens 15 is constant as long as the lens 15 is not displaced. Further, since ΔX/G2 can be ignored, the displacement of the focus according to the above is approximately equal to ΔX. If lens 15 is △ at the same time as above
If it is displaced by Xi, the resulting displacement of focal point 0 is △X! is equal to 100 because it can be seen as having no L-ΔA.

これら2種の変位ハXによる合計変位d−△X−一でこ
の場合GWG!2は上記変位範囲内では一定と考えられ
る。
In this case, GWG is the total displacement d-△X-1 due to these two types of displacements x. 2 is considered to be constant within the above displacement range.

△Xはt−一Δ1覧10分の数ミリメートルに達しえら
れ、一方ゝ に!2は上述されたと同様に数10ミ
クロンに限定され、このため焦点は良質に保たれる。
△X can reach several tenths of a millimeter between t-Δ1, and on the other hand! 2 is limited to a few tens of microns as mentioned above, so that the focus remains of good quality.

第3図は本発明による反射屈折光学的読取装置の光学的
部分を示す。
FIG. 3 shows the optical part of a catadioptric optical reader according to the invention.

読取用光ビーム1は、光分割板20、収束レンズ21.
入射輻反射線を反射して再び上記収率レンズ21および
光分割板20を通過せしめる軽量の鏡22、および上記
光分割板よりなる光学装置によりデータ担体6に支持さ
れるトラツク7上の点0に焦点を結ばせられる。鏡22
は上記光学系の光軸に治つて小振幅で振動しうるピエゾ
電気要素24に取付けられる。上記ピエゾ電気要素、レ
ンズ21、分割板20、および対物レンズ23の支持体
は1個の枠25に組立てられ、この枠25は例えば第1
図に示されたような電気力学的装置により上記鏡22に
よる反射光の光軸と平行に低周波数で変位しうるような
されている。
The reading light beam 1 is transmitted through a light splitting plate 20, a converging lens 21 .
Point 0 on the track 7 supported on the data carrier 6 by an optical device consisting of a lightweight mirror 22 which reflects the reflected incident radiation and passes it again through the yield lens 21 and the light splitting plate 20, and the light splitting plate. can be focused on. Mirror 22
is attached to a piezoelectric element 24 which is aligned with the optical axis of the optical system and is capable of vibrating with a small amplitude. The piezoelectric element, the lens 21, the dividing plate 20, and the support for the objective lens 23 are assembled into one frame 25, and this frame 25 is, for example, a first
An electrodynamic device as shown in the figure allows the light reflected by the mirror 22 to be displaced at low frequencies parallel to the optical axis.

この枠25の変位△Xは焦点0を同じく△Xだけ変位さ
せる。
The displacement ΔX of this frame 25 also displaces the focal point 0 by ΔX.

一方平面鏡あるいは球面鏡であつてもよい上記鏡22の
変位△X!は焦点0を、レンズ21および23の焦点距
離の関係として定められる一定距離だけ変位せしめる。
換言すれば上記鏡の変位は、この鏡上の点で表わされる
仮想物体の上記2つのレンズに対する変位に相当し、こ
の変位はK△Xlに等しい(ここでKは上記2レンズの
焦点距離の関数である1定数である)。従つて上記2種
の変位の結果としてえられる焦点0の変位は△X+K△
X1で示される。第4図において本発明による光学的読
取装置のさらに他の変形の光学部分が示されており、こ
の場合上記焦点の高周波数変位はこの光学装置の屈折光
学的要素の収束性を変化せしめることにより行われる。
On the other hand, the displacement △X! of the mirror 22, which may be a plane mirror or a spherical mirror! causes focal point 0 to be displaced by a fixed distance determined as the relationship between the focal lengths of lenses 21 and 23.
In other words, the displacement of the mirror corresponds to the displacement of the virtual object represented by the point on the mirror with respect to the two lenses, and this displacement is equal to K△Xl (where K is the focal length of the two lenses). (one constant that is a function). Therefore, the displacement of focal point 0 obtained as a result of the above two types of displacement is △X+K△
It is indicated by X1. In FIG. 4, the optical part of a further variant of the optical reading device according to the invention is shown, in which the high-frequency displacement of the focal point is achieved by changing the convergence of the refractive optical elements of the optical device. It will be done.

光ビーム1は2つのレンズ26,27と低周波数で変位
せしめられる読取用対物レンズ28とにより担体6によ
り支持されるトラツク上の点0に焦点を結ばしめられる
The light beam 1 is focused by two lenses 26, 27 and a reading objective 28 which is displaced at low frequency onto a point 0 on a track supported by the carrier 6.

上記2個のレンズ26,27は読取ビームの直径が小さ
い領域中に配置され、それらの間隔eはレンズ27に取
付けられた環状のピエゾ電気要素29によつて変化され
る。このピエゾ電気要素は焦点誤差信号中の高周波電気
信号により励振される。対物レンズ28の拡大率が大き
いため、この対物レンズ28の低周波数変位は上記焦点
をこれとほぼ同様に変位せしめる。2個のレンズ26,
27間の間隔の変化△eは上記読取用対物レンズ28に
対する仮想の物***置を変位せしめその系の焦点位置を
△X1だけ変位させる。
The two lenses 26, 27 are arranged in the region of small diameter of the reading beam, and the distance e between them is varied by an annular piezoelectric element 29 attached to the lens 27. This piezoelectric element is excited by a high frequency electrical signal in the focus error signal. Because of the large magnification of objective lens 28, low frequency displacement of objective lens 28 causes the focal point to be displaced in substantially the same way. two lenses 26,
The change Δe in the distance between the reading objective lenses 27 and 27 displaces the virtual object position with respect to the reading objective lens 28, thereby displacing the focal position of the system by ΔX1.

光ビームは比較的小さな角でこの対物レンズ28上に入
射するにはその軸方向拡大率p←]→2は大きく、従つ
て2個のレンズ間の間隔eの僅かの変化は、上記対物レ
ンズ28上に入射するビームの発生源をなす仮想物***
置を大幅に変化させる。
For the light beam to be incident on this objective lens 28 at a relatively small angle, its axial magnification p←]→2 is large, so that a slight change in the spacing e between the two lenses The position of the virtual object that is the source of the beam incident on 28 is significantly changed.

このため焦点位置の変位△X! も認めうる程度となる
。本発明は上述された実施例に限定されるものではなく
、上記軽量の要素を変位せしめる高周波数の駆動は上記
のピエゾ電気要素の代りに小型の高速電気力学装置を用
いて達成できる。
Therefore, the displacement of the focal position △X! It is also acceptable. The invention is not limited to the embodiments described above; the high-frequency actuation for displacing the lightweight elements can be achieved using compact high-speed electrodynamic devices instead of the piezoelectric elements described above.

さらに緩やかに変位し、かつ速やかに変位し、あるいは
急速変位しうる光学要素がそれに追加された光学要素を
もつた任意の光学的読取ヘツドを本発明による制御され
た可変焦点光学的読取装置中の光学装置として使用しう
ることは明らかである。
Furthermore, any optical reading head having a slowly displacing and rapidly displacing optical element or an optical element that can be rapidly displaced may be used in a controlled variable focus optical reading device according to the present invention. It is clear that it can be used as an optical device.

最後に上述された光学的読取装置ぱ光の透過により読取
られるデータ担体の読取に用いられたが、本発明はこれ
らの実施例に限定されることなく、光の反射により読取
られる型のデータ担体の読取りにも用いられることは明
らかである。
Finally, although the optical reading device described above was used for reading data carriers which are read by the transmission of light, the invention is not limited to these embodiments, but the present invention is not limited to these embodiments, but also applies to data carriers of the type which are read by reflection of light. It is clear that it can also be used to read .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光学的読取装置の一例を示す系統
図、第2図ないし第4図は本発明による光学的読取装置
中に含まれる光学的読取ヘツドの種々の実施例を示す系
統図である。 1・・・・・・光ビーム、2・・・・・・鏡、3・・・
・・・ピエゾ電気要素、4・・・・・・鏡、5・・・・
・・支持具、6・・・・・・担体、7・・・トラツク、
8,9・・・・・・光電検知器、10・・・・・・比較
器、11,12・・・・・・沢波器、13・・・・・・
コイル、14,15,16・・・・・・レンズ、17・
・・・・・メニスカス、18・・・・・・枠、19・・
・・・・ピエゾ電気要素、20・・・・・・分割板、2
1・・・・・・レンズ、22・・・・・・鏡、23・・
・・・・対物レンズ、24・・・・・・ピエゾ電気要素
、25・・・・・・枠、26,27・・・・・・レンズ
、28・・・・・・対物レンズ、29・・・・・・ピエ
ゾ電気要素。
FIG. 1 is a system diagram showing an example of an optical reading device according to the invention, and FIGS. 2 to 4 are system diagrams showing various embodiments of optical reading heads included in the optical reading device according to the invention. It is. 1...Light beam, 2...Mirror, 3...
...Piezoelectric element, 4...Mirror, 5...
...Support, 6...Carrier, 7...Truck,
8, 9...Photoelectric detector, 10...Comparator, 11,12...Sawa wave detector, 13...
Coil, 14, 15, 16... Lens, 17.
・・・Meniscus, 18... Frame, 19...
... Piezoelectric element, 20 ... Division plate, 2
1...Lens, 22...Mirror, 23...
...Objective lens, 24 ... Piezoelectric element, 25 ... Frame, 26, 27 ... Lens, 28 ... Objective lens, 29. ...Piezoelectric element.

Claims (1)

【特許請求の範囲】 1 共通の光軸を有し、この光軸に沿つて変位しうる第
1および第2の光学要素よりなる光学的読取ヘッドを含
み、上記光学的読取ヘッドは読取用輻射線を可動データ
担体上のデータトラック上に投射し、かつこの輻射線を
上記第1および第2の光学要素の変位により変位せしめ
られる点に焦点を結ばしめるに適しており、さらに上記
可動データ担体から送出される読取用輻射線を検知して
上記焦点と上記トラック間の距離を表わす誤差信号を与
えるに適した検知装置と、上記誤差信号を受けてある制
限周波数よりも低い周波数と高い周波数とをそれぞれ有
する第1および第2の制御信号を供給するフィルタ装置
と、上記第1および第2の制御信号をそれぞれ受けて上
記第1および第2の光学要素の上記変位を制御するに適
した第1および第2の変位装置とを含み、上記可動デー
タ担体により担持されるトラックに沿つて記録されたデ
ータを読取る光学的読取装置。 2 上記第1の光学要素が上記光学的読取ヘッド自体で
あり、上記第2の光学要素が上記光学的読取ヘッドの軽
量な構成成分をなす特許請求の範囲第1項記載の光学的
読取装置。 3 上記第1の光学要素がその構成部分中単独に変位で
きるようになされ、上記第2の光学要素を構成するもの
を除いて上記光学的読取ヘッド自体を構成する特許請求
の範囲第1項記載の光学的読取装置。 4 上記第1および第2の変位装置が電気力学装置であ
る特許請求の範囲第1項記載の光学的読取装置。 5 上記第1の変位装置が電気力学装置であり、上記第
2の変位装置が上記第2の光学要素の変位を生じるため
上記第2の光学要素に固定されたピエゾ電気要素である
特許請求の範囲第1項記載の光学的読取装置。 6 上記フィルタ装置が上記制限周波数に等しい共通の
遮断周波数をもつた2個のフィルタよりなり、その一方
は低域フィルタで上記第1の制御信号を上記第1の変位
装置に供給し、その他方は上記制限周波数よりも高い周
波数を通過せしめるフィルタで上記第2の制御信号を上
記第2の変位装置に供給するようなされた特許請求の範
囲第5項記載の光学的読取装置。 7 上記可動データ担体は透過により読取るに適してお
り、上記検知装置が上記可動データ担体を透過した輻射
線を検知するようなされた特許請求の範囲第6項記載の
光学的読取装置。 8 上記可動データ担体が反射により読取るに適してお
り、上記検知装置が上記可動データ担体から反射される
輻射線を検知するようなされた特許請求の範囲第6項記
載の光学的読取装置。
Claims: 1. An optical reading head comprising first and second optical elements having a common optical axis and displaceable along the optical axis, the optical reading head having a reading radiation. suitable for projecting a radiation onto a data track on a movable data carrier and focusing this radiation at a point displaced by the displacement of said first and second optical elements; a detection device suitable for detecting the reading radiation emitted by the sensor and providing an error signal indicative of the distance between the focal point and the track; a filter device adapted to receive the first and second control signals, respectively, and to control the displacement of the first and second optical elements; 1 and a second displacement device for reading data recorded along a track carried by said movable data carrier. 2. An optical reading device according to claim 1, wherein the first optical element is the optical reading head itself and the second optical element forms a lightweight component of the optical reading head. 3. Claim 1, wherein the first optical element is independently displaceable in its constituent parts and constitutes the optical reading head itself apart from what constitutes the second optical element. optical reader. 4. An optical reading device according to claim 1, wherein the first and second displacement devices are electrodynamic devices. 5. The first displacement device is an electrodynamic device and the second displacement device is a piezoelectric element fixed to the second optical element for producing a displacement of the second optical element. The optical reading device according to scope 1. 6. The filter device comprises two filters with a common cut-off frequency equal to the limiting frequency, one of which is a low-pass filter and supplies the first control signal to the first displacement device, the other of which is a low-pass filter; 6. The optical reading device according to claim 5, wherein said second control signal is supplied to said second displacement device by a filter that allows frequencies higher than said limit frequency to pass. 7. Optical reading device according to claim 6, wherein the movable data carrier is suitable for reading by transmission and the detection device is adapted to detect radiation transmitted through the movable data carrier. 8. Optical reading device according to claim 6, wherein the movable data carrier is suitable for reading by reflection and the sensing device is adapted to detect radiation reflected from the movable data carrier.
JP51047616A 1975-04-30 1976-04-26 optical reader Expired JPS5931776B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR7513620A FR2309888A1 (en) 1975-04-30 1975-04-30 OPTICAL PROJECTION DEVICE AND OPTICAL READER INCLUDING SUCH A DEVICE

Publications (2)

Publication Number Publication Date
JPS51134604A JPS51134604A (en) 1976-11-22
JPS5931776B2 true JPS5931776B2 (en) 1984-08-04

Family

ID=9154695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51047616A Expired JPS5931776B2 (en) 1975-04-30 1976-04-26 optical reader

Country Status (5)

Country Link
JP (1) JPS5931776B2 (en)
CA (1) CA1071330A (en)
DE (1) DE2619232A1 (en)
FR (1) FR2309888A1 (en)
GB (1) GB1541596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163978U (en) * 1986-04-08 1987-10-17

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302830A (en) * 1978-05-10 1981-11-24 Olympus Optical Company Ltd. Optical information reading-out apparatus
NL8003729A (en) * 1980-06-27 1982-01-18 Philips Nv DEVICE FOR OPTICAL FOCUSING.
NL8004969A (en) * 1980-09-02 1982-04-01 Philips Nv DEVICE FOR OPTICAL FOCUSING.
DE3039425A1 (en) * 1980-10-18 1982-05-19 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar DEVICE FOR PHOTOELECTRICALLY DETERMINING THE POSITION OF AT LEAST ONE FOCUS OF AN IMAGE
JPS59168835U (en) * 1983-04-27 1984-11-12 パイオニア株式会社 Optical recording information reading device
JPS6022743A (en) * 1984-04-24 1985-02-05 Olympus Optical Co Ltd Pickup for disk reproducer containing information recorded optically
DE3544771A1 (en) * 1985-12-18 1987-06-19 Messerschmitt Boelkow Blohm Method and device for imaging an object on a detector having radiation-sensitive regions separated from one another by dead spaces
US4835380A (en) * 1987-06-11 1989-05-30 U. S. Philips Corporation Scanning device for an optical recording and/or reproducing apparatus
JP2676371B2 (en) * 1988-07-04 1997-11-12 パイオニア株式会社 Pickup height adjuster
NL8803055A (en) * 1988-12-13 1990-07-02 Philips Nv OPTICAL SCANNER, MIRROR-LIKE SUITABLE FOR APPLICATION THEREIN, AND OPTICAL REGISTER AND / OR READER EQUIPPED WITH THIS SCANNER.
NL8803048A (en) * 1988-12-13 1990-07-02 Philips Nv OPTICAL SCANNING DEVICE, MIRROR-LIKE SUITABLE FOR USE THEREIN, AND OPTICAL ENTRY AND / OR READING EQUIPMENT PROVIDED WITH THE SCANNING DEVICE.
DE4213556C2 (en) * 1992-04-24 1994-04-28 Max Planck Gesellschaft Device for the optical scanning of a record carrier, in particular a phosphor storage disk
CN109782962A (en) * 2018-12-11 2019-05-21 中国科学院深圳先进技术研究院 A kind of projection interactive method, device, system and terminal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163978U (en) * 1986-04-08 1987-10-17

Also Published As

Publication number Publication date
DE2619232A1 (en) 1976-11-11
CA1071330A (en) 1980-02-05
FR2309888B1 (en) 1977-11-10
GB1541596A (en) 1979-03-07
JPS51134604A (en) 1976-11-22
FR2309888A1 (en) 1976-11-26

Similar Documents

Publication Publication Date Title
US3829622A (en) Video disc player with variably biased pneumatic head
JPS5931776B2 (en) optical reader
NL8501665A (en) OPTICAL SCANNER WITH POSITION AND POSITION DETECTION SYSTEM FOR AN ELECTROMAGNETICALLY BEARING OBJECTIVE.
JPH11259889A (en) Device for reading out/writing optical recording medium
US4768180A (en) Multistage tracking system
US3952148A (en) Optical video disc playback system with position servo
JPS586212B2 (en) optical recording and reproducing device
KR840001862B1 (en) Video disc player
SU1137518A1 (en) Optical reproduction device having beam focusing on the medium surface
HU208587B (en) Method for tracking an optical scanner on the track of a data carrier and optical scanner performing said method
JPS6122448A (en) Optical head positioning device
JP2667968B2 (en) Optical disk drive
JPS6350920A (en) Optical head with optical axis adjusting device
JPS6247835A (en) Optical pickup
JP2685898B2 (en) Light head
JPS623437A (en) Information recording and reproducing device
JPH06101131B2 (en) Optical recording / reproducing device
JP2591344B2 (en) Optical track tracker
JPH056562A (en) Tilt detecting device
JPH01147420A (en) Galvanomirror turning driving device for optical pickup
JPS5947366B2 (en) Jidousyoutensouchi
JPS595969B2 (en) information reproducing device
JPH03132930A (en) Optical disk recording/reproducing device
JP2000315341A (en) Magneto-optical pickup
JPS63244420A (en) Optical system moving mechanism