JPS5931187B2 - Manufacturing method of catalyst electrode - Google Patents

Manufacturing method of catalyst electrode

Info

Publication number
JPS5931187B2
JPS5931187B2 JP55004601A JP460180A JPS5931187B2 JP S5931187 B2 JPS5931187 B2 JP S5931187B2 JP 55004601 A JP55004601 A JP 55004601A JP 460180 A JP460180 A JP 460180A JP S5931187 B2 JPS5931187 B2 JP S5931187B2
Authority
JP
Japan
Prior art keywords
electrode
catalyst
carbon powder
platinum
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55004601A
Other languages
Japanese (ja)
Other versions
JPS56102080A (en
Inventor
剛 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP55004601A priority Critical patent/JPS5931187B2/en
Priority to EP81300052A priority patent/EP0032787A3/en
Publication of JPS56102080A publication Critical patent/JPS56102080A/en
Publication of JPS5931187B2 publication Critical patent/JPS5931187B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

An electrode substrate (1) is dipped into an aqueous solution of a catalyst (3) in which carbon powder is suspended. The solution is circulated by a pump (5) through a tank (4). Electrodeposition is then carried out by employing the electrode substrate (1) as a cathode, so as to fix the carbon powder and the catalyst onto the electrode substrate. A catalyst electrode thus formed does not contain any binder such as polytetrafluoroethylene, so that it does not show any excessive voltage rise when in operation in a fuel cell. In addition, it is very easy to manufacture in comparison with catalytic electrodes manufactured according to prior art methods.

Description

【発明の詳細な説明】 本発明は触媒電極の製造方法に関し詳しぐは。[Detailed description of the invention] The present invention relates in detail to a method for manufacturing a catalyst electrode.

特性のすぐれた燃料電池用触媒電極を、極めて容易に製
造する方法に関する。ヒドラジンやメタノールなどを燃
料として用いる各種燃料電池の燃料電極としては、一般
に、白金やパラジウムなどの触媒を含有する炭素成型体
が使用される。
The present invention relates to a method for extremely easily manufacturing a catalyst electrode for a fuel cell with excellent characteristics. A carbon molded body containing a catalyst such as platinum or palladium is generally used as a fuel electrode for various fuel cells that use hydrazine, methanol, or the like as a fuel.

これら触媒電極を形成するには、タンタルなどから・な
る網状あるいは格子状の電極基体上に、炭素粒子や触媒
を、できるだけ均一かつ強固に担持する必要があること
は勿論であり、通常は、下記二つの方法によつて形成さ
れる。
In order to form these catalytic electrodes, it is of course necessary to support carbon particles and catalysts as uniformly and firmly as possible on a net-like or lattice-like electrode substrate made of tantalum or the like. It is formed by two methods.

(1)あらかじめ白金などの触媒を担持した炭素粒子を
たとえば、ポリテトラフロロエチレンなどプラスチック
のエマルジョンと混練して上記電極基体上につけ、加圧
して、炭素粒子を、プラスチツクエマルジ1ンによつて
結着させる。
(1) Carbon particles carrying a catalyst such as platinum in advance are kneaded with an emulsion of a plastic such as polytetrafluoroethylene, applied onto the electrode substrate, pressurized, and the carbon particles are mixed with an emulsion of a plastic such as polytetrafluoroethylene. Bind.

(支)炭素粒子のみを、まず(1)に示した方法によつ
て、電極基体上に結着させておき、ついで、触媒を担持
させる。この際、触媒の担持に用いられる方法としては
、電解還元(電着)法、水素ガスによる気相還元法ある
いはホルマリンなどによる液相還元法などが用いられる
。しかし、これら従来の触媒電極製造方法は、製造工程
が煩雑であるばかりでなく、ポリアト゛ラフロロエチレ
ンなどのプラスチックを結着材として用いているため、
電極の電気抵抗が大きくなつてしまう、という欠点があ
つた。
(Support) Only the carbon particles are first bound onto the electrode substrate by the method shown in (1), and then the catalyst is supported. At this time, as a method used for supporting the catalyst, an electrolytic reduction (electrodeposition) method, a gas phase reduction method using hydrogen gas, a liquid phase reduction method using formalin, etc. are used. However, these conventional catalyst electrode manufacturing methods not only involve complicated manufacturing processes, but also use plastics such as poly(atrafluoroethylene) as a binder.
The drawback was that the electrical resistance of the electrodes increased.

本発明の目的は、従来の触媒電極製造法の有する上記欠
点を除去し、操作が極めて容易で、かつ、電導性の高い
触媒電極を容易に形成することができるような触媒電極
の製造方法を提供することである。
An object of the present invention is to provide a method for manufacturing a catalyst electrode that eliminates the above-mentioned drawbacks of conventional catalyst electrode manufacturing methods, is extremely easy to operate, and can easily form a highly conductive catalyst electrode. It is to provide.

上記目的を達成するため、本発明は、炭素粉末を懸濁し
た触媒溶液中に電極基体を浸漬し、これを陰極として電
着を行なうことにより、触媒と炭素粉を、プラスチック
の結着剤なしに、電極基体上に均一かつ強固に固着させ
るものである。
In order to achieve the above object, the present invention immerses an electrode base in a catalyst solution in which carbon powder is suspended, and performs electrodeposition using this as a cathode. In addition, it can be fixed uniformly and firmly onto the electrode substrate.

以下、実施例を用いて本発明を詳細に説明する。実施例
1第1図は、本発明によつて触媒電極を製造するため
に用いられる装置の一例を示す模式図である。
Hereinafter, the present invention will be explained in detail using Examples. Example 1 FIG. 1 is a schematic diagram showing an example of an apparatus used for manufacturing a catalyst electrode according to the present invention.

塩化白金酸(H2ptC26)を0.01モル/l卦よ
び7酸化レニウム(Re2O,)を0.005モル/l
の割合で溶解した液に、粒径がほぼ5μmの活性炭粉末
を25t/2の割合で懸濁させて、電解液を形成した。
この電解液3の1.61を容器4に入れ、ポンプ5を用
いて電解液3を循環させながら、白金網2を陽極に、タ
ンタルエキスバンドメタル製の網1(面積120cr!
i)を陰極として、両極間に電圧を印加して、電着を行
なつた。
0.01 mol/l of chloroplatinic acid (H2ptC26) and 0.005 mol/l of rhenium heptoxide (Re2O,)
Activated carbon powder having a particle size of approximately 5 μm was suspended in the solution at a ratio of 25 t/2 to form an electrolytic solution.
1.61 of this electrolytic solution 3 is put into a container 4, and while circulating the electrolytic solution 3 using a pump 5, a tantalum extract band metal mesh 1 (area 120 cr!
Electrodeposition was performed by using i) as a cathode and applying a voltage between both electrodes.

電流密度20mA/Ctiiで1.5時間電解を行なう
と、電解液中に含まれる白金はすべて陰極1上に析出し
、陰極1上の白金析出量は、ほぼ307V/Ctltで
あつた。
When electrolysis was carried out for 1.5 hours at a current density of 20 mA/Ctii, all of the platinum contained in the electrolytic solution was deposited on the cathode 1, and the amount of platinum deposited on the cathode 1 was approximately 307 V/Ctlt.

また、陰極1には白金とともに炭素も析出し、その析出
量は、ほぼ10T!1f1/Cdであつた。な卦、析出
した層の厚さは、ほぼ0.5mmであつた。これらの白
金や炭素は、タンタル製の網を強く振つたり、あるいは
手でこすつても剥離せず、燃料電池の触媒電極として、
実用上十分な強度で固着されていることがわかつた。
In addition, carbon is deposited on the cathode 1 along with platinum, and the amount of the deposit is approximately 10T! It was 1f1/Cd. The thickness of the deposited layer was approximately 0.5 mm. These platinum and carbon do not peel off even when strongly shaken with a tantalum mesh or rubbed by hand, and are used as catalyst electrodes in fuel cells.
It was found that the bonding strength was sufficient for practical use.

周知のように、炭素粉自体が電解液中でイオン化するこ
とはないから、炭素粉は電解あるいは電着によつては析
出しないものと、一般には見做されて卦り、炭素粉のみ
を含む懸濁液を電解しても、炭素粉は析出しない。
As is well known, since carbon powder itself is not ionized in the electrolyte, it is generally assumed that carbon powder is not deposited by electrolysis or electrodeposition, and contains only carbon powder. Carbon powder does not precipitate even if the suspension is electrolyzed.

本発明は、炭素粉のみを含む懸濁液ではなく、触媒を溶
解した液に炭素粉を懸濁させた液を電解して、炭素粉と
触媒の両者を陰極上に析出固着させるものである。
The present invention does not use a suspension containing only carbon powder, but electrolyzes a solution in which carbon powder is suspended in a solution containing a catalyst to deposit and fix both the carbon powder and the catalyst on the cathode. .

触媒力ζ共存すると、何故炭素粉が析出するのか、その
理由は必ずしも明確ではないが、まず最初に白金が細い
針状結晶として陰極上に析出し、この針状結晶にからま
つて、炭素粉が固着され、炭素粉の上にさらに針状の白
金が析出し以下、これがくり返されることによつて炭素
粉が白金の針状結晶で架橋された形で触媒層が形成され
るものと推定される。
The reason why carbon powder precipitates when the catalytic force ζ coexists is not necessarily clear, but platinum first precipitates on the cathode as thin needle-like crystals, becomes entangled with these needle-like crystals, and then forms carbon powder. It is presumed that the carbon powder is fixed, further acicular platinum is precipitated on top of the carbon powder, and as this is repeated, a catalyst layer is formed in which the carbon powder is cross-linked with platinum acicular crystals. be done.

したがつて、触媒を含まない炭素粉の懸濁液を用いて電
圧を印加しても、炭素粉の析出は起らないから、炭素粉
のみではなく、必ず触媒も、液中に共存されていること
が必要である。このようにして得られた触媒電極をメタ
ノール燃料電池のメタノール電極として用いたときの、
該電極の電位一電流密度特性を第2図曲線aに示した。
なシ電解液としては硫酸を3モル/l、メタノールを1
モル/l溶解した液を用いた。また、比較のため、従来
の方法によつて形成された触媒電極の特性を、第2図曲
線b卦よびcに示した。
Therefore, even if a voltage is applied to a suspension of carbon powder that does not contain a catalyst, precipitation of carbon powder will not occur, so not only carbon powder but also a catalyst must coexist in the liquid. It is necessary to be present. When the catalyst electrode thus obtained is used as a methanol electrode in a methanol fuel cell,
The potential-current density characteristics of the electrode are shown in curve a in Figure 2.
As the electrolyte, sulfuric acid is 3 mol/l and methanol is 1 mol/l.
A solution containing mol/l was used. For comparison, the characteristics of the catalyst electrode formed by the conventional method are shown in curves b and c of FIG.

曲線bは、電極基体に、炭素粉をポリテトラフロロエチ
レンのエマルジヨンによつて結着した後に、白金一レニ
ウム触媒を電着したもの、曲線cは、炭素粉にあらかじ
め白金一レニウム触媒を担持させて卦き、これをポリテ
トラフロロエチレンのエマルジヨンによつて結着したも
の、をそれぞれ用いて得られた結果を示す。
Curve b is the case in which the platinum-rhenium catalyst is electrodeposited on the electrode substrate after bonding carbon powder with a polytetrafluoroethylene emulsion, and curve c is the case in which the platinum-rhenium catalyst is preliminarily supported on the carbon powder. The following are the results obtained by using a polytetrafluoroethylene emulsion.

な卦、上記各電極の白金担持量はいずれも3077V/
CF7lで電極基体としては、いずれも、本実施例に卦
いて用いた、上記タンタルエキスバンドメタル製の網(
表面積120cd)と同じものを使用した。第2図曲線
aから明らかなように、本発明によつて形成された電極
の場合、電流密度の対数と電位の関係は、ほぼ直線にな
り、電流密度が増大しても、電位がそれによつて極度に
上昇してしまうことはない。
Well, the amount of platinum supported in each of the above electrodes is 3077V/
The electrode substrate for each CF7l was the tantalum expanded metal net (used in this example).
The same surface area (120 cd) was used. As is clear from curve a in Figure 2, in the case of the electrode formed according to the present invention, the relationship between the logarithm of current density and potential is almost linear, and even if the current density increases, the potential changes accordingly. It will not rise to an extreme level.

しかし、曲線b卦よびcに示したように、従来の方法に
よつて形成された触媒電極は結着剤(テフロン)を用い
ているため、電極抵抗が増大する結果電流密度と電位の
間の関係が直線にならず、電流密度を大きくすると電位
が蓄るしく高くなつてしまう。
However, as shown in curves b and c, the catalytic electrode formed by the conventional method uses a binder (Teflon), which increases the electrode resistance, resulting in an increase in the current density and potential. The relationship is not linear, and when the current density is increased, the potential accumulates and becomes higher.

いうまでもなく、燃料電池の電圧は、対電極(空気極)
と触媒電極の電位差で表わされるから、触媒電極の電位
が上昇することは、燃料電池の電圧がそれだけ低下する
ことを意味し、所定の電圧を得るためには、多数の電池
が必要となる。
Needless to say, the voltage of a fuel cell is determined by the voltage at the counter electrode (air electrode).
Since this is expressed as the potential difference between the catalyst electrodes, an increase in the potential of the catalyst electrodes means that the voltage of the fuel cell decreases accordingly, and a large number of cells are required to obtain a predetermined voltage.

特性が極度に不良である曲線cは別として、曲線bの場
合と本発明を比較してみる。燃料電池として実用に供し
得るためには少なくとも50〜100mA/Cdの放電
電流密度が必要である。
Let us compare the present invention with the case of curve b, except for curve c, which has extremely poor characteristics. In order to be put to practical use as a fuel cell, a discharge current density of at least 50 to 100 mA/Cd is required.

゛ここで、100mA/Cdの電流密度で放電したとき
の電池の電圧を第2図を用いて計算すると、本発明によ
つて形成された触媒電極の電位は0.48になるのに対
し曲線bの場合の電位は、第2図から明らかなように、
ほぼ0.6である。空気極の電位はほぼ0.9Vである
から、両者を用いたときの起電力はそれぞれ卦よび となる。
゛Here, when the voltage of the battery when discharged at a current density of 100 mA/Cd is calculated using Fig. 2, the potential of the catalyst electrode formed according to the present invention is 0.48, whereas the curve As is clear from Figure 2, the potential in case b is
It is approximately 0.6. Since the potential of the air electrode is approximately 0.9V, the electromotive force when both are used is a trigram.

したがつて、起電力100Vを得るために必要な電池の
数は、本発明の場合は、100÷0.42−240個 曲線bの場合は、 100÷0.3−330個 となり、本発明によれば、従来よりも所要電池数を著る
しく低減できることがわかる。
Therefore, in the case of the present invention, the number of batteries required to obtain an electromotive force of 100 V is 100 ÷ 0.42-240.In the case of curve b, the number of batteries required is 100 ÷ 0.3-330. According to the above, it can be seen that the number of required batteries can be significantly reduced compared to the conventional method.

さらに、本発明は、電極基体を単に懸濁液中に浸漬して
、液を攪拌しながら電着するのみでよいから、従来のよ
うに触媒の担持と炭素粉の塗布の2工程を要する方法に
くらべて、はるかに簡便で容易である。
Furthermore, the present invention requires only immersing the electrode substrate in the suspension and electrodepositing it while stirring the liquid, so unlike the conventional method, which requires two steps of supporting the catalyst and applying carbon powder. It is much simpler and easier than

な卦、炭素粉と触媒のみでなく、レニウム、オスミウム
、スズシよびルテニウムなどの少なくとも一種を、助触
媒として同様に固着することもできる。実施例 2 硫酸ニツケル卦よび塩化白金酸をそれぞれ0.01モル
/ノ卦よび0.003モル/2の割合で溶解した液に、
粒径がほぼ5μmの活性炭を2.5f/2の割合で添加
して懸濁させ、電解液を形成した。
In addition to the carbon powder and the catalyst, at least one of rhenium, osmium, tin, ruthenium, etc. can also be fixed as a co-catalyst. Example 2 In a solution in which nickel sulfate and chloroplatinic acid were dissolved at a ratio of 0.01 mole/square and 0.003 mole/2, respectively,
Activated carbon having a particle size of approximately 5 μm was added and suspended at a ratio of 2.5 f/2 to form an electrolyte.

この電解液を第1図に示した装置に取り、以下実施例1
と同様にして電着を行ない、触媒電極を形成した。
This electrolytic solution was taken into the apparatus shown in Fig. 1, and the following Example 1
Electrodeposition was performed in the same manner as above to form a catalyst electrode.

これによつて、電解液中のニツケルと白金は、すべて電
極上に析出し、また、炭素粉の析出量は、ほぼ15巧/
Criiであつた。このようにして形成された触媒電極
も、実施例1の場合と同様に、手でこすつたり、強く振
つたりしても、ニツケル、白金あるいは炭素粉が剥離す
ることはなかつた。実施例1シよび実施例2に卦いて形
成された触媒電極は、それぞれ、メタノール一燃料電池
訃よびヒドラジン燃料電池用の触媒電極として極めて好
適である。
As a result, all of the nickel and platinum in the electrolyte are deposited on the electrode, and the amount of carbon powder deposited is approximately 15 cm/cm.
It was Crii. Similarly to the case of Example 1, the nickel, platinum, or carbon powder of the catalyst electrode thus formed did not come off even when rubbed by hand or strongly shaken. The catalyst electrodes formed in Example 1 and Example 2 are extremely suitable as catalyst electrodes for methanol-fuel cells and hydrazine fuel cells, respectively.

また、触媒を電着する際に該電着液にテフロンエマルジ
ヨンを懸濁させることによりいわゆる紡水形の電極を作
成することも可能で、この電極を上記燃料電池あるいは
酸素一水素燃料電池等のガス電極に用いることもできる
。本発明に卦いて、電解液として、通常の場合は硫酸や
リン酸などを含む酸性の液が用いられるが、水酸化ナト
リウムなどを含むアルカリ性の液を用いてもよい。
Furthermore, it is also possible to create a so-called water-spinning electrode by suspending Teflon emulsion in the electrodeposition liquid when electrodepositing the catalyst, and this electrode can be used in the above-mentioned fuel cells or oxygen-hydrogen fuel cells. It can also be used for gas electrodes. In the present invention, an acidic solution containing sulfuric acid, phosphoric acid, etc. is normally used as the electrolytic solution, but an alkaline solution containing sodium hydroxide etc. may also be used.

析出固着し得る触媒としては、白金、ニツケル、銀、パ
ラジウムなど、燃料電池に卦いて用いられる各種触媒を
溶液とし、上記実施例と同様の方法によつて析出し、固
着することができる。
As catalysts that can be precipitated and fixed, various catalysts used in fuel cells, such as platinum, nickel, silver, and palladium, can be prepared in a solution and precipitated and fixed in the same manner as in the above embodiments.

電極基体としては、タンタルの他に、ニオブやジルコニ
ウムなどを用いることができ、アルカリ性電解液を用い
る燃料電池に用いる場合には、ニツケルがとくに好まし
い。
In addition to tantalum, niobium, zirconium, and the like can be used as the electrode substrate, and nickel is particularly preferred when used in a fuel cell using an alkaline electrolyte.

これら電極基体に印加される電圧は、ほぼ−0.05(
対水素電極)より負であれば、支障なく電着を行なうこ
とができる。上記説明から明らかなように、本発明は、
単に液中に浸漬して電圧を印加すればよいのであるから
、製造が極めて簡単で容易である。
The voltage applied to these electrode bases is approximately -0.05(
Electrodeposition can be carried out without any problem if it is more negative than the hydrogen electrode). As is clear from the above description, the present invention includes:
Since it is sufficient to simply immerse the device in a liquid and apply a voltage, manufacturing is extremely simple and easy.

また、ポリテトラフロロエチレンなどを用いて炭素粉末
や触媒を電極基体上に固着するなどした、各種従来の製
造方法によつて形成された電極よりもはるかにすぐれた
特性を示し、各種燃料電池に用いて、極めて好ましい結
果を得ることができる。な卦、本発明にシいて、炭素粉
の濃度範囲は、ほぼ0.5〜50r/lとすれば好まし
い結果が得られる。触媒の濃度は広い範囲で使用するこ
とができるが、電着量がほぼ107nf/i以上になる
ように、液量卦よび濃度を調節すればよい。図画の簡単
な説明 第1図は本発明の構成を説明するための模式図、第2図
は本発明の効果を示す曲線図である。
In addition, it exhibits far superior properties to electrodes formed by various conventional manufacturing methods, such as fixing carbon powder and catalysts on the electrode substrate using polytetrafluoroethylene, and is suitable for various fuel cells. can be used with very favorable results. However, according to the present invention, preferable results can be obtained if the concentration range of the carbon powder is approximately 0.5 to 50 r/l. The concentration of the catalyst can be used within a wide range, but the liquid volume and concentration may be adjusted so that the amount of electrodeposition is approximately 107 nf/i or more. BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a schematic diagram for explaining the configuration of the present invention, and FIG. 2 is a curve diagram showing the effects of the present invention.

1・・・陰極、2・・・対電極、3・・・電解液、a・
・・本発明による特性、B,c・・・従来の特性。
1... Cathode, 2... Counter electrode, 3... Electrolyte, a.
...Characteristics according to the present invention, B, c...Conventional characteristics.

Claims (1)

【特許請求の範囲】 1 炭素粉末と触媒金属を含む溶液中に浸漬された電極
基体を陰極として電着を行なうことにより、上記電極基
体表面に上記炭素粉末と上記触媒金属を固着させること
を特徴とする触媒電極の製造方法。 2 上記触媒金属は白金、パラジウム、銀およびニッケ
ルから選ばれる特許請求の範囲第1項記載の触媒電極の
製造方法。 3 上記触媒金属は白金であり、かつ助触媒としてレニ
ウム、スズルテニウムおよびオスミウムから選ばれた少
なくとも一種を含む特許請求の範囲第1項記載の触媒電
極の製造方法。 4 上記電極は、上記陰極にほぼ−0.05V(対水素
電極)より負の電圧を印加して行なわれる特許請求の範
囲第1項乃至第3項記載の触媒電極の製造方法。 5 上記電極基体はタンタル、ニオブ、ジルコニウムお
よびニッケルから選ばれる特許請求の範囲第1項乃至第
4項記載の触媒電極の製造方法。
[Claims] 1. The carbon powder and the catalyst metal are fixed to the surface of the electrode base by electrodeposition using the electrode base immersed in a solution containing the carbon powder and the catalyst metal as a cathode. A method for manufacturing a catalytic electrode. 2. The method for producing a catalytic electrode according to claim 1, wherein the catalytic metal is selected from platinum, palladium, silver, and nickel. 3. The method for producing a catalytic electrode according to claim 1, wherein the catalytic metal is platinum, and the co-catalyst contains at least one selected from rhenium, tin ruthenium, and osmium. 4. The method for manufacturing a catalyst electrode according to claims 1 to 3, wherein the electrode is formed by applying a voltage more negative than approximately -0.05 V (to hydrogen electrode) to the cathode. 5. The method for producing a catalytic electrode according to claims 1 to 4, wherein the electrode substrate is selected from tantalum, niobium, zirconium, and nickel.
JP55004601A 1980-01-21 1980-01-21 Manufacturing method of catalyst electrode Expired JPS5931187B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP55004601A JPS5931187B2 (en) 1980-01-21 1980-01-21 Manufacturing method of catalyst electrode
EP81300052A EP0032787A3 (en) 1980-01-21 1981-01-07 Method of manufacturing a catalytic electrode and a fuel cell containing an electrode manufactured by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55004601A JPS5931187B2 (en) 1980-01-21 1980-01-21 Manufacturing method of catalyst electrode

Publications (2)

Publication Number Publication Date
JPS56102080A JPS56102080A (en) 1981-08-15
JPS5931187B2 true JPS5931187B2 (en) 1984-07-31

Family

ID=11588557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55004601A Expired JPS5931187B2 (en) 1980-01-21 1980-01-21 Manufacturing method of catalyst electrode

Country Status (2)

Country Link
EP (1) EP0032787A3 (en)
JP (1) JPS5931187B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117337U (en) * 1987-01-24 1988-07-29

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2147193A1 (en) * 1994-05-20 1995-11-21 Peter Frank Driessen High speed indoor wireless systems with directional antennas
CN100454627C (en) * 2005-12-14 2009-01-21 中国科学院大连化学物理研究所 Production of aluminum/hydrogen peroxide fuel battery cathode
CN102082278B (en) * 2011-01-06 2013-04-10 哈尔滨工程大学 Method for preparing H2O2-based fuel cell cathode material containing Fe-N/C

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3296102A (en) * 1961-08-01 1967-01-03 Exxon Research Engineering Co Catalysts and electrodes for electrochemical cells
NL288862A (en) * 1962-02-13
DE1496856B2 (en) * 1963-12-24 1971-06-24 Dr W Kampschulte & Cie, 5650 So lingen BATHROOM FOR GALVANIC DEPOSITION OF NICKEL INTERLAYERS FOR GLOSSY CORROSION-RESISTANT NICKEL-CHROME COATINGS
US3367801A (en) * 1964-01-10 1968-02-06 Texas Instruments Inc Fuel cell including electrode of silver, nickel, and zinc
DE2543082C3 (en) * 1975-09-26 1979-06-28 Siemens Ag, 1000 Berlin Und 8000 Muenchen Cyanidic silver electrolyte and process for the electrodeposition of silver-graphite dispersion coatings and its application
DE2652152A1 (en) * 1975-11-18 1977-09-15 Diamond Shamrock Techn Electrodes for electrolytic devices - comprising conductive substrate, electrolyte-resistant coating with occlusions to improve electrode activity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117337U (en) * 1987-01-24 1988-07-29

Also Published As

Publication number Publication date
EP0032787A3 (en) 1981-08-12
JPS56102080A (en) 1981-08-15
EP0032787A2 (en) 1981-07-29

Similar Documents

Publication Publication Date Title
US4778578A (en) Deposition of catalytic electrodes of ion-exchange membranes
US4541905A (en) Electrodes for use in electrocatalytic processes
Watanabe et al. Electrocatalysis by ad-atoms: Part XIII. Preparation of ad-electrodes with tin ad-atoms for methanol, formaldehyde and formic acid fuel cells
US6080504A (en) Electrodeposition of catalytic metals using pulsed electric fields
US4634502A (en) Process for the reductive deposition of polyoxometallates
US20020034676A1 (en) Method of fabricating catalyzed porous carbon electrode for fuel cell
KR910001140B1 (en) Electrode and method for preparing thereof
KR101857338B1 (en) Production method for catalyst microparticles, and fuel cell containing catalyst microparticles produced by said production method
US3340097A (en) Fuel cell electrode having surface co-deposit of platinum, tin and ruthenium
US3282737A (en) Electrodes and electrode material
US9017530B2 (en) Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion
US4585532A (en) Method for using anodes having NiCo2 O4 catalyst for the electrolysis of potassium hydroxide solutions and method of making an anode containing NiCo2 O4 catalyst
CA2054252A1 (en) Process for replenishing metals in aqueous electrolyte solutions
US5407550A (en) Electrode structure for ozone production and process for producing the same
JP2005501177A (en) Electrochemical reaction electrode, manufacturing method, and application device thereof.
JPS5931187B2 (en) Manufacturing method of catalyst electrode
EP0318442A2 (en) Electrode structure
US3615862A (en) Fuel cell electrodes
CN1039073A (en) The technology of preparation porous metal
GB2095025A (en) Acid electrolyte fuel cell
KR830000240B1 (en) Manufacturing method of nickel electrode
US3522094A (en) Electrode including hydrophobic polymer,method of preparation and fuel cell therewith
US3444003A (en) Multilayer catalytic electrode having a layer of noble metal and lead and a surface layer free of lead and method of constructing same
US4385970A (en) Spontaneous deposition of metals using fuel fed catalytic electrode
US3258362A (en) Method of producing a silver oxide electrode structure