JPS5931147A - Visible-ray transmitting heat wave shielding membrane and its manufacture - Google Patents

Visible-ray transmitting heat wave shielding membrane and its manufacture

Info

Publication number
JPS5931147A
JPS5931147A JP57142326A JP14232682A JPS5931147A JP S5931147 A JPS5931147 A JP S5931147A JP 57142326 A JP57142326 A JP 57142326A JP 14232682 A JP14232682 A JP 14232682A JP S5931147 A JPS5931147 A JP S5931147A
Authority
JP
Japan
Prior art keywords
heat ray
thin film
ray shielding
film
shielding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57142326A
Other languages
Japanese (ja)
Inventor
豊 澤田
康訓 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP57142326A priority Critical patent/JPS5931147A/en
Priority to DE19833329504 priority patent/DE3329504A1/en
Priority to GB08321995A priority patent/GB2126256B/en
Publication of JPS5931147A publication Critical patent/JPS5931147A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3694Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer having a composition gradient through its thickness
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は可視光透過性熱線しゃへい膜、特に可視光透過
性基板上に高屈折率透明誘電体薄膜部、金属薄膜部を積
層して形成された熱線しゃへい膜の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an improvement of a heat ray shielding film that transmits visible light, particularly a heat ray shielding film that is formed by laminating a high refractive index transparent dielectric thin film portion and a metal thin film portion on a visible light transparent substrate. Regarding.

可視光透過性基板、例えばガラス板あるいはプラスチッ
ク板は、通常良好な可視光透過性を有するが、可視領域
より長波長側の光線(赤外線)に対しても良好な透過性
を有するため、基板を透過した熱線のエネルギを適当な
手段によって処理することが必要となる。例えば、この
種の基板を車両用ガラスに用いた場合には、太陽光によ
る車室内温度の上昇等が問題となり、このため大容量の
冷却器を必要とする等の欠点があった。また熱線しゃへ
いはこのような車両用ガラスばかりでなく、他の基板、
例えば航空機、船舶用の窓ガラス、メガネ、カメラレン
ズ、建築用窓ガラス、冷凍食品ショーケースや冷蔵庫の
窓ガラス、調理用オーブン、炉あるいは溶接用のマスク
ののぞき窓ガラス等においても同様の必要性が存在する
Visible light transmitting substrates, such as glass plates or plastic plates, usually have good visible light transmittance, but they also have good transmittance to light rays with longer wavelengths than the visible region (infrared rays). It is necessary to process the energy of the transmitted heat rays by appropriate means. For example, when this type of substrate is used for vehicle glass, there are problems such as an increase in the temperature inside the vehicle due to sunlight, and this has the disadvantage of requiring a large-capacity cooler. In addition, heat ray shielding is used not only for vehicle glass, but also for other substrates,
For example, the same need exists for window glass for aircraft and ships, eyeglasses, camera lenses, architectural window glass, window glass for frozen food showcases and refrigerators, viewing glass for cooking ovens, furnaces, and welding masks, etc. exists.

このため、従来よりこの種の基板に所定の熱線しゃへい
膜を施して熱線を反射してそのしゃへいを行うものが実
用化されており、このような熱線しゃへい膜としては、
基板上に高屈折率透明誘電体薄膜、金属薄膜、高屈折率
透明誘電体薄膜を順次積層したものが知られており、良
好な可視光透過性、熱線反射性、電気伝導性を有してい
た。
For this reason, it has conventionally been put into practical use to apply a prescribed heat ray shielding film to this type of substrate to reflect and shield the heat rays, and such heat ray shielding films include:
A structure in which a high refractive index transparent dielectric thin film, a metal thin film, and a high refractive index transparent dielectric thin film are successively laminated on a substrate is known, and has good visible light transmittance, heat ray reflectivity, and electrical conductivity. Ta.

第1図には従来の熱線しゃへい膜の組成分布が示されて
おり、実施例のしゃへい膜は、高屈折率透明誘電体薄膜
としてTiO2薄膜が用いられており、金属薄膜として
Ag薄膜が用いられている。
FIG. 1 shows the composition distribution of a conventional heat ray shielding film. In the shielding film of the example, a TiO2 thin film is used as a high refractive index transparent dielectric thin film, and an Ag thin film is used as a metal thin film. ing.

通常、TiO2薄膜の厚さは各々150〜500Å、A
g薄膜の厚さは100〜250Å程度であるが、実施例
においてはTiO2薄膜は各々350Å、Ag薄膜は約
150Å程度に設定されている。従来の熱線しゃへい膜
において、特徴的なことは、第1図からも明らかなごと
く各薄膜の界面が極めて明確で、界面において組成が不
連続に急変していることである。すなわち、Ag薄膜内
においてはTi及びOが存在せず、他方TiO2内にお
いてはAgが存在しない構造となっている。
Usually, the thickness of TiO2 thin film is 150-500 Å, A
The thickness of the G thin film is about 100 to 250 Å, but in the example, the thickness of the TiO2 thin film is set to 350 Å, and the thickness of the Ag thin film is set to about 150 Å. The characteristic feature of the conventional heat ray shielding film is that, as is clear from FIG. 1, the interface between each thin film is extremely clear, and the composition changes suddenly and discontinuously at the interface. That is, the structure is such that Ti and O do not exist in the Ag thin film, while Ag does not exist in TiO2.

このようなしゃへい膜は、種々の手法によって製造され
るが、従来例に示すしゃへい膜はマグネットロンスパッ
タ法によって、充分に洗浄したガラス基板上に成膜され
ている。
Such a shielding film can be manufactured by various methods, but the shielding film shown in the conventional example is formed on a thoroughly cleaned glass substrate by magnetron sputtering.

まず、TiO2ターゲットを用いて膜厚約350ÅのT
iO2層を形成し、その完了後にAgターゲットを用い
てDCスパッタによって膜厚約150ÅのAg層を形成
し、更にその完了後に再度TiO2ターゲットを用いて
RFスパッタによって膜厚約350ÅのTiO2層を形
成した。
First, a T film with a thickness of about 350 Å was prepared using a TiO2 target.
Form an iO2 layer, and after that, form an Ag layer with a thickness of about 150 Å by DC sputtering using an Ag target, and after that, form a TiO2 layer with a thickness of about 350 Å by RF sputtering again using a TiO2 target. did.

第2図にはこのようにして形成された従来の熱線しゃへ
い膜の特性が示されており、分光特性は極めて良好な可
視光透過性を有し、例えば波長約370〜780nmの
可視領域で高い透過率を示し、特に波長約500nmで
透過率約91%を示している。これと同時に、この従来
の熱線しゃへい膜は、優れた熱線しゃへい特性を有し、
波長約1000nmで透過率42%、反射率50%を示
している。また、この従来の熱線しゃへい膜は優れた電
気伝導性を示し、電気抵抗率約3.3Ω平方を示してい
る。
Figure 2 shows the characteristics of the conventional heat ray shielding film formed in this way, and the spectral characteristics are extremely good visible light transmittance, for example, high in the visible wavelength range of about 370 to 780 nm. In particular, it shows a transmittance of about 91% at a wavelength of about 500 nm. At the same time, this conventional heat ray shielding film has excellent heat ray shielding properties,
It shows a transmittance of 42% and a reflectance of 50% at a wavelength of about 1000 nm. Additionally, this conventional heat ray shielding film exhibits excellent electrical conductivity, with an electrical resistivity of about 3.3 Ω square.

しかし、このような従来の熱線しゃへい膜は、各薄膜の
界面においてその組成が不連続的に急変しているため、
各層の界面結合力は充分でなく、耐久性に問題があり、
機械的、熱、化学的な劣化が起り易いという欠点がある
。すなわち異種物質(金属と酸化物など)の界面は接合
性が悪く付着力が劣り、薄膜物質、不純物あるいは外来
物質の界面拡散が顕著で、金属の酸化・塩化・硫化など
によって劣化がおこりやすい。第1図に示す従来例の場
合にも、しゃへい膜表面を金属で軽くこするだけで簡単
に傷が付き、光学的、電気的特性が損われ、また耐摩耗
試験として消しゴム(砂ゴム)によって膜表面をこすっ
たところ、平均3.7回で電気抵抗が2倍となり、平均
4.6回で電気抵抗が100KΩ平方以上になることが
確認されている。
However, in such conventional heat ray shielding films, the composition changes suddenly and discontinuously at the interface of each thin film.
The interfacial bonding strength of each layer is not sufficient, and there are problems with durability.
It has the disadvantage of being susceptible to mechanical, thermal, and chemical deterioration. In other words, the interface between dissimilar materials (metal and oxide, etc.) has poor bonding properties and poor adhesion, and the interfacial diffusion of thin film materials, impurities, or foreign substances is significant, and deterioration is likely to occur due to oxidation, chlorination, sulfidation, etc. of the metal. In the case of the conventional example shown in Fig. 1, the surface of the shielding film is easily scratched by simply rubbing it lightly with a metal object, damaging its optical and electrical properties. When the membrane surface is rubbed, it has been confirmed that the electrical resistance doubles after an average of 3.7 times, and that the electrical resistance increases to 100 KΩ square or more after an average of 4.6 times.

また、熱的、化学的な耐久試験として、従来のしゃへい
膜と大気中300℃の雰囲気中に24時間放置した後、
Ag薄膜中のAg濃度分布をIMMA法(イオン・マイ
クロ・マス・アナリシス法)及びマイクロ、オージエ法
(イオン・ビーム・エッチを併用)によって測定したと
ころ、Ag濃度の半価幅が約6%増加しており、薄膜界
面におけるAg拡散が顕著で金属の酸化、塩化、乳化等
による劣化が起り易いことが確認されている。
In addition, as a thermal and chemical durability test, after being left in an atmosphere of 300°C for 24 hours with a conventional shielding film,
When the Ag concentration distribution in the Ag thin film was measured using the IMMA method (ion micro mass analysis method) and the micro-Ausier method (combined with ion beam etching), the half width of the Ag concentration increased by approximately 6%. It has been confirmed that Ag diffusion at the thin film interface is significant and deterioration due to metal oxidation, chlorination, emulsification, etc. is likely to occur.

また、従来の熱線しゃへい膜は各界面においてその組成
が不連続に急変しているため、その形成に当り、例えぱ
TiO2層からAg層ヘスパッタリングターゲットを切
替える際、成膜が一時点に中断されることとなる。従っ
て、このような成膜の一時的中断は、界面への不純物、
例えば水蒸気、ガス等への吸着および成膜途中における
膜最表面の劣化を引きおこし、界面の微妙な特性に変化
を与え、しゃへい膜全体の耐久性を低下させる一因とな
っていると考えられる。
In addition, since the composition of conventional heat ray shielding films rapidly changes discontinuously at each interface, the film formation must be interrupted at a certain point, for example, when switching the sputtering target from a TiO2 layer to an Ag layer. The Rukoto. Therefore, such temporary interruption of film formation may cause impurities to the interface,
For example, it is thought to cause adsorption to water vapor, gas, etc. and deterioration of the outermost surface of the film during film formation, causing subtle changes in the properties of the interface, and contributing to a decrease in the durability of the entire shielding film. .

本発明は、このような従来の課題に鑑みなされたもので
あり、その目的は可視光に対する透過性、熱線に対する
しゃへい性及び電気伝導性等の特性を損なうことなく、
しかも優れた耐久性を有する可視光透過性熱線しゃへい
膜を提供することにある。
The present invention was made in view of such conventional problems, and its purpose is to provide a transparent material without impairing properties such as transparency to visible light, shielding to heat rays, and electrical conductivity.
Moreover, it is an object of the present invention to provide a visible light transmitting heat ray shielding film having excellent durability.

この目的達成のため、本発明は、可視光透過性基板上に
高屈折率透明誘電体薄膜部と、金属薄膜部とを少なくと
も1層づつ積層してなり、各薄膜部界面における組成勾
配を連続的に変化させ積層された膜全体を不均一組成単
層膜状に形成したことを特徴とする。
In order to achieve this objective, the present invention is constructed by laminating at least one layer each of a high refractive index transparent dielectric thin film section and a metal thin film section on a visible light transmitting substrate, so that the composition gradient at the interface of each thin film section is made continuous. It is characterized in that the entire stacked film is formed into a monolayer film with a non-uniform composition.

また、本発明は、このような可視光透過性熱線しゃへい
膜を製造する製造方法を提供することにあり、この目的
達成のため、本発明は、可視光透過性基板上に、高屈折
率透明誘電体を構成する元素および金属元素を時間的に
連続して供給被覆し、その供給流束量を元素毎に独立し
て制御することにより、基板上に高屈折率透明誘電体薄
膜部、金属薄膜部の順に少なくとも1層づつ薄膜部界面
における組成勾配を連続的に変化させつつ順次積層する
ことを特徴とする。
Another object of the present invention is to provide a manufacturing method for manufacturing such a visible light-transmitting heat ray shielding film. By continuously supplying and coating the elements constituting the dielectric material and the metal elements over time and controlling the supply flux independently for each element, a high refractive index transparent dielectric thin film portion and a metal element are coated on the substrate. The method is characterized in that at least one layer of the thin film portions is sequentially laminated while continuously changing the composition gradient at the interface of the thin film portions.

次に本発明の好適な実施例を図面に基き説明する。Next, preferred embodiments of the present invention will be described based on the drawings.

第3図には本発明の熱線しゃへい膜の好適な実施例が示
されている。本実施例の熱線しゃへい膜は、可視光透過
性基板10上に高屈折率透明誘電体薄膜部12、金属薄
膜部14、高屈折率透明誘電体薄膜部16を順次積層し
て形成したものである。
FIG. 3 shows a preferred embodiment of the heat ray shielding membrane of the present invention. The heat ray shielding film of this example is formed by sequentially laminating a high refractive index transparent dielectric thin film section 12, a metal thin film section 14, and a high refractive index transparent dielectric thin film section 16 on a visible light transmitting substrate 10. be.

本発明の特徴的事項は、このように形成された熱線しゃ
へい膜の各薄膜部の界面における組成勾配を連続的に変
化させ、積層された膜全体を不均一組成単層膜状に形成
したことにある。
The characteristic feature of the present invention is that the composition gradient at the interface of each thin film portion of the heat ray shielding film thus formed is continuously changed, and the entire stacked film is formed into a monolayer film with a non-uniform composition. It is in.

このように、各薄膜部界面における組成勾配を連続的に
変化させることにより、各薄膜部界面における異種物質
の不連続性を大幅に緩和することができ、これにより界
面結合力が向上し界面への応力集中や、薄膜物質、不純
物あるいは外来物質の界面における拡散を有効に防止す
ることが可能となる。
In this way, by continuously changing the composition gradient at the interface of each thin film, it is possible to significantly alleviate the discontinuity of different substances at the interface of each thin film, which improves the interfacial bonding force and increases the This makes it possible to effectively prevent stress concentration at the interface and diffusion of thin film materials, impurities, or foreign substances at the interface.

また、本発明においては、このような熱線しゃへい膜を
製造するにあたり、可視光透過性基板10上に、高屈折
率透明誘電体を構成する元素及び金属元素を時間的に連
続して供給被覆し、その供給流束量を元素毎に独立して
制御することにより、基板10上に高屈折率透明誘電体
薄膜部12、金属薄膜部14、高屈折率透明誘電体薄膜
部16の順に薄膜部界面における組成勾配を連続的に変
化させつつ順次積層している。
Further, in the present invention, in manufacturing such a heat ray shielding film, the elements constituting the high refractive index transparent dielectric and the metal elements are continuously supplied and coated on the visible light transmitting substrate 10 over time. By controlling the supply flux independently for each element, thin film parts are formed on the substrate 10 in the order of the high refractive index transparent dielectric thin film part 12, the metal thin film part 14, and the high refractive index transparent dielectric thin film part 16. The layers are stacked one after another while continuously changing the composition gradient at the interface.

このように、本発明によれば、基板10上に高屈折率透
明誘電体を構成する元素及び金属元素を時間的に連続し
て供給被覆し熱線しゃへい膜を形成しているため、1つ
の薄膜を形成するごとに元素の供給が中断することはな
く、成膜中における供給元素の中断に起因する水蒸気そ
の他のガス等の不純物の吸着や成膜途中における最表面
の劣化を防止することが可能となる。従って、本発明の
熱線しゃへい膜の製造方法によれば、熱線しゃへい膜の
薄膜界面において供給元素の中断に起因する界面への不
純物吸着や劣化が発生することがないため、このしゃへ
い膜の耐久性を著しく向上することが可能となる。
As described above, according to the present invention, the elements constituting the high refractive index transparent dielectric material and the metal elements are continuously supplied and coated on the substrate 10 in order to form a heat ray shielding film. The supply of elements is not interrupted each time the film is formed, making it possible to prevent the adsorption of impurities such as water vapor and other gases and the deterioration of the outermost surface during film formation due to interruptions in the supply of elements during film formation. becomes. Therefore, according to the method for producing a heat ray shielding film of the present invention, impurity adsorption or deterioration at the thin film interface of the heat ray shielding film due to interruption of supply of elements does not occur, so the durability of this shielding film is improved. can be significantly improved.

また、本発明の熱線しゃへい層は、基板10上に高屈折
率透明誘電体薄膜部12、金属薄膜部14、高屈折率透
明誘電体薄膜部16を順次積層して成る構造であるため
、従来の熱線しゃへい膜と同様可視光に対し優れた透過
性を示し、また熱線に対し良好なしゃへい性を示し更に
優れた電気伝導性を示すことには変りない。
Furthermore, since the heat ray shielding layer of the present invention has a structure in which a high refractive index transparent dielectric thin film section 12, a metal thin film section 14, and a high refractive index transparent dielectric thin film section 16 are sequentially laminated on the substrate 10, it is different from the conventional one. Like the heat ray shielding film, it shows excellent transparency to visible light, and it still shows good shielding properties to heat rays and even better electrical conductivity.

以下に前述した本発明の各実施例を説明する。Each embodiment of the present invention described above will be described below.

実施例1、 本実施例は前記第3図に示す熱線しゃへい膜において、
高屈折率透明誘電体薄膜部12、16の材料としてTi
O2を用い、金属薄膜部14の材料としてAgを用いて
いる。第4図には本実施例の熱線しゃへい膜の組成分布
が示されており、透明誘電体薄膜部12、16内におい
てはAgが約0モル%、チタンが約33モル%、酸素が
67モル%存在しており、この熱線しゃへい膜の金属薄
膜部14の中央部において銀が約90モル%、チタンが
約3モル%、酸素は約7モル%存在する。そして、膜全
体としては、銀が約1.5×10−7モル/cm2、チ
タンが3.7×10−7モル/cm2、酸素が約7.5
×10−7モル/cm2を含有している。そして、第4
図からも明らかなごとく金属薄膜部14とこれに隣接す
る透明誘電体薄膜部12、16の境界面においては銀、
チタン及び酸素のモル濃度はなだらかに連続的に変化し
ており、また本実施例においては誘電体薄膜材料として
TiO2を用いているため、酸素モル濃度はいずれの位
置においてもチタンのモル濃度の約2倍となっている。
Example 1 This example is based on the heat ray shielding film shown in FIG.
Ti is used as the material for the high refractive index transparent dielectric thin film parts 12 and 16.
O2 is used, and Ag is used as the material for the metal thin film portion 14. FIG. 4 shows the composition distribution of the heat ray shielding film of this example. In the transparent dielectric thin film portions 12 and 16, Ag is approximately 0 mol%, titanium is approximately 33 mol%, and oxygen is 67 mol%. In the center of the metal thin film portion 14 of this heat ray shielding film, silver is present in an amount of approximately 90 mol %, titanium is present in an amount of approximately 3 mol %, and oxygen is present in an amount of approximately 7 mol %. The film as a whole contains approximately 1.5 x 10-7 mol/cm2 of silver, 3.7 x 10-7 mol/cm2 of titanium, and approximately 7.5 mol/cm2 of oxygen.
x10-7 mol/cm2. And the fourth
As is clear from the figure, at the interface between the metal thin film portion 14 and the transparent dielectric thin film portions 12 and 16 adjacent thereto, silver,
The molar concentrations of titanium and oxygen change smoothly and continuously, and since TiO2 is used as the dielectric thin film material in this example, the molar concentration of oxygen is approximately the same as the molar concentration of titanium at any position. It has doubled.

第5図には本実施例の熱線しゃへい膜の分光特性が示さ
れており、特性図からも明らかなごとく可視光に対し良
好な透過性を示し、波長約500nmで透過率62%を
示している。しかも、実施例の熱線しゃへい膜は僅かに
青味を帯びた透明色を有し、しかも僅かに紫色を帯びた
反射光を有するが、車両用窓ガラス等に使用した場合に
おいてはその視認性に何ら影響を与えることなく、むし
ろ、ぎらついた反射光を生ぜずクールな好ましい色感を
与え商品価値を高めることが可能となる。
Figure 5 shows the spectral characteristics of the heat ray shielding film of this example, and as is clear from the characteristic diagram, it exhibits good transmittance to visible light, with a transmittance of 62% at a wavelength of approximately 500 nm. There is. Moreover, the heat ray shielding film of the example has a transparent color with a slight bluish tinge, and also has a slightly purplish reflected light, but when used for vehicle window glass etc., its visibility may be affected. Without any adverse effects, on the contrary, it is possible to give a cool and desirable color feeling without producing glare and reflected light, thereby increasing the product value.

なお、本実施例の熱線しゃへい膜は、第2図に示す従来
の熱線しゃへい膜に比し可視光に対する透過率が僅かに
劣るが、この程度の透過率の低下はほとんどの用途にお
いて問題とならず、むしろ、可視波長域の入射エネルギ
を吸収し熱線しゃへい効果を発揮する点で好ましい。
The heat ray shielding film of this example has slightly lower transmittance for visible light than the conventional heat ray shielding film shown in Figure 2, but this level of decrease in transmittance will not be a problem in most applications. Rather, it is preferable because it absorbs incident energy in the visible wavelength range and exhibits a heat ray shielding effect.

また、本実施例の熱線しゃへい膜は、第5図に示す分光
特性からも明らかなごとく、良好な熱線しゃへい性を有
し、波長約1000nmで透過率43%反射率約24%
を示し、波長1000nmの透過率で評価して、第2図
に示す従来例と比較した場合にはほぼ等しいか僅かに優
れた熱線しゃへい性を有している。しかも、従来の熱線
しゃへい膜はその熱線しゃへいをほとんど反射のみによ
り行っているが、本発明の熱線しゃへい膜はこれに加え
て吸収による熱線しゃへい効果がかなりある。この光吸
収の原因は銀の酸化あるいはTiO2の酸素欠損量増加
によると考えられる。
Furthermore, as is clear from the spectral characteristics shown in FIG. 5, the heat ray shielding film of this example has good heat ray shielding properties, with a transmittance of 43% and a reflectance of approximately 24% at a wavelength of approximately 1000 nm.
When evaluated by transmittance at a wavelength of 1000 nm and compared with the conventional example shown in FIG. 2, it has approximately the same or slightly superior heat ray shielding properties. Moreover, while conventional heat ray shielding films shield heat rays almost exclusively by reflection, the heat ray shielding film of the present invention has a considerable heat ray shielding effect by absorption in addition to this. The cause of this light absorption is considered to be oxidation of silver or an increase in the amount of oxygen vacancies in TiO2.

このように本発明の熱線しゃへい膜は熱線の吸収による
熱線しゃへいがあるため、この熱線しゃへい膜あるいは
基板10の温度が上昇し、その熱が室内等に再放出され
る欠点があるが、このような熱線しゃへい膜を車両や建
築用の窓ガラス等に用いた場合には、風によって冷却が
行われるのでこの熱の再放出はあまり大きな問題とはな
らない。
As described above, since the heat ray shielding film of the present invention provides heat ray shielding by absorbing heat rays, the temperature of the heat ray shielding film or the substrate 10 rises, and the heat is re-released into the room etc. When a heat ray shielding film is used for vehicle or architectural window glass, the re-release of this heat is not a big problem because cooling is performed by wind.

むしろ、大面積の窓ガラス等においては熱線の反射によ
る熱線しゃへいはいわゆる熱線公害を引起すので熱線の
しゃへいは反射だけでなく反射と吸収の相方が適度にミ
ックスして成されることが好ましい。この点において本
実明の熱線しゃへい膜は従来のしゃへい膜に比し優れて
いるということが言えよう。
Rather, in large-area window glasses, etc., heat ray shielding by reflection of heat rays causes so-called heat ray pollution, so it is preferable that heat ray shielding be achieved not only by reflection but also by a suitable mix of reflection and absorption. In this respect, it can be said that the heat ray shielding film of the present invention is superior to conventional shielding films.

また、本実施例の熱線しゃへい膜はその金属薄膜14に
おいて極めて優れた電気伝導性を示す。
Further, the heat ray shielding film of this example exhibits extremely excellent electrical conductivity in its metal thin film 14.

本実施例の熱線しゃへい膜はその伝導性が抵抗9.8Ω
平方で第2図に示す従来例に比した場合その電気伝導率
は若干劣るが、窓ガラスの曇り止めヒータ、電波シール
ド材、アンテナ材、表示素子用電極、帯電防止膜等とし
て用いる場合には充分な導電性を得ることができる。
The conductivity of the heat ray shielding film of this example is 9.8Ω.
When compared to the conventional example shown in Figure 2, its electrical conductivity is slightly inferior to that of the conventional example shown in Figure 2, but when used as an anti-fog heater for window glass, a radio wave shielding material, an antenna material, an electrode for a display element, an antistatic film, etc. Sufficient conductivity can be obtained.

また、本実施例の熱線しゃへい膜は、その耐摩耗性が従
来の熱線しゃへい膜に比し著しく改善されている。実験
によれば、本実施例の熱線しゃへい膜を砂ゴムでこすっ
た場合には、平均約4.2回こすった時点で抵抗が2倍
となり、平均5.3回こすった時点で抵抗が100KΩ
以上となる。この結果、単純な計算でも従来の熱線しゃ
へい膜より耐摩耗性は約15%向上していることが理解
される。
Furthermore, the heat ray shielding film of this example has significantly improved wear resistance compared to conventional heat ray shielding films. According to experiments, when the heat ray shielding membrane of this example is rubbed with sand rubber, the resistance doubles after being rubbed about 4.2 times on average, and the resistance reaches 100KΩ after being rubbed 5.3 times on average.
That's all. As a result, it is understood that even by simple calculation, the wear resistance is improved by about 15% compared to the conventional heat ray shielding film.

また、本実施例の熱線しゃへい膜を大気中約300℃の
雰囲気内において24時間放置したところ、金属薄膜部
14の銀濃度分布の半価幅が約4%増加していることが
確認された。この銀の拡散は従来の熱線しゃへい膜より
も少なく、このことからも熱線しゃへい膜の耐久性が向
上していることが確認されている。
Further, when the heat ray shielding film of this example was left in the atmosphere at about 300° C. for 24 hours, it was confirmed that the half width of the silver concentration distribution in the metal thin film portion 14 increased by about 4%. . This diffusion of silver is less than in conventional heat ray shielding films, and this fact also confirms that the durability of the heat ray shielding film is improved.

このような第1の実施例に示す熱線しゃへい膜の形成に
あたっては、多元スパッタリング法(マグネトロン・ス
パッタ)を用いた。すなわち、予め10%の酸素を含む
全圧3.0×10−3Torrのアルゴン雰囲気内にお
いて、TiO2ターゲットを13.56MHz、500
Wの条件下で約10分間RFスパッタして、ターゲット
表面の安定化を充分に行っておく。そして、化学洗浄及
びRFエッチにより充分に洗浄化した基板10上に、3
.0×10−3Torrのアルゴン雰囲気内で、TiO
2ターゲットのRFスパッタガンとAgターゲットのD
Cスパッタガンを同時にかつ独立に制御して、銀、チタ
ン及び酸素をガラス基板10上に同時に付着させる。各
薄膜部12、14、16において、AgならびにTiお
よびOの成膜速度の制御は、スパッタ電力あるいはスパ
ッタ電流及びシャッターの開き角を手動または電算機に
よる自動制御で行い、必要に応じて膜厚監視装置を併用
する。実施例においては、TiO2のスパッタ電力を5
00Wに固定し、0〜0.4AにわたってAgのスパッ
タ電流を制御するとともに全閉から全開にわたりシャッ
ターの開き角を調整しつつ成膜を行なった。
In forming the heat ray shielding film shown in the first embodiment, a multi-source sputtering method (magnetron sputtering) was used. That is, in an argon atmosphere containing 10% oxygen and a total pressure of 3.0 x 10 Torr, a TiO2 target was heated at 13.56 MHz and
RF sputtering is performed for about 10 minutes under W conditions to sufficiently stabilize the target surface. Then, on the substrate 10 which has been sufficiently cleaned by chemical cleaning and RF etching,
.. TiO in an argon atmosphere of 0 x 10-3 Torr
2 target RF sputter gun and Ag target D
The C sputter guns are controlled simultaneously and independently to simultaneously deposit silver, titanium, and oxygen onto the glass substrate 10. In each thin film section 12, 14, 16, the deposition rate of Ag, Ti, and O is controlled manually or automatically by computer by controlling the sputtering power or sputtering current and shutter opening angle, and the film thickness is adjusted as necessary. Use together with monitoring equipment. In the example, the sputtering power of TiO2 was set to 5
The film was formed while controlling the Ag sputtering current from 0 to 0.4 A while adjusting the opening angle of the shutter from fully closed to fully open.

実施例2、 本実施例は前述した実施例1と同様に透明誘電体薄膜部
材料としてTiO2を用い、金属薄膜部材料としてAg
を用いたものである。そして、本実施例の熱線しゃへい
膜は、前記実施例1の場合と異なり、第6図に示す如く
、銀、チタン及び酸素の濃度勾配を前記実施例1に比し
ゆるやかに設定してあり、金属薄膜部14の界面におけ
る銀濃度分布の半価幅は実施例1よりも広めに設定して
ある。
Example 2 This example uses TiO2 as the transparent dielectric thin film material and Ag as the metal thin film material, similar to the above-mentioned Example 1.
It uses In the heat ray shielding film of this example, unlike the case of Example 1, as shown in FIG. 6, the concentration gradients of silver, titanium, and oxygen are set to be gentler than those of Example 1, The half width of the silver concentration distribution at the interface of the metal thin film portion 14 is set wider than in the first embodiment.

また、実施例の熱線しゃへい膜は銀、チタン及び酸素の
いずれの濃度勾配も金属薄膜部14の中央Rにおいての
み零となるように設計されており、この膜の中央Rにお
いて銀濃度は約70モル%、チタン濃度は約10モル%
、酸素濃度は約20モル%である。また、この熱線しゃ
へい膜の透明誘電体薄膜部12、16の両側端部A、D
においては銀濃度は約0モル%、チタン濃度は約33モ
ル%、酸素濃度は67モル%に設定されている。
Further, the heat ray shielding film of the example is designed so that the concentration gradient of silver, titanium, and oxygen becomes zero only at the center R of the metal thin film portion 14, and the silver concentration at the center R of this film is approximately 70%. mol%, titanium concentration is approximately 10 mol%
, the oxygen concentration is about 20 mol%. Also, both side ends A and D of the transparent dielectric thin film portions 12 and 16 of this heat ray shielding film are
The silver concentration was set at about 0 mol%, the titanium concentration at about 33 mol%, and the oxygen concentration at 67 mol%.

なお、本実施例の熱線しゃへい膜を形成する各成分、す
なわち銀、チタン、酸素の総量は実施例1とほぼ等しい
量が使用されている。
Note that the total amount of each component forming the heat ray shielding film of this example, ie, silver, titanium, and oxygen, is approximately the same as in Example 1.

第7図にはこの実施例2の熱線しゃへい膜の分光特性が
示されている。
FIG. 7 shows the spectral characteristics of the heat ray shielding film of Example 2.

本実施例の熱線しゃへい膜は可視光に対し良好な透過性
を有しており、波長約500nmで透過率約53%を示
し、波長約1000nmで約37%の透過率を有してい
る。この透過率は、前述した従来例や実施例1に比較し
て、やや劣るが、実用上何ら問題になることはない。
The heat ray shielding film of this example has good transmittance to visible light, exhibiting a transmittance of about 53% at a wavelength of about 500 nm, and a transmittance of about 37% at a wavelength of about 1000 nm. Although this transmittance is slightly inferior to that of the conventional example and Example 1 described above, it does not pose any practical problem.

また、第7図に示す分光特性からも明らかなごとく、本
発明の熱線しゃへい膜は熱線に対し極めて良好な熱線し
ゃへい性を示し、波長約1000nmでも反射率は45
%で従来の熱線しゃへい膜とほほ等しい反射率を有し、
実施例1の反射率(24%)よりも高い反射率を示して
いる。
Furthermore, as is clear from the spectral characteristics shown in FIG. 7, the heat ray shielding film of the present invention exhibits extremely good heat ray shielding properties against heat rays, with a reflectance of 45 even at a wavelength of about 1000 nm.
%, has a reflectance that is almost the same as a conventional heat ray shielding film,
This shows a higher reflectance than that of Example 1 (24%).

また、本実施例の熱線しゃへい膜は僅かに青紫色帯びた
清涼感に富む透明色を有しており、この程度の透明色で
は視認性に何ら影響を与えることがなく、却って好感を
与え商品価値を高めることが可能となる。また、反射色
は僅かに赤みを帯びているが、強いぎらつき感を見る者
に与えることなく何ら問題もない。
In addition, the heat ray shielding film of this example has a transparent color with a slight bluish-purple tinge that gives a refreshing feeling.This level of transparent color does not affect visibility in any way, but rather gives a favorable impression to the product. It becomes possible to increase the value. Further, although the reflected color is slightly reddish, it does not cause any problem as it does not give a strong glare to the viewer.

従ってこのような分光特性から考察すれぱ、本実施例の
熱線しゃへい膜は幅広い用途が考えられるが、特に自動
車の天井窓(いわゆるガラス・サン・ルーフ)や建染物
のガラス天窓等に好適である。
Therefore, considering these spectral characteristics, the heat ray shielding film of this example can be used in a wide range of applications, but it is particularly suitable for ceiling windows of automobiles (so-called glass sunroofs) and glass skylights of buildings. .

また、本実施例の熱線しゃへい膜は、その金属薄膜部1
4にて141Ω平方と極めて良好な電気伝導性を示す。
In addition, the heat ray shielding film of this example has its metal thin film portion 1
4, it shows extremely good electrical conductivity of 141Ω square.

この伝導性は従来例及び実施例1に比較した場合にはや
や劣るが、窓ガラス曇り止めヒータ、電波シールド材、
アンテナ材、表示素子用電極、帯電防止膜等として用い
る場合に何ら問題となることはない。
This conductivity is slightly inferior when compared to the conventional example and Example 1, but it is used for window glass anti-fog heaters, radio wave shielding materials, etc.
There is no problem when using it as an antenna material, an electrode for a display element, an antistatic film, etc.

本実施例の熱線しゃへい膜において特徴的な事項は、耐
摩耗性が従来例及び実施例1に比し大幅に向上している
ことにある。
A characteristic feature of the heat ray shielding film of this example is that the abrasion resistance is significantly improved compared to the conventional example and Example 1.

実験によれば、前述した場合と同様砂消しゴムを用い熱
線しゃへい膜の表面をこすった場合に、平均約15.6
回こすると抵抗が約2倍となり、平均約24.1回以上
こすると抵抗は約100KΩ以上になることが確認され
ている。従って、この消しゴム試験からは本実施例の熱
線しゃへい膜は従来の熱線しゃへい膜に比し約4.2〜
5.2倍の耐摩耗性を有し、実施例1の熱線しゃへい膜
に比しても約3.7〜4.6倍の耐久性を有することが
理解される。
According to experiments, when the surface of the heat ray shielding membrane was rubbed with a sand eraser as in the case described above, the average resistance was about 15.6.
It has been confirmed that if the material is rubbed several times, the resistance will approximately double, and if the material is rubbed more than 24.1 times on average, the resistance will be approximately 100KΩ or more. Therefore, from this eraser test, the heat ray shielding film of this example was found to be approximately 4.2 to
It is understood that the abrasion resistance is 5.2 times higher and the durability is approximately 3.7 to 4.6 times higher than that of the heat ray shielding film of Example 1.

また、本実施例の熱線しゃへい膜は金属薄膜部14内の
銀の拡散防止効果も極めて優れており、熱線しゃへい膜
を熱処理した後においても銀の半価幅の広がりが全く認
められることはなかった。
Furthermore, the heat ray shielding film of this example has an extremely excellent effect of preventing the diffusion of silver within the metal thin film portion 14, and even after the heat ray shielding film is heat-treated, no expansion of the half width of silver is observed at all. Ta.

従って、銀の拡散に起因する膜の劣化、すなわち熱によ
る劣化、化学的劣化が非常に起りにくいことが理解され
る。
Therefore, it is understood that film deterioration due to silver diffusion, that is, thermal deterioration and chemical deterioration, is extremely unlikely to occur.

また、このような本実施例の熱線しゃへい膜の製造は、
前述した実施例1と同様にして行われる。
In addition, the production of the heat ray shielding film of this example is as follows:
This is carried out in the same manner as in the first embodiment described above.

ここにおいて、銀のスパッタ電流は最高で約0.1A程
囲に設定される。
Here, the silver sputtering current is set to about 0.1 A at maximum.

以上説明したように、本発明の熱線しゃへい膜は、可視
光に対する優れた透過性、熱線に対するしゃへい性、良
好な電気伝導性を有するとともに、従来の熱線しゃへい
膜に比し優れた耐久性を有することが確認される。
As explained above, the heat ray shielding film of the present invention has excellent transparency to visible light, shielding property to heat rays, good electrical conductivity, and has excellent durability compared to conventional heat ray shielding films. This is confirmed.

なお、前記実施例においては、熱線しゃへい膜を多元ス
パッタリング法を用いて製造したものを示したが、熱線
しゃへい膜の製造方法はこれに限らず、薄膜を構成する
元素の基板表面への供給速度(流速量、流量)を同時に
かつ独立に制御可能な成膜原料供給源であるならばこれ
に限定されるものではな<、例えば、抵抗加熱あるいは
電子ビーム加熱による多元蒸着、多元のイオンプレーテ
ィング、多元(マルチ・ターゲット)イオン・ビーム・
スパッタ(複数のイオン源、または単一のイオン源を用
いたイオンビーム走査)あるいは化学蒸着法(CVD)
や化学溶液法(CLD)による熱線しゃへい膜の成膜が
可能である。
In the above example, the heat ray shielding film was manufactured using a multi-source sputtering method, but the method for manufacturing the heat ray shielding film is not limited to this. As long as it is a film-forming raw material supply source that can simultaneously and independently control (flow rate and flow rate), it is not limited to this.For example, multi-source deposition using resistance heating or electron beam heating, multi-source ion plating. , multi-target ion beam
Sputtering (ion beam scanning using multiple ion sources or a single ion source) or chemical vapor deposition (CVD)
It is possible to form a heat ray shielding film by a chemical solution method (CLD) or a chemical solution method (CLD).

なお、前記いずれの実施例においても、TiO2の酸素
原子の供給源として、酸化物(TiO2)ターゲットを
使用したが、金属(Ti)ターゲットを用いてスパッタ
リングガス(アルゴン)に酸素を混合して反応性スパッ
タリングを実施することも可能である。また、このよう
な酸素ガス等の反応性気体の導入は、スパッタリングの
みならず蒸着等においても利用することができる。
In each of the above examples, an oxide (TiO2) target was used as a source of oxygen atoms for TiO2, but a metal (Ti) target was used to mix oxygen into sputtering gas (argon) and react. It is also possible to carry out chemical sputtering. Further, the introduction of a reactive gas such as oxygen gas can be used not only in sputtering but also in vapor deposition and the like.

また、多元スパッタリング、多元蒸着等において、前述
した合金・サーメット・固溶体を形成することは容易に
考えられ、合金組成・サーメットの不定比性等を膜厚方
向に制御することも可能である。
Furthermore, it is easily possible to form the aforementioned alloy, cermet, or solid solution by multi-component sputtering, multi-component vapor deposition, etc., and it is also possible to control the alloy composition, non-stoichiometry of the cermet, etc. in the film thickness direction.

また、前記実施例においては、熱線しゃへい膜の構成元
素が膜厚方向に対称な濃度分布な示しているが、本発明
はこれに限らず、これら膜構成元素が膜厚方向に非対称
な濃度分布を示す構造としてもよい。例えば、基板10
の近傍に金属薄膜材料としての銀が多く、膜の露出表面
近傍に透明誘電体薄膜材料としてのチタン及び酸素が多
く分布する構造としても、前述した各実施例に及ばない
が、ある程度の効果を発揮することが可能である。
Further, in the above embodiment, the concentration distribution of the constituent elements of the heat ray shielding film is symmetrical in the film thickness direction, but the present invention is not limited to this, and the concentration distribution of these film constituent elements is asymmetrical in the film thickness direction. It is also possible to have a structure that shows. For example, the substrate 10
A structure in which there is a large amount of silver as a metal thin film material in the vicinity of the film, and a large amount of titanium and oxygen as a transparent dielectric thin film material near the exposed surface of the film can also have some effect, although it is not as good as the above-mentioned embodiments. It is possible to demonstrate this.

また、本発明の熱線しゃへい膜の露出表面の耐久性を更
に向上させるために、熱線しゃへい膜の表面に保護膜を
形成してもよい。この場合、保護膜として例えばSiO
2等の無機物あるいはプラスチックフィルム等の有機物
等を用いることは容易に考えられる。
Further, in order to further improve the durability of the exposed surface of the heat ray shielding film of the present invention, a protective film may be formed on the surface of the heat ray shielding film. In this case, as a protective film, for example, SiO
It is easily possible to use an inorganic material such as No. 2 or an organic material such as a plastic film.

また、本発明の熱線しゃへい膜上に熱可塑性透明フィル
ム例えばポリプチラール等を乗せ、更に透明ガラスを乗
せて熱圧着して合せガラス(安全ガラス)化することも
可能である。
Furthermore, it is also possible to place a thermoplastic transparent film such as polybutyral on the heat ray shielding film of the present invention, and then further place transparent glass and bond it under heat to form a laminated glass (safety glass).

また、本発明の熱線しゃへい膜と基板との付着性を向上
させるために、熱線しゃへい膜と基板との間に所定の薄
膜を介在させることも可能である。
Further, in order to improve the adhesion between the heat ray shielding film of the present invention and the substrate, it is also possible to interpose a predetermined thin film between the heat ray shielding film and the substrate.

また、前記各実施例において、熱線しゃへい膜の金属薄
膜部を構成する材料として銀を用いたものを示したが、
本発明の金属薄膜部材料はこれに限らず、金、銅、白金
、パラジウム、チタン、インジウム、アルミニウム等の
金属あるいはこれらの合金を用いることも可能である。
Furthermore, in each of the above embodiments, silver was used as the material constituting the metal thin film portion of the heat ray shielding film, but
The material of the metal thin film part of the present invention is not limited to this, and metals such as gold, copper, platinum, palladium, titanium, indium, and aluminum, or alloys thereof can also be used.

ここにおいて、良好な光学的特性を得るためには純銀を
用いることが有利である場合が多いが、他の金属を微量
添加することによって耐久性の向上が期待される。
Here, it is often advantageous to use pure silver in order to obtain good optical properties, but it is expected that durability will be improved by adding small amounts of other metals.

また、耐久性の向上に効果的なものとしては金、銅及び
チタン等があり、これらの金属あるいは合金、酸化物、
サーメット(例えばTiOx)あるいは複酸化物(例え
ばAg3TiO4)は金属と酸化物との付着力向上及び
銀の拡散抑制効果を発揮し、熱線しゃへい膜の耐久性向
上に効果的である。
In addition, gold, copper, titanium, etc. are effective in improving durability, and these metals, alloys, oxides,
Cermets (for example, TiOx) or double oxides (for example, Ag3TiO4) exhibit the effect of improving the adhesion between metal and oxide and inhibiting silver diffusion, and are effective in improving the durability of the heat ray shielding film.

また前記各実施例においては、透明誘電体薄膜部材料と
してTiO2を用いたものを示したが、本発明の熱線し
ゃへい膜はこれに限らず、透明誘電体薄膜部材料として
は可視域で透明で高い屈折率を持つ材料であるならば特
に限定はなく各種の金属、例えばチタン、ジルコニウム
、セリウム、ハフニウム、錫、イットリウム、インジウ
ム、タンタル、ニオブ、パナジウム、アンチモン、タン
グステン、モリブデン、亜鉛、鉛、鉄、ニッケル、コバ
ルト、クロム、カドミウム等の金属の酸化物、硫化物、
窒化物あるいはこれらの金属元素を含む複合化合物(例
えばSrTiO3、LiNbo3、LiTaO3)、固
溶体、ガラス(例えばTiO2−SiO2系、Si3N
4SiF4系)等を用いてもよい。
Furthermore, in each of the above embodiments, TiO2 was used as the material for the transparent dielectric thin film, but the heat ray shielding film of the present invention is not limited to this, and the material for the transparent dielectric thin film is transparent in the visible range. There are no particular limitations as long as the material has a high refractive index, and various metals such as titanium, zirconium, cerium, hafnium, tin, yttrium, indium, tantalum, niobium, panadium, antimony, tungsten, molybdenum, zinc, lead, and iron can be used. , oxides and sulfides of metals such as nickel, cobalt, chromium, and cadmium,
Nitride or a composite compound containing these metal elements (e.g. SrTiO3, LiNbo3, LiTaO3), solid solution, glass (e.g. TiO2-SiO2 system, Si3N
4SiF4 system) or the like may be used.

また、本発明の熱線しゃへい膜においては、各薄膜部1
2、14、16はそれぞれ非常に薄いため、膜の構成材
料の微量な可視光線の吸収は全く問題にならず、これら
各構成元素の可視光吸収特性を意図的な着色用として積
極的に応用することも可能である。
Further, in the heat ray shielding film of the present invention, each thin film portion 1
2, 14, and 16 are each extremely thin, so the absorption of trace amounts of visible light by the constituent materials of the film is not a problem at all, and the visible light absorption properties of each of these constituent elements can be actively applied for intentional coloring. It is also possible to do so.

以上説明したように、本発明によれば、可視光透過性基
板上に高屈折率透明誘電体薄膜部、金属薄膜部を積層し
熱線しゃへい膜を形成しているので、従来の熱線しゃへ
い膜と同様良好な可視光透過性、熱線しゃへい性、電気
伝導性を有し、しかも、本発明の熱線しゃへい膜は各薄
膜部界面における組成勾配を連続的に変化させ積層され
た膜全体を不均一組成単層膜状に形成し、薄膜部間の界
面結合力を増加させているため、膜全体の耐摩耗性が向
上するとともに金属薄膜部材料の拡散による劣化を積極
的に防止することができ、この結果膜全体の耐久性を著
しく向上させることが可能である。従って、本発明の熱
線しゃへい膜は、従来の熱線しゃへい膜の特性を損うこ
とはなく、しかもその耐久性を著しく向上させたものと
してその幅広い応用が考えられる。
As explained above, according to the present invention, a heat ray shielding film is formed by laminating a high refractive index transparent dielectric thin film part and a metal thin film part on a visible light transmitting substrate, so it is different from a conventional heat ray shielding film. Similarly, the heat ray shielding film of the present invention has good visible light transmittance, heat ray shielding property, and electrical conductivity, and furthermore, the heat ray shielding film of the present invention continuously changes the composition gradient at the interface of each thin film part, so that the entire stacked film has a non-uniform composition. Since it is formed in a single-layer film form and increases the interfacial bonding force between the thin film parts, the wear resistance of the entire film is improved and deterioration due to diffusion of the metal thin film part material can be actively prevented. As a result, it is possible to significantly improve the durability of the entire film. Therefore, the heat ray shielding film of the present invention does not impair the characteristics of conventional heat ray shielding films, and has significantly improved durability, and can be considered for a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱線しゃへい膜の組成勾配を示す説明図
、 第2図は第1図に示す組成勾配を有する熱線しゃへい膜
の分光特性図、 第3図は本発明の熱線しゃへい膜の構造を示す説明図、 第4図は本発明の実施例1の組成勾配を示す説明図、 第5図はこの実施例1の分光特性図、 第6図は本発明の実施例2の組成勾配を示す説明図、 第7図は実施例2の分光特性図である。 10・・・可視光透過性基板、 12、16・・・高屈折率透明誘電体薄膜部、14・・
・金属薄膜部。
Figure 1 is an explanatory diagram showing the composition gradient of a conventional heat ray shielding film, Figure 2 is a spectral characteristic diagram of a heat ray shielding film having the composition gradient shown in Figure 1, and Figure 3 is the structure of the heat ray shielding film of the present invention. FIG. 4 is an explanatory diagram showing the composition gradient of Example 1 of the present invention, FIG. 5 is a spectral characteristic diagram of Example 1, and FIG. 6 is a composition gradient of Example 2 of the present invention. FIG. 7 is a spectral characteristic diagram of Example 2. 10... Visible light transmitting substrate, 12, 16... High refractive index transparent dielectric thin film portion, 14...
・Metal thin film part.

Claims (6)

【特許請求の範囲】[Claims] (1)可視光透過性基板上に高屈折率透明誘電体薄膜部
と、金属薄膜部とを少なくとも1層づつ積層してなり、
各薄膜部界面における組成勾配を連続的に変化させ積層
された膜全体を不均一組成単層膜状に形成したことを特
徴とする可視光透過性熱線しゃへい膜。
(1) At least one layer each of a high refractive index transparent dielectric thin film portion and a metal thin film portion are laminated on a visible light transparent substrate,
A visible light transmitting heat ray shielding film characterized in that the composition gradient at the interface of each thin film portion is continuously changed to form the entire stacked film into a monolayer film with a non-uniform composition.
(2)特許請求の範囲(1)記載のしゃへい膜において
、高屈折率透明誘電体薄膜部材料として、チタン、ジル
コニウム、セリウム、ハフニウム、錫、イットリウム、
インジウム、ビスマス、タンタル、ニオブ、パナジウム
、アンチモン、タングステン、モリブデン、亜鉛、鉛、
鉄、ニッケル、コバルト、クロム若しくはカドニウム等
の金属の酸化物、硫化物若しくは窒化物、あるいはこれ
らの金属元素を含む複合化合物、固溶体若しくはガラス
を用いたことを特徴とする可視光透過性熱線しゃへい膜
(2) In the shielding film according to claim (1), the high refractive index transparent dielectric thin film material may include titanium, zirconium, cerium, hafnium, tin, yttrium,
Indium, bismuth, tantalum, niobium, panadium, antimony, tungsten, molybdenum, zinc, lead,
A visible light-transmitting heat ray shielding film characterized by using an oxide, sulfide or nitride of a metal such as iron, nickel, cobalt, chromium or cadmium, or a composite compound, solid solution or glass containing these metal elements. .
(3)特許請求の範囲(1)(2)のいずれかに記載の
しゃへい膜において、金属薄膜部材料として、銀、金、
銅、白金、パラジウム、チタン、インジウム若しくはア
ルミニウム等の金属あるいはこれらの合金を用いたこと
を特徴とする可視光透過性熱線しゃへい膜。
(3) In the shielding film according to any one of claims (1) and (2), the metal thin film portion material may include silver, gold,
A visible light transmitting heat ray shielding film characterized by using metals such as copper, platinum, palladium, titanium, indium, or aluminum, or alloys thereof.
(4)特許請求の範囲(1)(2)(3)のいずれかに
記載のしゃへい膜において、金属薄膜部内全域にわたり
高屈折率透明誘電体材料を所定の組成勾配をもって混入
したことを特徴とする可視光透過性熱線しゃへい膜。
(4) The shielding film according to any one of claims (1), (2), and (3), characterized in that a high refractive index transparent dielectric material is mixed with a predetermined composition gradient throughout the metal thin film portion. Visible light transparent heat ray shielding film.
(5)可視光透過性基板上に、高屈折率透明誘電体化合
物を形成する元素及び金属元素を時間的に連続して供給
被覆し、その供給流東を元素ごとに独立して制御するこ
とにより、基板上に高屈折率透明誘電体薄膜部、金属薄
膜部の順に少なくても1層づつ薄膜部界面における組成
勾配を連続的に変化させつつ順次積層することを特徴と
する可視光透過性熱線しゃへい膜の製造方法。
(5) A visible light transmitting substrate is coated with an element forming a high refractive index transparent dielectric compound and a metal element in a temporally continuous manner, and the supply flow is controlled independently for each element. Visible light transmittance characterized by sequentially laminating at least one layer of a high refractive index transparent dielectric thin film part and then a metal thin film part on a substrate while continuously changing the composition gradient at the interface of the thin film part. A method for producing a heat ray shielding membrane.
(6)特許請求の範囲(5)記載の方法において、基板
上への金属元素の供給被覆による金属薄膜部の成膜に際
し高屈折率透明誘電体を形成する元素を同時に供給被覆
し、金属薄膜部内全域にわたり誘電体元素を所定の組成
勾配をもって混入することを特徴とする可視光透過性熱
線しゃへい膜の製造方法。
(6) In the method described in claim (5), when forming a thin metal film portion by supplying and coating a metal element onto a substrate, an element that forms a high refractive index transparent dielectric is simultaneously supplied and coated, and the metal thin film A method for producing a heat ray shielding film that transmits visible light, characterized by mixing a dielectric element with a predetermined composition gradient over the entire interior of the film.
JP57142326A 1982-08-17 1982-08-17 Visible-ray transmitting heat wave shielding membrane and its manufacture Pending JPS5931147A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57142326A JPS5931147A (en) 1982-08-17 1982-08-17 Visible-ray transmitting heat wave shielding membrane and its manufacture
DE19833329504 DE3329504A1 (en) 1982-08-17 1983-08-16 HEAT WAVE SHIELDING LAMINATION
GB08321995A GB2126256B (en) 1982-08-17 1983-08-16 Heatwave shield coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57142326A JPS5931147A (en) 1982-08-17 1982-08-17 Visible-ray transmitting heat wave shielding membrane and its manufacture

Publications (1)

Publication Number Publication Date
JPS5931147A true JPS5931147A (en) 1984-02-20

Family

ID=15312737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57142326A Pending JPS5931147A (en) 1982-08-17 1982-08-17 Visible-ray transmitting heat wave shielding membrane and its manufacture

Country Status (3)

Country Link
JP (1) JPS5931147A (en)
DE (1) DE3329504A1 (en)
GB (1) GB2126256B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108347A (en) * 1983-11-16 1985-06-13 Toyota Motor Corp Glare-preventing glass for reflecting heat rays
JPS61151045A (en) * 1984-12-17 1986-07-09 ピーピージー・インダストリーズ・インコーポレーテツド Product for reflection of solar energy and manufacture
JPS6241740A (en) * 1985-08-19 1987-02-23 Nippon Sheet Glass Co Ltd Production of heat-reflection glass
JPS63103844A (en) * 1986-10-16 1988-05-09 グラヴルベル Light permeation window glass
JPS63112441A (en) * 1986-10-28 1988-05-17 Nippon Sheet Glass Co Ltd Transfarent heat reflecting plate
JPS63239044A (en) * 1986-11-27 1988-10-05 旭硝子株式会社 Transparent conductive laminate
JPS63265846A (en) * 1987-04-22 1988-11-02 Nippon Sheet Glass Co Ltd Bent heat ray reflection glass and production thereof
JPS63297246A (en) * 1987-05-29 1988-12-05 Central Glass Co Ltd Colored glass plate
JPH01301537A (en) * 1988-04-01 1989-12-05 Ppg Ind Inc Highly permeable low radiation article and production thereof
JPH029731A (en) * 1988-04-01 1990-01-12 Ppg Ind Inc Matter of high gray color-permeability and low radioactivity and method for its manufacture
JPH0248432A (en) * 1988-08-09 1990-02-19 Nippon Sheet Glass Co Ltd Heat ray-shielding plate and production thereof
JPH02145458A (en) * 1988-10-03 1990-06-04 Ppg Ind Inc Lowly reflective, densely colored coated article and its manufacture
JPH1164603A (en) * 1997-08-18 1999-03-05 Dainippon Printing Co Ltd Antireflection film, base material with antireflection film and plasma display panel front plate using base material with antireflection film
WO2017130934A1 (en) * 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 Heat insulating filter and surveillance system
JP2021073161A (en) * 2015-06-19 2021-05-13 エージーシー グラス ユーロップAgc Glass Europe Laminated glazing for solar control

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3428951A1 (en) * 1984-08-06 1986-02-13 Leybold-Heraeus GmbH, 5000 Köln WITH A COATING LAYER FROM GOLD OR A GOLD-CONTAINING MATERIAL-COVERED DECORATIVE USED ITEM AND METHOD FOR THE PRODUCTION THEREOF
US5009761A (en) * 1984-09-24 1991-04-23 Spafax Holdings Plc., Method of producing an optical component, and components formed thereby
US4591418A (en) * 1984-10-26 1986-05-27 The Parker Pen Company Microlaminated coating
JPS644841Y2 (en) * 1985-03-19 1989-02-07
DE3611844A1 (en) * 1986-02-28 1987-09-03 Flachglas Ag METHOD FOR PRODUCING A TEMPERED AND / OR BENDED GLASS DISC WITH PLATINUM COATING OR THE LIKE
US4710433A (en) * 1986-07-09 1987-12-01 Northrop Corporation Transparent conductive windows, coatings, and method of manufacture
GB2200224A (en) * 1987-01-15 1988-07-27 Bp Oil Limited Fire or heat-protective light transmitting mask having a tin oxide layer
JPH0714120B2 (en) * 1988-02-09 1995-02-15 大阪府 Superconducting magnetic shield
EP0358090B1 (en) * 1988-09-01 1994-08-17 Asahi Glass Company Ltd. Window glass for an automobile
JPH02258655A (en) * 1988-12-16 1990-10-19 Nippon Sheet Glass Co Ltd Heat-radiation reflecting laminated plate
US5113527A (en) * 1989-05-23 1992-05-19 Noel Robertson-Mckenzie Fire and smoke protective hood
WO1991010564A1 (en) * 1990-01-15 1991-07-25 Renker Gmbh & Co Kg Heatable windscreen
DE4006804A1 (en) * 1990-03-03 1991-09-05 Renker Gmbh & Co Kg Zweigniede MULTI-LAYER SYSTEM WITH A HIGH REFLECTION CAPACITY IN THE INFRARED SPECTRAL AREA AND WITH A HIGH TRANSMISSION CAPACITY IN THE VISIBLE AREA
FR2657343B1 (en) * 1990-01-19 1993-01-29 Saint Gobain Vitrage Int THIN LAYER FOR SUN PROTECTION GLAZING.
US5216551A (en) * 1990-02-16 1993-06-01 Asahi Kogaku Kogyo K.K. Surface reflector
DE4020696A1 (en) * 1990-06-29 1992-01-09 Renker Gmbh & Co Kg Zweigniede MULTI-LAYER SYSTEM WITH A HIGH REFLECTION CAPACITY IN THE INFRARED SPECTRAL AREA AND WITH A HIGH TRANSMISSION CAPACITY IN THE VISIBLE AREA
DE19751711A1 (en) * 1997-11-21 1999-05-27 Leybold Systems Gmbh Glass coating comprises a silver layer sandwiched between two high refractive index layers
DE19948839A1 (en) * 1999-10-11 2001-04-12 Bps Alzenau Gmbh Conductive transparent layers and processes for their manufacture
EP1123906B1 (en) * 2000-02-02 2004-08-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the production of heat reflecting coating stack for transparent substrates and thus produced coating stack
DE10131932C2 (en) * 2000-09-21 2003-09-18 Fraunhofer Ges Forschung Process for producing a heat-reflecting layer system for transparent substrates and layer system produced thereafter
EP1273558A1 (en) * 2001-07-02 2003-01-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for the production of a heat reflecting multilayered coating system for a transparent substrate and thus obtained coating
US7026057B2 (en) * 2002-01-23 2006-04-11 Moen Incorporated Corrosion and abrasion resistant decorative coating
US6919133B2 (en) 2002-03-01 2005-07-19 Cardinal Cg Company Thin film coating having transparent base layer
CN100379699C (en) * 2002-05-03 2008-04-09 Ppg工业俄亥俄公司 Coated article for use in an insulation glazing unit and the insulation glazing unit containing a coated pane
US7192647B2 (en) 2003-06-24 2007-03-20 Cardinal Cg Company Concentration-modulated coatings
US7773365B2 (en) 2004-04-30 2010-08-10 Hewlett-Packard Development Company, L.P. Dielectric material
US7229533B2 (en) 2004-06-25 2007-06-12 Guardian Industries Corp. Method of making coated article having low-E coating with ion beam treated and/or formed IR reflecting layer
US7311975B2 (en) 2004-06-25 2007-12-25 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Coated article having low-E coating with ion beam treated IR reflecting layer and corresponding method
US7342716B2 (en) 2005-10-11 2008-03-11 Cardinal Cg Company Multiple cavity low-emissivity coatings
ES2392713B1 (en) * 2011-03-30 2013-11-08 Bsh Electrodomésticos España, S.A. Cooking field plate, and cooking field with a corresponding cooking field plate
CN104267499B (en) 2014-10-14 2016-08-17 福耀玻璃工业集团股份有限公司 A kind of head-up-display system
FR3065722B1 (en) * 2017-04-28 2021-09-24 Saint Gobain COLORED GLAZING AND ITS OBTAINING PROCESS
US10472274B2 (en) 2017-07-17 2019-11-12 Guardian Europe S.A.R.L. Coated article having ceramic paint modified surface(s), and/or associated methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH509613A (en) * 1967-05-01 1971-06-30 Rank Xerox Ltd Photoconductive alloy layer
GB1292544A (en) * 1970-02-04 1972-10-11 Gen Electric Co Ltd Improvements in or relating to the manufacture of electroluminescent devices
CH527916A (en) * 1970-04-13 1972-09-15 Balzers Patent Beteilig Ag Process for producing a highly refractive, transparent oxide layer
DD216839A3 (en) * 1981-12-17 1984-12-19 Flachglaskomb Torgau Veb HIGHLY CORROSION-RESISTANT REFLECTION LAYER SYSTEM ON SUBSTRATES

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108347A (en) * 1983-11-16 1985-06-13 Toyota Motor Corp Glare-preventing glass for reflecting heat rays
JPH0432784B2 (en) * 1983-11-16 1992-06-01 Toyota Motor Co Ltd
JPS61151045A (en) * 1984-12-17 1986-07-09 ピーピージー・インダストリーズ・インコーポレーテツド Product for reflection of solar energy and manufacture
JPS6241740A (en) * 1985-08-19 1987-02-23 Nippon Sheet Glass Co Ltd Production of heat-reflection glass
JPS63103844A (en) * 1986-10-16 1988-05-09 グラヴルベル Light permeation window glass
JPS63112441A (en) * 1986-10-28 1988-05-17 Nippon Sheet Glass Co Ltd Transfarent heat reflecting plate
JPS63239044A (en) * 1986-11-27 1988-10-05 旭硝子株式会社 Transparent conductive laminate
JPS63265846A (en) * 1987-04-22 1988-11-02 Nippon Sheet Glass Co Ltd Bent heat ray reflection glass and production thereof
JPS63297246A (en) * 1987-05-29 1988-12-05 Central Glass Co Ltd Colored glass plate
JPH01301537A (en) * 1988-04-01 1989-12-05 Ppg Ind Inc Highly permeable low radiation article and production thereof
JPH029731A (en) * 1988-04-01 1990-01-12 Ppg Ind Inc Matter of high gray color-permeability and low radioactivity and method for its manufacture
JP2505276B2 (en) * 1988-04-01 1996-06-05 ピーピージー インダストリーズ,インコーポレーテツド Gray highly permeable low emissivity article and its manufacturing method
JP2505278B2 (en) * 1988-04-01 1996-06-05 ピーピージー インダストリーズ,インコーポレーテッド High-permeability, low-radioactive article and method for producing the same
JPH0248432A (en) * 1988-08-09 1990-02-19 Nippon Sheet Glass Co Ltd Heat ray-shielding plate and production thereof
JPH02145458A (en) * 1988-10-03 1990-06-04 Ppg Ind Inc Lowly reflective, densely colored coated article and its manufacture
JPH1164603A (en) * 1997-08-18 1999-03-05 Dainippon Printing Co Ltd Antireflection film, base material with antireflection film and plasma display panel front plate using base material with antireflection film
JP2021073161A (en) * 2015-06-19 2021-05-13 エージーシー グラス ユーロップAgc Glass Europe Laminated glazing for solar control
WO2017130934A1 (en) * 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 Heat insulating filter and surveillance system
JPWO2017130934A1 (en) * 2016-01-29 2018-06-14 パナソニックIpマネジメント株式会社 Thermal barrier filter and monitoring system
CN108474887A (en) * 2016-01-29 2018-08-31 松下知识产权经营株式会社 Heat-insulated optical filter and monitoring system
US10989848B2 (en) 2016-01-29 2021-04-27 Panasonic Intellectual Property Management Co., Ltd. Heat-blocking filter and monitoring system

Also Published As

Publication number Publication date
GB8321995D0 (en) 1983-09-21
DE3329504A1 (en) 1984-02-23
GB2126256A (en) 1984-03-21
GB2126256B (en) 1986-06-04

Similar Documents

Publication Publication Date Title
JPS5931147A (en) Visible-ray transmitting heat wave shielding membrane and its manufacture
CA1335887C (en) Neutral sputtered films of metal alloy oxides
US4902580A (en) Neutral reflecting coated articles with sputtered multilayer films of metal oxides
US4786563A (en) Protective coating for low emissivity coated articles
US4716086A (en) Protective overcoat for low emissivity coated article
US4948677A (en) High transmittance, low emissivity article and method of preparation
US5521765A (en) Electrically-conductive, contrast-selectable, contrast-improving filter
US4898789A (en) Low emissivity film for automotive heat load reduction
US4610771A (en) Sputtered films of metal alloy oxides and method of preparation thereof
EP0183052B1 (en) Sputtered films of metal alloy oxides
KR100250604B1 (en) An optical interference filter and the production method thereof
US5059295A (en) Method of making low emissivity window
KR910001774B1 (en) Method of making low emissivity film for high temperature processing
TWI389864B (en) Appliance transparency
US4806220A (en) Method of making low emissivity film for high temperature processing
US5772862A (en) Film comprising silicon dioxide as the main component and method for its productiion
US4898790A (en) Low emissivity film for high temperature processing
US4348453A (en) Glazing possessing selective transmission and reflection spectra
US5178966A (en) Composite with sputtered films of bismuth/tin oxide
JPH07249316A (en) Transparent conductive film and transparent substrate using the transparent conductive film
Andersson et al. High stability titanium nitride based solar control films
JP2018514499A (en) Titanium nickel niobium alloy barrier for low emissivity coating
JP2576637B2 (en) Heat ray reflective glass
CA1288383C (en) Durable sputtered films of metal alloy oxides
AU636009B2 (en) Magnesium film reflectors