JPS5930961B2 - boiler - Google Patents

boiler

Info

Publication number
JPS5930961B2
JPS5930961B2 JP52156039A JP15603977A JPS5930961B2 JP S5930961 B2 JPS5930961 B2 JP S5930961B2 JP 52156039 A JP52156039 A JP 52156039A JP 15603977 A JP15603977 A JP 15603977A JP S5930961 B2 JPS5930961 B2 JP S5930961B2
Authority
JP
Japan
Prior art keywords
water
smoke
pipe
flue
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52156039A
Other languages
Japanese (ja)
Other versions
JPS5487301A (en
Inventor
正 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP52156039A priority Critical patent/JPS5930961B2/en
Publication of JPS5487301A publication Critical patent/JPS5487301A/en
Publication of JPS5930961B2 publication Critical patent/JPS5930961B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、=対の氷室の間に燃焼室を囲んで多数の水管
を配備しボイラ(水管式、貫流式など)に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a boiler (water tube type, once-through type, etc.) in which a large number of water tubes are arranged between a pair of ice chambers and surrounding a combustion chamber.

従来のこの種のボイラの例を第1図及び第2図に示せば
、環状の上部水室1及び下部水室2との間に水管3,4
が二重の円筒状をなして配列され、中央に燃焼室5を形
成し、第2図の如き配置にて煙道人口6、煙道1が形成
され、ケーシング8との間に煙道9を形成し煙道10に
至る。
An example of a conventional boiler of this kind is shown in FIGS. 1 and 2. Water pipes 3 and 4 are connected between an annular upper water chamber 1 and a lower water chamber 2.
are arranged in a double cylindrical shape, forming a combustion chamber 5 in the center, a flue population 6 and a flue 1 are formed in the arrangement as shown in FIG. and reaches the flue 10.

11はバーナである。11 is a burner.

水管3又は4は隣接するものは互いに密着して第2図の
如く連続してらせん形の壁を形成する。
Adjacent water pipes 3 or 4 are in close contact with each other to form a continuous spiral wall as shown in FIG.

水管3又は4の上下端は直径が細(形成されて上部氷室
1又は下部水室2と接続しているので隣接する小直径部
との間に隙間を生ずる。
The upper and lower ends of the water pipe 3 or 4 have a narrow diameter (formed) and are connected to the upper ice chamber 1 or the lower water chamber 2, so that a gap is created between the adjacent small diameter portions.

この隙間はキャスター12で埋められて水管で形成され
る前述のらせん状の壁はその両側の空間を遮断する。
This gap is filled with casters 12, and the aforementioned spiral wall formed by the water pipe blocks off the space on both sides.

13は熱応力を避けるためのたわみ部、14は炉底のキ
ャスターである。
13 is a bending part to avoid thermal stress, and 14 is a caster at the bottom of the hearth.

このボイラの運転に当たっては、中央のバーナ11を燃
焼せしめれば輻射及び燃焼ガスの対流により燃焼室5に
面している水管3の内側が加熱され、煙道人口6より煙
道1を通過する燃焼ガスにより煙道lの両面の水管3,
4が加熱され、最外部の煙道9を通過する間に水管4が
加熱される。
When operating this boiler, when the central burner 11 is fired, the inside of the water pipe 3 facing the combustion chamber 5 is heated by radiation and convection of the combustion gas, and the gas passes through the flue 1 from the flue population 6. The combustion gas causes water pipes 3 on both sides of the flue l,
4 is heated, and the water pipe 4 is heated while passing through the outermost flue 9.

この際比較的高温の内側の水管3が昇水管となり、比較
的低温の外側の水管4が降水管となり、水が循環する。
At this time, the relatively high-temperature inner water pipe 3 serves as a rising pipe, and the relatively low-temperature outer water pipe 4 serves as a downcomer pipe, so that water circulates.

このようなボイラをさらに有効に稼動せしめるために一
層の効率及び能力の向上が望まれている。
In order to operate such boilers more effectively, further improvements in efficiency and capacity are desired.

効率及び能力向上のためには種々の方式があるが、その
一つとしては燃焼量を多くして燃焼ガスの速度を犬にし
て熱貫流率を増加する方法、又は限定されたボイラの容
積内に有効な伝熱面を極力多(設ける方法などがある。
There are various ways to improve efficiency and capacity, one of which is to increase the amount of combustion to reduce the velocity of combustion gas and increase the heat transfer coefficient, or to increase the heat transfer coefficient within the limited boiler volume. There are methods to provide as many effective heat transfer surfaces as possible.

しかし前者の方法では通気抵抗は速度の二乗に比例し、
かつ風量は燃焼量に比例するので、給気装置(例えば押
込送風機)の動力は燃焼量の三乗に比例する。
However, in the former method, the ventilation resistance is proportional to the square of the velocity,
Moreover, since the air volume is proportional to the combustion amount, the power of the air supply device (for example, a forced air blower) is proportional to the cube of the combustion amount.

このことは設備動力の増加のみならず、給気装置の吐出
圧が高(なり騒音の原因になる。
This not only increases the power of the equipment, but also causes the discharge pressure of the air supply system to become high (which causes noise).

また、第2図の構造の代りに煙道人口6から先の煙道が
左右に分かれ180度通過した反対側で合流し、外側に
流れ再び左右に分かれ180度通過した反対側(即ち煙
道人口6のある側)で再び合流して外へ導かれる方式が
ある。
In addition, instead of the structure shown in Figure 2, the flue starting from flue population 6 is divided into left and right sides, passes through 180 degrees, merges on the opposite side, and flows outward again, dividing into left and right sides and passes through 180 degrees on the opposite side (i.e., the flue passes through 180 degrees). There is a method in which they rejoin on the side with a population of 6) and are led outside.

この方式では中間部の流速を低下せしめることはできる
が、バーナ11から出た燃料油の粒子が、バーナ11の
付近の流路15(第1図)においては、完全燃焼せずに
大きな粒子のまま煙道lに入る。
Although this method can reduce the flow velocity in the intermediate section, the fuel oil particles coming out of the burner 11 are not completely combusted in the flow path 15 (Fig. 1) near the burner 11, and are formed into large particles. Enter the flue.

燃焼室5の下部近くの流路16から煙道人口6に入るも
のは完全燃焼するから差支えないが、上記の不完全燃焼
粒子を含んだガスが煙道lに入ると冷却されるので未燃
のまま排出さればい塵量が増大する。
There is no problem if the gas that enters the flue 6 from the flow path 16 near the bottom of the combustion chamber 5 is completely combusted, but if the gas containing the incomplete combustion particles mentioned above enters the flue 1, it will be cooled and will not be burned. If it is discharged as is, the amount of dust will increase.

これを防ぐにはバーナ11付近のミキシングを良好にし
て燃焼室5内における燃焼を完全にする必要がある。
To prevent this, it is necessary to improve the mixing near the burner 11 to ensure complete combustion within the combustion chamber 5.

このミキシングによりばい塵量を低減することができる
This mixing can reduce the amount of dust.

しかしその反面ミキシングのための送風機動力を要し、
またミキシングが激しければそれだけNOx発生量が増
大して公害の原因となる。
However, on the other hand, it requires blower power for mixing,
Moreover, the more intense the mixing, the more the amount of NOx generated increases, causing pollution.

本発明は、燃焼室を水管にて形成した燃焼室壁にて囲み
、水管内に煙管を設けると共に煙管の流入口付近の燃焼
室壁の一部に通煙口を設けることにより、従来のものの
上記の欠点を除き、燃焼室からの燃焼ガスの経路を煙管
に入るものと、通煙口に入るものに二重して流速を下げ
℃、通気抵抗の減少をはかり、動力、騒音の低減を行な
うと共に、水管内の水を内面及び外面から加熱して加熱
面積を水管表面積よりも増大せしめて能力が太き(高効
率であり、しかも燃焼室内の激しいミキシングを行なう
ことな(完全燃焼せしめてばい塵の発生もNOxの発生
も抑制ができるボイラを提供することを目的とするもの
である。
The present invention is different from the conventional one by surrounding the combustion chamber with a combustion chamber wall formed of water pipes, providing a smoke pipe within the water pipe, and providing a smoke vent in a part of the wall of the combustion chamber near the inlet of the smoke pipe. In order to eliminate the above drawbacks, the combustion gas path from the combustion chamber is doubled, one entering the flue and the other entering the smoke vent, to reduce the flow velocity, reduce ventilation resistance, and reduce power and noise. At the same time, the water in the water tube is heated from the inner and outer surfaces to increase the heating area than the surface area of the water tube. The object of the present invention is to provide a boiler that can suppress the generation of dust and NOx.

本発明は、環状の第一水室と第二水室とを平行に配備し
、該第−水室と第二水室との間を互いに平行な複数本の
水管をバーナ中心線を囲んで配設し、隣接する前記水管
の間は少な(とも一部の該水管の間の端部付近に通煙口
を残して前記全水管の間を閉塞して燃焼室壁を形成し、
前記水管の少なくとも一部の水管の中には煙管が設けら
れ、該煙管の流入口は前記水管の前記通煙口側の端部付
近に前記燃焼室に而して開口し、前記煙管の流出口は前
記水管の前記流入口の反対端部付近に外方に面して開口
し、燃焼ガスが前記通煙口及び前記煙管を通過して前記
燃焼室壁の外部に導かれるよう構成したことを特徴とす
るボイラである。
The present invention provides an annular first water chamber and a second water chamber arranged in parallel, and a plurality of mutually parallel water pipes surrounding the burner center line between the first and second water chambers. arranging the water pipes, and forming a combustion chamber wall by leaving smoke vents near the ends between some of the water pipes and closing all the water pipes between the water pipes,
A smoke pipe is provided in at least some of the water pipes, and an inlet of the smoke pipe opens into the combustion chamber near the end of the water pipe on the smoke port side, and the flow of the smoke pipe is The outlet is configured to open toward the outside near the opposite end of the inlet of the water pipe, and the combustion gas is guided to the outside of the wall of the combustion chamber through the smoke port and the smoke pipe. This boiler is characterized by:

本発明を実施例につき図面を用いて説明すれば、第3図
、第4図、第5図において、水管3,4は同心円的に密
に並べられて内側は燃焼室壁11、外側は煙道壁18が
形成される。
To explain the present invention with reference to the drawings according to embodiments, in FIGS. 3, 4, and 5, water pipes 3 and 4 are closely arranged in a concentric circle, with the combustion chamber wall 11 on the inside and the smoke pipe on the outside. A road wall 18 is formed.

各水管3,4は隣接するものは互いに密着し、(部分的
に溶接を行なうこともある)燃焼室5と煙道11あるい
は煙道lと煙道9とを通ずるために水管3,4のうち1
本あるいは2本を除いて形成した通路(第2図煙道人口
6の如き)はない。
Adjacent water pipes 3 and 4 are in close contact with each other (partially welded in some cases), and in order to communicate between the combustion chamber 5 and the flue 11 or between the flue l and the flue 9, the water pipes 3 and 4 are 1 of them
There are no passages (such as flue population 6 in Figure 2) formed except for a book or two.

水管3の中には煙管19が設けられ、その流入口20は
バーナ11の反対側である下端に近(、燃焼室5に面し
て開口し、流出口21は流入口20と反対側の端部近く
に煙道7に而して設けられる。
A smoke pipe 19 is provided in the water pipe 3, and its inlet 20 is open facing the combustion chamber 5 (close to the lower end opposite to the burner 11), and the outlet 21 is located on the opposite side to the inlet 20. A flue 7 is provided near the end.

水管3の下端は直径が細(絞られ(又は細いパイプが接
続されて)下部水室2に接続されるが、第5図に示す如
(隣接するものの間に隙間が通煙口22として残されて
いる。
The lower end of the water pipe 3 is connected to the lower water chamber 2 by having a narrow diameter (or by connecting a thin pipe), but as shown in FIG. has been done.

通常はこの隙間は水管4の下端に示す如(キャスターで
埋められているが、本実施例においては上端は埋められ
ているが下端は特に通煙口として開放されたままにしで
ある。
Normally, this gap is filled with casters as shown at the lower end of the water pipe 4, but in this embodiment, the upper end is filled, but the lower end is left open especially as a smoke vent.

水管4の中には煙管23が設けられ、その流入口24は
流出口21と同じ側の端部付近に煙道Iに面して開口し
、流出口25は流入口24と反対側の端部付近に煙道9
に而して開口している。
A smoke pipe 23 is provided in the water pipe 4, and its inlet 24 opens facing the flue I near the end on the same side as the outlet 21, and the outlet 25 opens at the end opposite to the inlet 24. Flue 9 near the part
It is open.

水管4の上、下端はキャスター12にて埋められ密閉さ
れてそる。
The upper and lower ends of the water pipe 4 are buried and sealed with casters 12 and warped.

上記通煙口と煙管19の流入口20とは水管3の一方の
、同じ側の端部に設けられているので、通煙口を通るガ
ス流と、煙管19を通るガス流とが並列に形成されるよ
うになっている。
Since the smoke port and the inlet 20 of the smoke pipe 19 are provided at one end of the water pipe 3 on the same side, the gas flow passing through the smoke port and the gas flow passing through the smoke pipe 19 are parallel to each other. It is beginning to form.

運転に当たっては中央のバーナ11を燃焼せしめれば輻
射及び対流熱により水管3の内方の側を加熱し、燃焼ガ
スは下部の流入口20及び通煙口22に分かれて流入し
、一方は煙管19を通過し水管3の水を内部より加熱し
て流出口21より煙道lの上端に入り、他方は煙道lを
上昇して水管3の外方の面、水管4の内方の面を加熱し
て上端にて流出口21よりの燃焼ガスと合流し、流入口
24より煙管23に入り、水管4の水を内部より加熱し
て流出口25より煙道9に入り、水管4の外方の面を加
熱しながら煙道10に至り排出される。
During operation, when the central burner 11 is fired, the inner side of the water pipe 3 is heated by radiant and convection heat, and the combustion gas is divided into an inlet 20 and a smoke vent 22 at the bottom, and one enters the smoke pipe. 19, the water in the water pipe 3 is heated from the inside and enters the upper end of the flue l through the outlet 21, and the other water rises through the flue l to the outer surface of the water pipe 3 and the inner surface of the water pipe 4. The water in the water tube 4 is heated from the inside, enters the flue 9 through the outlet 25, and enters the flue 23 through the inlet 24. It reaches the flue 10 and is discharged while heating the outer surface.

本実施例は上記の如(構成され、作用するので燃焼ガス
は高温の状態で並列の流れとして二重され煙管19及び
煙道lを流れる。
The present embodiment is constructed and operates as described above, so that the combustion gases flow through the flue 19 and the flue 1 in dual parallel flows at high temperatures.

通気抵抗△Pは△pcx=yXγ V:流速 γ:密度 であり速度が支配的であり、単に流路の一部を二重した
だけでも△Pの低下に効果があるが、さらに密度r即ち
体積Vも関係し、その体積Vはの如く絶対温度に比例す
るので、高温の状態で分流させて速度を落すことが全体
の通気抵抗を小さくする効果が一層大である。
Ventilation resistance △P is △pcx = y The volume V is also related, and since the volume V is proportional to the absolute temperature, dividing the flow in a high temperature state to reduce the speed has a greater effect on reducing the overall ventilation resistance.

しかして分流状態で冷却されて体積が小になったガスが
再び合流し、煙管23を通過するが、煙管23は煙管1
9よりも本数を多くとることができ、かつ燃焼ガスの体
積も小となっているので流速も小となり通気抵抗が小さ
い。
The gases, which have been cooled in the divided state and whose volume has become smaller, join together again and pass through the smoke pipe 23, but the smoke pipe 23 is connected to the smoke pipe 1.
Since the number can be larger than that of 9 and the volume of combustion gas is small, the flow velocity is also small and the ventilation resistance is small.

しかして伝熱面積は、水管3,4の中の煙管119.2
3の面積が増加し℃いるので単位面積当たりの伝熱量が
少なく熱効率は向上する。
Therefore, the heat transfer area is the smoke pipe 119.2 in the water pipes 3 and 4.
Since the area of 3 increases in temperature, the amount of heat transferred per unit area is reduced and the thermal efficiency is improved.

その上燃焼室5からの燃焼ガスの出口はバーナ11の反
対側にあり、完全燃焼を行なった後の燃焼ガスのみを流
出せしめる構造であるので、完全燃焼のため特に激しい
ミキシングを行なう必要もな(、ばい塵の抑制が行なえ
ると共にNOxの発生な抑制することもできる。
Furthermore, the outlet of the combustion gas from the combustion chamber 5 is located on the opposite side of the burner 11, and the structure allows only the combustion gas to flow out after complete combustion, so there is no need for particularly intensive mixing for complete combustion. (In addition to suppressing dust, it is also possible to suppress the generation of NOx.

水管3がフィンを有し、隣接するフィンが接続されて燃
焼室壁17が形成される場合には水管3の端部は絞られ
ていないので、フィンの一部を切欠いて通煙口22を形
成することができる。
When the water pipe 3 has fins and adjacent fins are connected to form the combustion chamber wall 17, the end of the water pipe 3 is not constricted, so a part of the fin is cut out to form the smoke vent 22. can be formed.

煙管19は必らずしも水管3全部に設ける必要はない。The smoke pipe 19 does not necessarily need to be provided in all the water pipes 3.

煙管23は必らずしも水管4全部に設ける必要はな(、
この場合、比較的受熱量が小さくなっている外側の水管
のうち、この煙管23を備えない水管4が加熱量が小さ
いので一層水の比重が高(なり降水を促進し、水の循環
を円滑にしてボイラ容量を増大せしめることができる。
It is not necessary to provide smoke pipes 23 to all water pipes 4 (,
In this case, among the outer water pipes that receive a relatively small amount of heat, the water pipe 4 that is not equipped with the smoke pipe 23 receives a small amount of heat, so the specific gravity of the water is even higher (which promotes precipitation and smoothes water circulation). This allows the boiler capacity to be increased.

燃焼室壁110通煙口22は必らずしも全ての水管3の
間になくともよい。
The combustion chamber wall 110 and the smoke vents 22 do not necessarily have to be provided between all the water pipes 3.

煙道壁18には必要に応Cて通煙口22を設けてもよい
A smoke vent 22 may be provided in the flue wall 18 if necessary.

煙道壁18−通煙口22を設ける場合は、燃焼室壁11
に通煙口22を設けた場合と同様に、煙道7及び煙管1
9を通過して合流した全燃焼ガス量が、煙管23のみな
らず煙道壁18080通煙2にも再び分割されて流れる
ので、燃焼ガスの流速が小となり通気抵抗が小さく、後
半の流れに対しても同様な効果をもたらす。
Flue wall 18 - When providing a smoke vent 22, the combustion chamber wall 11
As in the case where the smoke vent 22 is provided in the flue 7 and the smoke pipe 1.
Since the total amount of combustion gas that has passed through 9 and merged is divided again and flows not only to the flue pipe 23 but also to the flue wall 18080 and the smoke passage 2, the flow velocity of the combustion gas is small, the ventilation resistance is small, and the latter half of the flow is It also has the same effect.

煙道壁18における通煙口22の位置は、第3図の場合
には水管4の上端付近となし、燃焼室壁17におけると
同様、キャスターを埋めずに隣接する水管4の上端の隙
間を残して通煙口22とするか、水管4がフィンを有す
るならフィンの一部を切欠いて通煙口22を形成しても
よい。
The position of the smoke vent 22 in the flue wall 18 is near the upper end of the water pipe 4 in the case of FIG. The smoke vent 22 may be formed by leaving it as the smoke vent 22 or by cutting out a part of the fin if the water pipe 4 has fins.

この場合煙道10は水管4の片方の端に寄せずにほぼそ
の中央部に設置するのがよい。
In this case, it is preferable that the flue 10 is installed approximately in the center of the water pipe 4, without being placed near one end of the water pipe 4.

以上の如き構造においては、通煙口22の大きさ、配置
、数、煙管19,23の大さ、その稼動本数(煙管が多
過ぎる場合は一部を閉塞するなど)などを調整して使用
条件に最も適した状態を選択することができる。
In the above structure, the size, arrangement, and number of the smoke vent 22, the size of the smoke pipes 19 and 23, and the number of operating pipes (if there are too many smoke pipes, block some of them, etc.) are adjusted before use. You can choose the state that best suits your conditions.

第6図は別の実m例を示し、いわゆる戻り燃焼を行なわ
しめる場合の例を示す。
FIG. 6 shows another example in which so-called return combustion is performed.

即ち、バーナ11は戻り燃焼用のロングフレーム式のも
のが、やや下に下げて装着され、燃焼ガスは一度底部に
達し℃から反転して燃焼室の周囲に沿って上昇するもの
である。
That is, the burner 11 is of a long frame type for return combustion and is mounted slightly lower, and the combustion gas once reaches the bottom, reverses its temperature from °C, and rises along the periphery of the combustion chamber.

戻り燃焼によってさらに完全燃焼とNOX低減が期待で
きる。
Further complete combustion and NOx reduction can be expected through return combustion.

この場合通煙口22、流入口20,24、流出口21.
25、煙道10の位置は第3図の場合と上下が逆となっ
た配置になる。
In this case, the smoke vent 22, the inlet 20, 24, the outlet 21.
25. The position of the flue 10 is upside down from that shown in Fig. 3.

上記の実施例は、垂直型の水管式のボイラの例が示され
ているが、質流式のものにも適用でき、また水平式のも
のに対しても適用して同様な効果をもたらすことができ
る。
In the above embodiment, an example of a vertical water tube type boiler is shown, but it can also be applied to a quality flow type boiler, and it can also be applied to a horizontal type to produce the same effect. I can do it.

水平式の場合は水平より僅か傾けることが好ましい。In the case of a horizontal type, it is preferable to tilt it slightly from horizontal.

なお、上述の例で、上部水室1及び下部水室2の形状は
円環状のほか、楕円状、正方形状、長方形状などの環状
であっても上述の効果に変りはない。
In addition, in the above-mentioned example, the above-mentioned effect does not change even if the shape of the upper water chamber 1 and the lower water chamber 2 is annular, such as an ellipse, a square, or a rectangle, in addition to the annular shape.

本発明により、ボイラ全体の寸法を太き(することなく
伝達面積を水筒表面積よりも増大せしめて熱効率を高め
、燃焼ガス流路を高温状態で並列の流れとして二重して
速度を減少せしめて通気抵抗を著しく減少せしめて設備
動力の減少がはかれ、吐出圧力が低(騒音も低減され、
しかも完全燃焼を行なってばい塵を抑制すると共にNO
xの発生も抑制して公害を防止することができるボイラ
を提供することができ、実用上、公害防止上極めて犬な
る効果を有するものである。
According to the present invention, the transmission area is increased to be larger than the surface area of the water bottle without increasing the overall dimensions of the boiler, increasing the thermal efficiency, and the combustion gas flow path is doubled as a parallel flow in a high temperature state to reduce the speed. By significantly reducing ventilation resistance, equipment power is reduced, discharge pressure is low (noise is also reduced,
Furthermore, complete combustion is performed to suppress soot and dust, and NO
It is possible to provide a boiler that can prevent pollution by suppressing the generation of x, and has an extremely effective effect in terms of practical and pollution prevention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のボイラの例の縦断面図、第2図はそのI
−I線面断面図、第3図は本発明の実施例の縦断面図、
第4図はその■−■線横線面断面図5図はその通煙口部
の詳細図、第6図は別の実施例の縦断面図である。 1・・・・・・上部氷室、2・・・・・・下部水室、3
,4・−・・・・水管、5・・・・・・燃焼室、6・・
・・・・煙道入口、7・・・・・・煙道、8・・・・・
・ケーシング、9,10・・・・・・煙道、11・・・
・・・バーナ、12・・・・・・キャスター、13・・
・・・・たわみ部、14・−・・・・キャスター、15
.16・・・・・・流路、17・・・・・・燃焼室壁、
18・・・・・・煙道壁、19・・・・・煙管、20・
−・・・・流入口、21・・・・・一流出口、22・・
・・・・通煙口、23・・・・・煙管、24・・・・・
・流入口、25・・・・・・流出口。
Figure 1 is a vertical cross-sectional view of an example of a conventional boiler, and Figure 2 is its I
-I line sectional view, FIG. 3 is a longitudinal sectional view of the embodiment of the present invention,
FIG. 4 is a cross-sectional view taken along the line ■--■, FIG. 5 is a detailed view of the smoke vent, and FIG. 6 is a vertical cross-sectional view of another embodiment. 1... Upper ice chamber, 2... Lower water chamber, 3
, 4... Water pipe, 5... Combustion chamber, 6...
... Flue entrance, 7 ... Flue, 8 ...
・Casing, 9, 10... Flue, 11...
...Burner, 12...Caster, 13...
...Flexible part, 14...Caster, 15
.. 16...Flow path, 17...Combustion chamber wall,
18... Flue wall, 19... Smoke pipe, 20.
-... Inlet, 21... First-class outlet, 22...
...Smoke vent, 23...Smoke pipe, 24...
・Inflow port, 25...Outflow port.

Claims (1)

【特許請求の範囲】[Claims] 1 環状の第一水室と第二水室とを平行に配備し、該第
−水室と第二水室との間を互いに平行な複数本の水管を
バーナ中心線を囲んで配設し、隣接する前記水管の間は
少な(とも二部の該水管の間の一方の端部付近に通煙口
を残して前記全水管の間を閉塞して燃焼室壁を形成し、
前記水管の少なくとも一部の水管の中には煙管が設けら
れ該煙管の流入口は前記水管の前記通煙口と同じ側の端
部付近に前記燃焼室に而して開口し、前記煙管の流出口
は前記水管の前記流入口の反対端部付近に外方に面して
開口し、燃焼ガスが前記通煙口及び前記煙管に二重され
て通過して、前記燃焼室壁の外部に導かれるよう構成し
たことを特徴とするボイラ。
1. An annular first water chamber and a second water chamber are arranged in parallel, and a plurality of mutually parallel water pipes are arranged between the first water chamber and the second water chamber surrounding the burner center line. , a combustion chamber wall is formed by leaving a smoke vent near one end between the two adjacent water pipes and closing all of the water pipes;
A smoke pipe is provided in at least some of the water pipes, and the inlet of the smoke pipe opens into the combustion chamber near the end of the water pipe on the same side as the smoke port, and The outlet opens outward near the opposite end of the water pipe to the inlet, and the combustion gas passes through the smoke port and the smoke pipe in a double manner to the outside of the combustion chamber wall. A boiler characterized by being configured to be guided.
JP52156039A 1977-12-24 1977-12-24 boiler Expired JPS5930961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52156039A JPS5930961B2 (en) 1977-12-24 1977-12-24 boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52156039A JPS5930961B2 (en) 1977-12-24 1977-12-24 boiler

Publications (2)

Publication Number Publication Date
JPS5487301A JPS5487301A (en) 1979-07-11
JPS5930961B2 true JPS5930961B2 (en) 1984-07-30

Family

ID=15618975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52156039A Expired JPS5930961B2 (en) 1977-12-24 1977-12-24 boiler

Country Status (1)

Country Link
JP (1) JPS5930961B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189252A1 (en) 2018-03-26 2019-10-03 国立大学法人大阪大学 Electrochemical measurement system, electrochemical search method, reactor, and microplate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2933716C2 (en) * 1979-08-21 1985-06-13 Deutsche Babcock Ag, 4200 Oberhausen Gas generator equipped with a steam generating system
JPS6314191Y2 (en) * 1980-11-18 1988-04-21

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248241Y2 (en) * 1975-01-09 1977-11-02

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189252A1 (en) 2018-03-26 2019-10-03 国立大学法人大阪大学 Electrochemical measurement system, electrochemical search method, reactor, and microplate

Also Published As

Publication number Publication date
JPS5487301A (en) 1979-07-11

Similar Documents

Publication Publication Date Title
JPS58150794A (en) Concentric pipe type recuperative heat exchanger
JP2986982B2 (en) Small gas fired air heater
US4257358A (en) Boiler
JPS5930961B2 (en) boiler
JP3805892B2 (en) Hot water boiler
JP2914647B2 (en) Multi-tube type once-through boiler
JP3190939B2 (en) Steam generator
KR840001311Y1 (en) Boiler
RU2084770C1 (en) Hot-water boiler
RU2232948C2 (en) Heating boiler
JPS62288446A (en) Forced combustion type water heater not using heat absorbing fins
JP4405652B2 (en) Boiler with horizontal heat absorption fins in the combustion gas passage
RU2245490C2 (en) Gas-tube boiler
CN205878614U (en) Water -cooled low nitrogen oxide heat exchanger
US2514011A (en) Combined combustion chamber and heat exchanger
RU2263851C2 (en) Heating boiler
CA1114251A (en) Boiler
JPS609527Y2 (en) boiler
JPS60134147A (en) Water tube type boilder
JP3038626B2 (en) Water tube row of water tube boiler
JP2987315B2 (en) Can body structure of multi-tube once-through boiler
SU382910A1 (en) THERMOGRAPHIC HEAT TUBE
EP0021469A1 (en) Heating device
SU554463A1 (en) Tubular heat exchanger heating element for industrial furnaces
USRE26575E (en) Volk hot air furnace