JPS5929169B2 - Method for producing polychlorinated ethane - Google Patents

Method for producing polychlorinated ethane

Info

Publication number
JPS5929169B2
JPS5929169B2 JP10754378A JP10754378A JPS5929169B2 JP S5929169 B2 JPS5929169 B2 JP S5929169B2 JP 10754378 A JP10754378 A JP 10754378A JP 10754378 A JP10754378 A JP 10754378A JP S5929169 B2 JPS5929169 B2 JP S5929169B2
Authority
JP
Japan
Prior art keywords
chlorine
supplied
reactor
ethane
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10754378A
Other languages
Japanese (ja)
Other versions
JPS5535010A (en
Inventor
信三 若林
達彦 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP10754378A priority Critical patent/JPS5929169B2/en
Publication of JPS5535010A publication Critical patent/JPS5535010A/en
Publication of JPS5929169B2 publication Critical patent/JPS5929169B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、エチレンと塩素又はエチレンと塩素化エタン
又は/及び塩素化エチレンと塩素を原料とし、該塩素を
反応器外の塩素吸収容器に供給して反応生成液に吸収さ
せると共に、該塩素吸収容器に反応器から排出される排
ガスを供給し、塩素吸収容器からの塩素吸収液を反応器
に供給して置換塩素化反応により 塩化エタン、三塩化
エタン、四塩化エタン、五塩化エタン等の多塩素化エタ
ンを製造する方法に関するものである。
Detailed Description of the Invention The present invention uses ethylene and chlorine, ethylene and chlorinated ethane, or/and chlorinated ethylene and chlorine as raw materials, and supplies the chlorine to a chlorine absorption container outside the reactor to convert it into a reaction product liquid. At the same time, the exhaust gas discharged from the reactor is supplied to the chlorine absorption container, and the chlorine absorption liquid from the chlorine absorption container is supplied to the reactor to produce ethane chloride, ethane trichloride, and ethane tetrachloride through a displacement chlorination reaction. , relates to a method for producing polychlorinated ethane such as pentachlorinated ethane.

本発明に於ける反応は、エチレンの塩素附加による二塩
化エタンの生成反応とかくして生成した二塩化エタンの
逐次置換塩素化反応又はエチレンと共に供給した例えば
二塩化エタン、三塩化エタン等の塩素化エタンの置換塩
素化反応に関するものであり、主とするところは置換塩
素化反応であるということができる。
The reaction in the present invention involves the addition of chlorine to ethylene to produce dichloroethane, the successive displacement chlorination reaction of the dichloride ethane thus produced, or the chlorinated ethane such as dichloride ethane or trichloride ethane supplied together with ethylene. It can be said that it is mainly a substitution chlorination reaction.

本発明の目的とするところは、反応器から排出される排
ガス中の塩化水素ガス及び未反応エチレンを有利に回収
利用し、且つ塩素吸収容器内での爆鳴気の発生を防止す
ると共に塩素吸収容器内での暴走反応を抑制し、更に反
応器内での置換塩素化反応を効率よく行なわしめるとこ
ろにある。
The purpose of the present invention is to advantageously recover and utilize hydrogen chloride gas and unreacted ethylene in the exhaust gas discharged from the reactor, prevent the generation of explosion gas in the chlorine absorption container, and also prevent the chlorine absorption. The goal is to suppress runaway reactions within the container and to efficiently carry out the substitution chlorination reaction within the reactor.

従来の多塩素化エタンの製法としては、第1図に示す通
り、塩素吸収容器101の下部へ塩素供給管103から
塩素ガスを供給し、反応生成液溢流管IOT及び反応生
成液供給管108より塩素吸収容器101の上部に供給
される反応生成液に吸収させる。
As shown in FIG. 1, the conventional method for producing polychlorinated ethane involves supplying chlorine gas to the lower part of the chlorine absorption container 101 from the chlorine supply pipe 103, and then supplying the reaction product liquid overflow pipe IOT and the reaction product liquid supply pipe 108. The chlorine is absorbed into the reaction product liquid supplied to the upper part of the chlorine absorption container 101.

この塩素吸収容器には、ラシヒリングが充填された充填
層から成つている。
This chlorine absorption vessel consists of a packed bed filled with Raschig rings.

次いで塩素吸収液は塩素吸収液供給管106より反応器
102の下部へ供給する。
Next, the chlorine absorption liquid is supplied to the lower part of the reactor 102 from the chlorine absorption liquid supply pipe 106.

この反応器102には多孔板が設置されている。This reactor 102 is equipped with a perforated plate.

反応器102にはエチレンをエチレン供給管104から
、塩素化エタンを塩素化エタン供給管105からそれぞ
れ供給し反応させる。反応生成液は、反応生成液溢流管
IOTより溢流させ、一部を冷却器110を経て反応生
成液供給管108より塩素吸収容器101へ循環させる
と共に製品取出管109より系外に取出す。
Ethylene and chlorinated ethane are supplied to the reactor 102 from an ethylene supply pipe 104 and a chlorinated ethane supply pipe 105, respectively, and are reacted. The reaction product liquid overflows from the reaction product liquid overflow pipe IOT, and a portion thereof is circulated through the cooler 110 and the reaction product liquid supply pipe 108 to the chlorine absorption vessel 101, and is taken out from the system through the product take-out pipe 109.

未反応エチレンと塩化水素ガス等を含む排ガスは、排ガ
ス供給管111から塩素吸収容器101の上部に供給し
、未反応吸収ガスと共に塩素吸収容器101の上部から
排ガス排出管112を通して系外に排出される。一方、
従来化学工業の主要な基礎原料である塩素は、その大半
が水銀法食塩電解により製造されて来たが、近年水銀公
害の防止のため水銀を使用しない塩素の工業的製法とし
て隔膜法食塩電解への転換が余儀なくされている。
Exhaust gas containing unreacted ethylene, hydrogen chloride gas, etc. is supplied to the upper part of the chlorine absorption container 101 from the exhaust gas supply pipe 111, and is discharged from the upper part of the chlorine absorption container 101 together with the unreacted absorbed gas to the outside of the system through the exhaust gas discharge pipe 112. Ru. on the other hand,
Traditionally, chlorine, a major basic raw material in the chemical industry, has been mostly produced by mercury-method salt electrolysis, but in recent years, in order to prevent mercury pollution, diaphragm-method salt electrolysis has been adopted as an industrial method for producing chlorine that does not use mercury. A change is being forced.

この製法の転換により塩素ガスの品質が大きく変り、水
銀法食塩電解により製造される塩素ガスに含まれる酸素
ガスは製造設備の吸引する空気によるものが主体であつ
て、その酸素濃度はせいぜい0.4%程度であるのに対
して、隔膜法食塩電解により製造される塩素ガスに含ま
れる酸素ガスは、製造設備の吸引する空気によるものを
除いても2〜3%程度にもなるのである。
The quality of chlorine gas has changed significantly due to this change in production method, and the oxygen gas contained in chlorine gas produced by mercury method brine electrolysis is mainly from the air sucked in by the production equipment, and the oxygen concentration is at most 0. On the other hand, the oxygen gas contained in the chlorine gas produced by diaphragm salt electrolysis is about 2 to 3%, even excluding the air sucked by the production equipment.

かXる多量の酸素ガスを含む塩素ガスを上記の如き従来
の多塩素化エタンの製法に於ける塩素吸収容器に供給し
、反応生成液に塩素ガスを吸収させる場合、非吸収性の
酸素ガスと塩素吸収容器内の可燃性ガスとにより爆鳴気
を形成し、爆発の危険が極めて大きくなるという欠点が
出て来たのである。
When chlorine gas containing such a large amount of oxygen gas is supplied to the chlorine absorption vessel in the conventional polychlorinated ethane manufacturing method as described above, and the chlorine gas is absorbed into the reaction product liquid, non-absorbable oxygen gas The drawback was that the chlorine and flammable gas in the chlorine absorption container formed a detonating atmosphere, increasing the risk of explosion.

この爆鳴気の発生を防止するために、上記従来法では、
例えば反応器からの塩化水素ガス、エチレンを含む排ガ
スを塩素吸収容器の下部に供給し、該容器内の可燃性ガ
スを稀釈する方法が採用されているが、かXる方法では
次のような致命的な欠点が生じることが確認されたので
ある。
In order to prevent the generation of this explosive air, in the above conventional method,
For example, a method has been adopted in which exhaust gas containing hydrogen chloride gas and ethylene from a reactor is supplied to the lower part of a chlorine absorption container to dilute the flammable gas in the container. It was confirmed that a fatal flaw occurred.

即ち、エチレンと塩素又はエチレンと塩素化エタンと塩
素の置換塩素化反応で発生する排ガスの中には塩化水素
ガスの他に未反応エチレンが含まれている。
That is, the exhaust gas generated in the displacement chlorination reaction of ethylene and chlorine or ethylene, chlorinated ethane, and chlorine contains unreacted ethylene in addition to hydrogen chloride gas.

かXるエチレンを含む排ガスを塩素吸収容器に供給する
と該容器内でエチレンの塩素附加のみならず、エチレン
自身が触媒となつて塩素吸収容器に供給される反応生成
液と塩素が置換塩素化反応を起し、多量の塩素が塩素吸
収容器内で消費されてしまうのである。
When exhaust gas containing ethylene is supplied to a chlorine absorption vessel, not only is chlorine added to the ethylene in the vessel, but ethylene itself acts as a catalyst, causing a displacement chlorination reaction between chlorine and the reaction product liquid supplied to the chlorine absorption vessel. This causes a large amount of chlorine to be consumed within the chlorine absorption container.

この結果反応器へ供給される塩素吸収液中の塩素の絶対
量が少なくなり、反応器内での塩素/エチレンの反応モ
ル比が小さくなり、反応器に供給されるエチレンが充分
反応せず、反応効率が低下する欠点が生じると共に、発
生する排ガス中にエチレンが更に多量に残留するように
なる。
As a result, the absolute amount of chlorine in the chlorine absorption liquid supplied to the reactor decreases, the reaction molar ratio of chlorine/ethylene in the reactor decreases, and the ethylene supplied to the reactor does not react sufficiently. The drawback is that the reaction efficiency is reduced, and a larger amount of ethylene remains in the generated exhaust gas.

従つて塩素吸収容器で更に置換塩素化反応を増加させる
という悪循環を繰返し、ついには塩素吸収容器が反応器
化し、このため該容器内の温度が異常に上昇し暴走反応
が生じるという欠点がある。
Therefore, the vicious cycle of further increasing the displacement chlorination reaction in the chlorine absorption vessel is repeated, and finally the chlorine absorption vessel becomes a reactor, which causes the temperature inside the vessel to rise abnormally, resulting in a runaway reaction.

本発明者らは、かXる欠点を解消するために鋭意研究し
た結果本発明を完成した。即ち、本発明は エチレンと塩素又はエチレンと塩素化エタン又は/及び
塩素化エチレンと塩素から多塩素化エタンを液相で製造
するに際し、充填材の充填によつて隔離形成された上部
空間部と下部空間部とを内部に有する塩素吸収容器を反
応器外に設け、その上部空間部に塩素を供給し、下部空
間部又はこれと上部空間部とに反応器から排出される反
応排ガスを供給すると共に、該塩素吸収容器に反応器か
らの反応生成液を供給し、得られる塩素吸収液を反応器
に導入して反応に供することを特徴とする多塩素化エタ
ンの製造方法である。
The present inventors completed the present invention as a result of intensive research to eliminate the above drawbacks. That is, the present invention provides a method for producing polychlorinated ethane from ethylene and chlorine, ethylene and chlorinated ethane, or/and chlorinated ethylene and chlorine in a liquid phase. A chlorine absorption container having a lower space inside is provided outside the reactor, chlorine is supplied to the upper space, and reaction exhaust gas discharged from the reactor is supplied to the lower space or this and the upper space. At the same time, the method for producing polychlorinated ethane is characterized in that the reaction product liquid from the reactor is supplied to the chlorine absorption container, and the obtained chlorine absorption liquid is introduced into the reactor and subjected to the reaction.

本発明の一実施の態様を図面に用いて詳細に説明する。An embodiment of the present invention will be described in detail with reference to the drawings.

第2図に於いて、塩素吸収容器1は、ラシヒリング等の
充填材を充填した充填層13,13−A,l3−bで隔
離形成された上部空間部15と下部空間部15−aを設
ける。
In FIG. 2, the chlorine absorption container 1 is provided with an upper space 15 and a lower space 15-a, which are separated by filling layers 13, 13-A, and 13-b filled with a filler such as Raschig ring. .

上部空間部の下には、1個の空間部に限らず複数個の下
部空間部を設けてもよい。かXる塩素吸収容器1の上部
空間部15に塩素ガス供給管3から塩素ガスを供給し、
反応生成液溢流管7及び反応生成液供給管8を通り、冷
却器10にて40反程度に冷却して塩素吸収容器1の上
部に供給した反応生成液に吸収させる。
Under the upper space, not only one space but a plurality of lower spaces may be provided. Supplying chlorine gas from the chlorine gas supply pipe 3 to the upper space 15 of the chlorine absorption container 1,
The reaction product liquid passes through the reaction product liquid overflow pipe 7 and the reaction product liquid supply pipe 8, is cooled to about 40 mm in the cooler 10, and is absorbed into the reaction product liquid supplied to the upper part of the chlorine absorption container 1.

この塩素吸収液を塩素吸収液供給管6を通り同6−a1
個所から反応器2供給するか、又は、同6−A,6−b
、或は6−A,6−b及び6−cから分割して供給する
。この分割して供給する場合、反応器2の2個所以上、
好ましくは2〜5個所、更に好ましくは2〜3個所から
供給する。この場合、塩素吸収液の供給量を調節し、又
供給個所を選定するために塩素吸収液供給管にバルブ1
6,16−A,l6−bを設けておくことは好ましいこ
とである。
This chlorine absorption liquid is passed through the chlorine absorption liquid supply pipe 6-a1.
Reactor 2 is supplied from the same point, or 6-A, 6-b
, or dividedly supplied from 6-A, 6-b and 6-c. In the case of dividing this supply, two or more parts of the reactor 2,
It is preferably supplied from 2 to 5 locations, more preferably from 2 to 3 locations. In this case, a valve is installed on the chlorine absorbing liquid supply pipe to adjust the supply amount of the chlorine absorbing liquid and to select the supply point.
It is preferable to provide 6,16-A, 16-b.

反応器2にはエチレンガスをエチレン供給管4から又は
同時に塩素化エタンを塩素化エタン供給管5から供給し
て置換塩素化反応させる。この場合反応条件は通常公知
の条件が採用される。反応生成液は反応生成液溢流管7
から溢流させ、一部を冷却器10を経て反応生成液供給
管8から塩素吸収容器1へ循環供給すると共に残部を製
品取出管9から系外に取出す。
Ethylene gas is supplied to the reactor 2 from the ethylene supply pipe 4 or chlorinated ethane is simultaneously supplied from the chlorinated ethane supply pipe 5 to cause a substitution chlorination reaction. In this case, generally known reaction conditions are employed. The reaction product liquid flows through the reaction product liquid overflow pipe 7.
A portion is circulated and supplied to the chlorine absorption container 1 from the reaction product liquid supply pipe 8 via the cooler 10, and the remainder is taken out of the system from the product take-out pipe 9.

図示していないが、この系外では三塩化エタン、四塩化
エタン、五塩化エタンを分離器で製品化し、残りの二塩
化エタンと三塩化エタンの一部を反応器1に循環供給す
ることができる。反応器2で排出される未反応エチレン
、塩化水素ガスを含む排ガスは排ガス供給管11を通り
塩素吸収容器1に供給する。
Although not shown in the figure, outside this system, trichloride ethane, tetrachloride ethane, and pentachloride ethane can be converted into products in a separator, and a portion of the remaining dichloride ethane and trichloride ethane can be circulated and supplied to reactor 1. can. Exhaust gas containing unreacted ethylene and hydrogen chloride gas discharged from the reactor 2 is supplied to the chlorine absorption vessel 1 through an exhaust gas supply pipe 11.

この場合、排ガスの供給手段としては、塩素吸収容器1
の塩素を供給する上部空間部15より下部の1以上の空
間部15−aに排ガス供給管11を通り同11−bから
排ガスを供給する。
In this case, as a means of supplying exhaust gas, the chlorine absorption container 1
Exhaust gas is supplied from the exhaust gas supply pipe 11 to one or more spaces 15-a below the upper space 15 to which chlorine is supplied from the exhaust gas supply pipe 11-b.

或は又塩素を供給する上部空間部15に排ガス供給管1
1を通り11−aから供給すると共に、該空間部15よ
り下部の1以上の空間部15−aに排ガス供給管11を
通り11−bからも排ガスを供給する。この場合、排ガ
スの供給個所を選定するために排ガス供給管11−aに
バルブを設けておくとよい。
Alternatively, the exhaust gas supply pipe 1 is connected to the upper space 15 that supplies chlorine.
1 and is supplied from 11-a through the exhaust gas supply pipe 11, and exhaust gas is also supplied from 11-b through the exhaust gas supply pipe 11 to one or more spaces 15-a below the space 15. In this case, it is preferable to provide a valve in the exhaust gas supply pipe 11-a in order to select the exhaust gas supply point.

塩素吸収容器1では塩素ガス中の未吸収ガスは塩化水素
ガスにて稀釈され、該容器1の上部から排ガス排出管1
2を経て系外に排出される。
In the chlorine absorption container 1, the unabsorbed gas in the chlorine gas is diluted with hydrogen chloride gas, and the exhaust gas discharge pipe 1 is passed from the top of the container 1.
2 and is discharged from the system.

本発明に於いて、塩素吸収容器1の上部と下部に充填材
による充填層で隔離した空間部15,15−aが設けら
れている。そしてこの塩素吸収容器1の上部空間部15
に塩素ガスを塩素ガス供給管3から供給すると共に、反
応器2から排出される未反応エチレン、塩化水素ガスを
含む排ガスを塩素を供給する上部空間部5より下部の1
以上の空間部15−aに供給するか若しくは該空間部1
5−aと上記塩素供給空間部15とに供給するものであ
る。
In the present invention, spaces 15 and 15-a are provided at the upper and lower parts of the chlorine absorption container 1, separated by a layer of filler material. The upper space 15 of this chlorine absorption container 1
1 below the upper space part 5 to which chlorine gas is supplied from the chlorine gas supply pipe 3, and exhaust gas containing unreacted ethylene and hydrogen chloride gas discharged from the reactor 2 is supplied with chlorine.
or the above space 15-a, or the space 1
5-a and the chlorine supply space 15.

本発明に於いて塩素吸収容器1に空間部を設けることに
より、排ガス中の塩化水素ガスと塩素ガスとの混合をよ
くし、且つ塩素ガス中に含まれる水素ガス、酸素ガスの
未吸収ガスが塩化水素ガスで稀釈され、塩素吸収容器1
内での爆鳴気の発生を防止することができるのである。
In the present invention, by providing a space in the chlorine absorption container 1, it is possible to improve the mixing of hydrogen chloride gas and chlorine gas in the exhaust gas, and to prevent unabsorbed hydrogen gas and oxygen gas contained in the chlorine gas. Diluted with hydrogen chloride gas, chlorine absorption container 1
This can prevent explosions from occurring inside the building.

これら空間部15及び15−aを設ける特長はこれら反
応生成液とエチレンを含む塩化水素ガスの気液接触面積
を出来るだけ少い部分で早くエチレンガスを附加反応さ
せ、二塩化エタンにしてしまう事である。未反応エチレ
ンと塩化水素ガスを含む排ガスを塩素吸収容器1内の充
填層へ直接導くと、気液接触がよいため塩素と反応生成
液の置換塩素化反応が進むことを抑制することである。
かkる空間部で排ガス中に含まれるエチレンが急速に塩
素と附加反応し、エチレンが触媒となる反応生成液と塩
素との置換塩素化反応が抑制され、塩素の消費が少なく
なるのである。
The feature of providing these spaces 15 and 15-a is that the gas-liquid contact area between the reaction product liquid and the hydrogen chloride gas containing ethylene is as small as possible to allow the addition reaction of ethylene gas to occur as quickly as possible to convert ethane dichloride. It is. When the exhaust gas containing unreacted ethylene and hydrogen chloride gas is directly led to the packed bed in the chlorine absorption vessel 1, the gas-liquid contact is good, thereby suppressing the progress of the displacement chlorination reaction between the chlorine and the reaction product liquid.
In such a space, ethylene contained in the exhaust gas rapidly undergoes an addition reaction with chlorine, suppressing the displacement chlorination reaction between the reaction product liquid and chlorine in which ethylene serves as a catalyst, and chlorine consumption is reduced.

このため反応器2へ供給する塩素吸収液の塩素濃度を低
下させることなく、塩素吸収液を供給することができ、
又エチレンを二塩化エタンとして回収し得るのである。
従つて塩素吸収容器1での前記暴走反応を抑制すること
ができるのである。
Therefore, the chlorine absorption liquid can be supplied to the reactor 2 without reducing the chlorine concentration of the chlorine absorption liquid,
Ethylene can also be recovered as ethane dichloride.
Therefore, the runaway reaction in the chlorine absorption container 1 can be suppressed.

又、反応器2からの排ガスを塩素吸収容器1の上部空間
部15と下部空間部15−aの両者に供給する場合、そ
の間に存在する充填層によりなお溶存している酸素がス
トリツプされ、酸素濃度を減少せしめることがより可能
となる。
Furthermore, when the exhaust gas from the reactor 2 is supplied to both the upper space 15 and the lower space 15-a of the chlorine absorption vessel 1, dissolved oxygen is stripped by the packed layer existing between them, and oxygen is It becomes more possible to reduce the concentration.

更にそれぞれの空間部への排ガス供給量を変化させて得
た塩素吸収液を反応器2に供給した場合、反応器2での
置換塩素化反応を抑制したり或は促進したり自由に調節
することが可能となる。
Furthermore, when the chlorine absorption liquid obtained by changing the amount of exhaust gas supplied to each space is supplied to the reactor 2, the displacement chlorination reaction in the reactor 2 can be suppressed or promoted, and can be freely adjusted. becomes possible.

例えば、反応器2での置換塩素化反応を抑制したい場合
、排ガスを塩素吸収容器1の上部空間部15により多く
供給し、それより下部の空間部15−aに少なく供給し
て得た塩素吸収液を反応器2に供給するとよい。これは
塩素ガス中の酸素ガスが塩素吸収容器内でのストリツプ
効果を低下させ、塩素吸収液中の酸素濃度が増し、かX
る塩素吸収液を反応器2に供給することになるので、そ
の溶存酸素のために置換塩素化反応が抑制されるのであ
る。又逆に反応器2での置換塩素化反応を促進させたい
場合には、排ガスを塩素吸収容器1の上部空間部15へ
少なく供給し、下部空間部15−aに多く供給するとよ
い。
For example, when it is desired to suppress the displacement chlorination reaction in the reactor 2, the chlorine absorption obtained by supplying more exhaust gas to the upper space 15 of the chlorine absorption container 1 and less to the lower space 15-a. It is preferable to supply the liquid to the reactor 2. This is because the oxygen gas in the chlorine gas reduces the stripping effect in the chlorine absorption container, increases the oxygen concentration in the chlorine absorption liquid, and causes
Since the chlorine absorbing liquid is supplied to the reactor 2, the substitution chlorination reaction is suppressed due to the dissolved oxygen. Conversely, if it is desired to promote the displacement chlorination reaction in the reactor 2, it is preferable to supply less exhaust gas to the upper space 15 of the chlorine absorption container 1 and more to the lower space 15-a.

これは逆に一且塩素吸収液中に溶存した酸素が、塩化水
素ガスにて一部ストリツプが促進され、従つて反応器2
へ供給される塩素吸収液中の酸素濃度が少なくなり、酸
素による置換塩素化反応の抑制が減少し、同反応がより
促進されることになる。本発明に於いては、上記の如き
作用を促進するために、塩素吸収容器1の上部空間部よ
り下部の空間部の数を適宜増すことが可能であり、2〜
5個所程度が好ましい。
On the contrary, some of the oxygen dissolved in the chlorine absorption liquid is promoted to strip by the hydrogen chloride gas, and therefore, the stripping occurs in the reactor 2.
The oxygen concentration in the chlorine-absorbing liquid supplied to the reactor is reduced, the inhibition of the substitution chlorination reaction by oxygen is reduced, and the reaction is further promoted. In the present invention, in order to promote the above-mentioned effect, it is possible to increase the number of spaces below the upper space of the chlorine absorption container 1 as appropriate;
Approximately 5 locations are preferable.

又空間部の間にラシヒリング等を充填した充填層を設け
るのであるが、その充填層は薄い方が好ましく、塩素ガ
ス中の酸素濃度が例えば1〜3%程度の場合、混合ガス
の滞留時間として3〜10秒程度が好ましい、この充填
層が厚くなると残留エチレンガスが触媒として置換塩素
化反応が起る傾向がある。
In addition, a packed layer filled with Raschig ring etc. is provided between the spaces, but the thinner the packed layer is, the better.When the oxygen concentration in the chlorine gas is, for example, about 1 to 3%, the residence time of the mixed gas is The time is preferably about 3 to 10 seconds. When this packed bed becomes thicker, a substitution chlorination reaction tends to occur using residual ethylene gas as a catalyst.

本発明に於ける塩素吸収容器1に於ける空間部の容積は
ガスの平均滞留時間として3〜20秒、好ましくは5〜
15秒程度の場合が特に好ましい結果を与える。
The volume of the space in the chlorine absorption container 1 in the present invention is 3 to 20 seconds, preferably 5 to 20 seconds as the average residence time of the gas.
A time of about 15 seconds gives particularly favorable results.

本発明に於いて、かヌる塩素吸収容器1から塩素吸収液
を反応器2へ供給するのであるが、その供給方法として
は、反応器2の下段1個所から全量供給するか(例えば
第2図の6−a)若しくは反応器の複数個所から分割し
て供給する(例えば第2図の6−A,6−B,6−c)
In the present invention, the chlorine absorption liquid is supplied from the chlorine absorption container 1 to the reactor 2.As for the supply method, it is possible to supply the entire amount from one lower part of the reactor 2 (for example, from the second 6-a) in the figure or dividedly supplied from multiple locations in the reactor (e.g. 6-A, 6-B, 6-c in Figure 2)
.

塩素吸収容器1で得られる吸収液は、自由に調節された
酸素濃度と供給塩素ガスの殆んど所定量を含む塩素吸収
液であるため、これの反応器2への供給は一個所から導
入することで反応器2中での置換塩素化反応を効率よく
行なわしめることができる。
Since the absorption liquid obtained in the chlorine absorption container 1 is a chlorine absorption liquid containing a freely adjusted oxygen concentration and almost a predetermined amount of supplied chlorine gas, it is supplied to the reactor 2 from one point. By doing so, the substitution chlorination reaction in the reactor 2 can be carried out efficiently.

塩素吸収液を反応器2の複数個所に分割して供給すると
、反応器2での置換塩素化反応を更に効率よく行なうこ
とができ、未反応エチレンを減少せしめることが更に容
易となる。
If the chlorine absorption liquid is dividedly supplied to a plurality of locations in the reactor 2, the substitution chlorination reaction in the reactor 2 can be carried out more efficiently, and it becomes easier to reduce unreacted ethylene.

即ち、反応器の下段から供給された塩素吸収液と反応器
2に供給されるエチレンが反応するが、反応器の中段又
は/及び上段の複数個所から塩素吸収液を供給すれば、
残余のエチレンが高濃度の塩素吸収液と反応し、エチレ
ンを殆んど完全に反応させることができるのである。
That is, the chlorine absorbing liquid supplied from the lower stage of the reactor reacts with the ethylene supplied to the reactor 2, but if the chlorine absorbing liquid is supplied from multiple locations in the middle and/or upper stage of the reactor,
The remaining ethylene reacts with the highly concentrated chlorine absorbing liquid, making it possible to almost completely react the ethylene.

この反応器への塩素吸収液の分割供給は、反応器の2個
所以上、好ましくは3〜5個所程度から供給することが
好ましく、その数は所望の反応に応じて適宜選択すれば
よい。
It is preferable that the chlorine-absorbing liquid is dividedly supplied to the reactor from two or more locations, preferably from about 3 to 5 locations, and the number may be appropriately selected depending on the desired reaction.

そしてその供給割合は、例えば反応器2の下段、中段、
上段の3個所から供給する場合、それぞれの供給比率(
容量)は60:25:15、50:30:20140:
30:30程度が好ましく、又下段と中段(又は上段)
の2個所から供給する場合はその比率(容量)は60:
40程度がよい。
The supply ratio is, for example, the lower stage, the middle stage of the reactor 2,
When supplying from the three locations in the upper row, the respective supply ratios (
Capacity) is 60:25:15, 50:30:20140:
About 30:30 is preferable, and the lower and middle (or upper)
When supplying from two locations, the ratio (capacity) is 60:
About 40 is good.

以上の操作は、塩素吸収容器でのより好ましい操業のた
めに重要なことである。かくして本発明方法によれば、
反応器から排出される排ガス中の塩化水素ガスを有効に
利用し、且つ未反応エチレンを有利に二塩化エタンとし
て回収し、又塩素吸収容器内での爆鳴気の発生を防止す
ると共に、塩素吸収容器内での暴走反応を抑制すること
ができ、更に反応器内での置換塩素化反応を自由に調節
でき、効率よく反応を行なうことができるものである。
The above operations are important for more favorable operation in the chlorine absorption vessel. Thus, according to the method of the invention,
Hydrogen chloride gas in the exhaust gas discharged from the reactor is effectively utilized, unreacted ethylene is advantageously recovered as dichloroethane, and the generation of explosion gas in the chlorine absorption vessel is prevented, and the chlorine Runaway reactions within the absorption vessel can be suppressed, and the substitution chlorination reaction within the reactor can be freely controlled, allowing the reaction to be carried out efficiently.

以下実施例を挙げて本発明を更に具体的に説明する。EXAMPLES The present invention will be described in more detail below with reference to Examples.

実施例 1 第2図に示すように、塔径10礪、高さ9mの塩素吸収
塔に於いて、該塔に塩素ガスの滞留時間3秒の空間部1
5とその空間部に塩素ガス供給管3を有し、且つ塩素ガ
ス供給管3の下部1mの所に排ガス供給管11−b及び
ガスの滞留時間5秒の空間部15−aを有し、両空間部
の間に50儂のラシヒリング充填層13−a並びに他の
部分にラシヒリング充填層13,13−bを有する塩素
吸収塔1を用いた。
Example 1 As shown in Fig. 2, in a chlorine absorption tower with a tower diameter of 10 cm and a height of 9 m, there is a space 1 in which the residence time of chlorine gas is 3 seconds.
5 and a chlorine gas supply pipe 3 in the space thereof, and an exhaust gas supply pipe 11-b and a space 15-a with a gas residence time of 5 seconds at a position 1 m below the chlorine gas supply pipe 3, A chlorine absorption tower 1 having a 50-degree Raschig ring packed bed 13-a between both spaces and Raschig ring packed beds 13 and 13-b in other parts was used.

又塔径8C1L、高さ9mで内部に多孔板を有する反応
塔2を用いた。反応塔2には二塩化エタンと三塩化エタ
ン(1/1容量比)を主成分とする塩素化エタンを充満
させ、650.e/hの割合で塩素吸収塔1に循環させ
た。
In addition, a reaction column 2 having a column diameter of 8C1L, a height of 9m, and a perforated plate inside was used. Reaction tower 2 was filled with chlorinated ethane whose main components were ethane dichloride and ethane trichloride (1/1 volume ratio). It was circulated to the chlorine absorption tower 1 at a rate of e/h.

酸素濃度2.5容量%の塩素ガスを塩素ガス供給管3か
ら19Nm゜/hの割合で塩素吸収塔1の空間部15に
供給した。
Chlorine gas with an oxygen concentration of 2.5% by volume was supplied from the chlorine gas supply pipe 3 to the space 15 of the chlorine absorption tower 1 at a rate of 19 Nm/h.

一方反応塔2からの排ガス、即ちエチレン2.5容量%
を含む塩化水素ガスを排ガス供給管11−bから塩素吸
収塔1の空間部15−aに17Nm3/hで一括供給し
た。この時の塩素吸収塔の上部の温度は40℃、塔底の
温度は60℃、圧力は7.0k9/DQとした。反応塔
2へエチレン供給管4からエチレンを7.1N7rI/
hの割合で、又塩素化エタン供給管5から二塩化エタン
を101/hの割合で供給した。塩素吸収塔1から塩素
吸収液6501/hを塩素吸収液供給管6−A,6−B
,6−cからそれぞれ60%、30%、10%の割合で
分割供給し、120℃の温度、7.3k9/CTiL(
G)の圧力で反応させ、二塩化エタン、三塩化エタン、
四塩化エタン及び五塩化エタンを製造した。この結果、
塩素吸収塔1内の酸素濃度は最高5容量%に留まり、爆
発範囲をはずすことができた。
On the other hand, the exhaust gas from reaction tower 2, i.e. 2.5% by volume of ethylene
Hydrogen chloride gas containing 17 Nm<3>/h was supplied at once to the space 15-a of the chlorine absorption tower 1 from the exhaust gas supply pipe 11-b. At this time, the temperature at the top of the chlorine absorption tower was 40°C, the temperature at the bottom was 60°C, and the pressure was 7.0k9/DQ. Ethylene was supplied from the ethylene supply pipe 4 to the reaction tower 2 at 7.1N7rI/
dichloride ethane was supplied from the chlorinated ethane supply pipe 5 at a rate of 101/h. The chlorine absorption liquid 6501/h is transferred from the chlorine absorption tower 1 to the chlorine absorption liquid supply pipes 6-A and 6-B.
, 6-c at a ratio of 60%, 30%, and 10%, respectively, at a temperature of 120°C, 7.3k9/CTiL (
G) React at the pressure of ethane dichloride, ethane trichloride,
Ethane tetrachloride and ethane pentachloride were produced. As a result,
The oxygen concentration in the chlorine absorption tower 1 remained at a maximum of 5% by volume, making it possible to stay out of the explosion range.

又反応塔2の出口排ガス中のエチレン濃度は2.5%で
あつた。更に塩素吸収塔1に於ける反応熱の全反応に対
する割合は1.3%で該吸収塔での置換塩素化反応は殆
んど起らず、暴走反応を完全に抑制することができ、又
反応塔では効率よく反応を行なうことができた。
The ethylene concentration in the exhaust gas at the outlet of reaction tower 2 was 2.5%. Furthermore, the ratio of the reaction heat in the chlorine absorption tower 1 to the total reaction is 1.3%, so the displacement chlorination reaction hardly occurs in the absorption tower, and runaway reactions can be completely suppressed. The reaction could be carried out efficiently in the reaction tower.

実施例 2 実施例1と同じ塩素吸収塔及び反応塔を用いるが、塩素
吸収塔1の空間部15は滞留時間5秒の空間部とし、反
応塔2からの排ガス供給管11−aを更に設け、且つ反
応塔2への塩素吸収液の供給は塩素吸収液供給管6−a
から一度に供給するようにした。
Example 2 The same chlorine absorption tower and reaction tower as in Example 1 were used, but the space 15 of the chlorine absorption tower 1 was a space with a residence time of 5 seconds, and an exhaust gas supply pipe 11-a from the reaction tower 2 was further provided. , and the chlorine absorption liquid is supplied to the reaction tower 2 through the chlorine absorption liquid supply pipe 6-a.
I started supplying it all at once.

反応塔2には二塩化エタンと三塩化エタン(1/1容量
比)を主成分とする塩素化エタンを充満させ、5101
/hの割合で塩素吸収塔1に循環させた。酸素濃度2.
5容量%の塩素ガスを塩素ガス供給管3から16Nm゛
/hの割合で塩素吸収塔1の空間部15に供給した。
Reaction tower 2 was filled with chlorinated ethane whose main components were ethane dichloride and ethane trichloride (1/1 volume ratio), and 5101
It was circulated to the chlorine absorption tower 1 at a rate of /h. Oxygen concentration 2.
Chlorine gas of 5% by volume was supplied from the chlorine gas supply pipe 3 to the space 15 of the chlorine absorption tower 1 at a rate of 16 Nm/h.

一方、反応塔2からの排ガス、即ちエチレン2.5容量
%を含む塩化水素ガスを排ガス供給管11−aから塩素
吸収塔1の空間部15に4Nw1/h、排ガス供給管1
1−bから該塔1の空間部15−aに10Nm3/hの
割合で供給した。
On the other hand, the exhaust gas from the reaction tower 2, that is, hydrogen chloride gas containing 2.5% by volume of ethylene, is transferred from the exhaust gas supply pipe 11-a to the space 15 of the chlorine absorption tower 1 at 4Nw1/h.
1-b to the space 15-a of the column 1 at a rate of 10 Nm3/h.

この時の塩素吸収塔の上部の温度は40℃、塔底の温度
は60゜C1圧力は7.0kg/d(G)とした。反応
塔2へエチレン供給管4からエチレンを6.3m3/h
の割合で、又塩素化エタン供給管5から二塩化エタンを
51/hの割合で供給した。塩素吸収塔1から塩素吸収
液5101/hを塩素吸収液供給管6−aから一度に供
給し、120℃の温度、7.2k9/d(資)の圧力で
反応させ、二塩化エタン、三塩化エタン、四塩化エタン
及び五塩化エタンを製造した。この結果、塩素吸収塔1
内の酸素濃度は4%に留まり、そのガスを採取し、常法
により爆鳴気試験を行つたが爆発することなく安全であ
つた。
At this time, the temperature at the top of the chlorine absorption tower was 40°C, the temperature at the bottom was 60°C, and the pressure at 7.0 kg/d (G). 6.3 m3/h of ethylene from the ethylene supply pipe 4 to the reaction tower 2
Further, dichloride ethane was supplied from the chlorinated ethane supply pipe 5 at a rate of 51/h. The chlorine absorption liquid 5101/h from the chlorine absorption tower 1 is supplied at once from the chlorine absorption liquid supply pipe 6-a, and is reacted at a temperature of 120°C and a pressure of 7.2k9/d (supply). Ethane chloride, ethane tetrachloride and ethane pentachloride were produced. As a result, chlorine absorption tower 1
The oxygen concentration in the tank remained at 4%, and the gas was sampled and subjected to detonation tests using standard methods, but it was found to be safe and did not explode.

更に塩素吸収塔1に於ける反応熱の全反応に対する割合
は0.3%で、該吸収塔での置換塩素化反応は殆んど起
らず、暴走反応を完全に抑制することができ、又反応塔
では効率よく反応を行なうことができた。
Furthermore, the ratio of the reaction heat in the chlorine absorption tower 1 to the total reaction is 0.3%, so that the displacement chlorination reaction hardly occurs in the absorption tower, and runaway reactions can be completely suppressed. In addition, the reaction could be carried out efficiently in the reaction tower.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従事の多塩素化エタンの製造の工程図であり
、第2図は本発明の多塩素化エタンの製造の一例を示す
工程図である。 第1図に於いて、101:塩素吸収容器、102:反応
器、103:塩素ガス供給管、104:エチレン供給管
、105:塩素化エタン供給管、106:塩素吸収液供
給管、107:反応生成液溢流管、108:反応生成液
供給管、109:製品取出管、110:冷却器、111
:排ガス供給管、112:排ガス排出管、113:充填
層、114:多孔板、である。
FIG. 1 is a process diagram of the production of polychlorinated ethane according to the present invention, and FIG. 2 is a process diagram showing an example of the production of polychlorinated ethane according to the present invention. In Figure 1, 101: chlorine absorption container, 102: reactor, 103: chlorine gas supply pipe, 104: ethylene supply pipe, 105: chlorinated ethane supply pipe, 106: chlorine absorption liquid supply pipe, 107: reaction Product liquid overflow pipe, 108: Reaction product liquid supply pipe, 109: Product take-out pipe, 110: Cooler, 111
: Exhaust gas supply pipe, 112: Exhaust gas discharge pipe, 113: Filled bed, 114: Perforated plate.

Claims (1)

【特許請求の範囲】[Claims] 1 エチレンと塩素又はエチレンと塩素化エタン又は/
及び塩素化エチレンと塩素から多塩素化エタンを液相で
製造するに際し、充填材の充填によつて隔離形成された
上部空間部と下部空間部とを内部に有する塩素吸収容器
を反応器外に設け、その上部空間部に塩素を供結し、下
部空間部又はこれと上部空間部とに反応器から排出され
る反応排ガスを供給すると共に、該塩素吸収容器に反応
器からの反応生成液を供給し、得られる塩素吸収液を反
応器に導入して反応に供することを特徴とする多塩素化
エタンの製造方法。
1 Ethylene and chlorine or ethylene and chlorinated ethane or/
When producing polychlorinated ethane from chlorinated ethylene and chlorine in a liquid phase, a chlorine absorption container having an upper space and a lower space inside separated by filling with a filler is placed outside the reactor. chlorine is supplied to the upper space, reaction exhaust gas discharged from the reactor is supplied to the lower space or this and the upper space, and the reaction product liquid from the reactor is supplied to the chlorine absorption container. A method for producing polychlorinated ethane, which comprises supplying the chlorine-absorbing liquid and introducing the resulting chlorine-absorbing liquid into a reactor for reaction.
JP10754378A 1978-09-04 1978-09-04 Method for producing polychlorinated ethane Expired JPS5929169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10754378A JPS5929169B2 (en) 1978-09-04 1978-09-04 Method for producing polychlorinated ethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10754378A JPS5929169B2 (en) 1978-09-04 1978-09-04 Method for producing polychlorinated ethane

Publications (2)

Publication Number Publication Date
JPS5535010A JPS5535010A (en) 1980-03-11
JPS5929169B2 true JPS5929169B2 (en) 1984-07-18

Family

ID=14461845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10754378A Expired JPS5929169B2 (en) 1978-09-04 1978-09-04 Method for producing polychlorinated ethane

Country Status (1)

Country Link
JP (1) JPS5929169B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213149U (en) * 1985-07-10 1987-01-27

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2526788A1 (en) * 1982-05-13 1983-11-18 Ppg Industries Inc PROCESS FOR PURIFYING CRUDE 1,2-DICHLORETHANE
JPH04119007A (en) * 1990-09-10 1992-04-20 Mitsubishi Electric Corp Signal processing circuit
JP4964717B2 (en) * 2007-09-11 2012-07-04 株式会社クレハ Method and apparatus for producing 1,1,2-trichloroethane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213149U (en) * 1985-07-10 1987-01-27

Also Published As

Publication number Publication date
JPS5535010A (en) 1980-03-11

Similar Documents

Publication Publication Date Title
JPH10259003A (en) Production of chlorine dioxide
US7091391B2 (en) Methane to olefins
EP0319153A1 (en) Preparation of 3,3,3-trifluoropropene-1
JP2009001459A (en) Method of producing hydrogen chloride and method of producing chlorine
JPH08157206A (en) Production of phosgene
US5458858A (en) Integrated procedure for high yield production of chlorine dioxide
JP4785515B2 (en) Chlorine production method
US3475504A (en) Process for the chlorination of olefinic hydrocarbons and ethylenically unsaturated chlorohydrocarbons
CN101070140A (en) Method for producing chlorine by coupling hydrogen chloride oxidation and dehydration
US3320030A (en) Production of sulfuryl fluoride
JPS5929169B2 (en) Method for producing polychlorinated ethane
US3607027A (en) Process for preparing chlorine dioxide
EP2062852B1 (en) Start-up method
US3291846A (en) Process for producing vinyl chloride
JPH0776081B2 (en) Chlorine dioxide production method
CN107540514A (en) A kind of preparation method of perfluoroethane
CN114225855A (en) Vinyl sulfate synthesis device and method
US3950500A (en) Method of producing chlorine dioxide
EP0131378B2 (en) Process for the production of chlorine dioxide
JPS61163103A (en) Method and device for manufacturing hypochlorous acid
JP2775364B2 (en) Hydrochloric acid synthesis equipment
JPH0420845B2 (en)
US3330877A (en) Process for the chlorination of unsaturated hydrocarbons and unsaturated chlorohydrocarbons
US4346047A (en) Production of phosgene
US2868621A (en) Method of making metal halides