JPS5929081A - Treatment of waste water containing humic acid and fulvic acid - Google Patents

Treatment of waste water containing humic acid and fulvic acid

Info

Publication number
JPS5929081A
JPS5929081A JP13728982A JP13728982A JPS5929081A JP S5929081 A JPS5929081 A JP S5929081A JP 13728982 A JP13728982 A JP 13728982A JP 13728982 A JP13728982 A JP 13728982A JP S5929081 A JPS5929081 A JP S5929081A
Authority
JP
Japan
Prior art keywords
waste water
water
acid
humic acid
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13728982A
Other languages
Japanese (ja)
Inventor
Masamitsu Ito
真実 伊藤
Hironori Nakamura
裕紀 中村
Tatsuo Sumino
立夫 角野
Moriyuki Sumiyoshi
住吉 盛幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP13728982A priority Critical patent/JPS5929081A/en
Publication of JPS5929081A publication Critical patent/JPS5929081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To reduce effectively COD, by irradiating waste water contg. humic acid and fulvic acid with ionizing radiation under nitrogen-saturated conditions, adding an iron salt and H2O2, and adjusting pH to flocculate an iron component as iron hydroxide floc. CONSTITUTION:Gaseous N2 is diffused from a diffusion pipe 3 from an N2 feed pipe 2 into the waste water flowing 11 into a waste water tank 1 to form an N2 saturated state by aeration of the waste water. This water is introduced into a reactor 5, and irradiated with ionizing radiation, such as gamma-rays emitted by radioactive isotopes, generated from an electron beam accelerator 4. The irradiated waste water is introduced into an oxidation vessel, H2O2 and an iron salt, such as ferrous sulfate, are added 8, 9, and soluble polymer oxides are decomposed by oxidation in the waste water. An alkali soln. is added 10 to said decomposed water to adjust pH to >=4, the water is stored in a settling tank 7, pollutants are allowed to flocculate as iron hydroxide floc, and discharged 12, and the supernatant is allowed to flow out as the treated waste water acceptable by the water quality standard.

Description

【発明の詳細な説明】 法に関し,特にCODを低Fせしめる新規な廃水処理方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method, and particularly to a novel wastewater treatment method that reduces COD to a low F.

フミン酸やフルボ酸は広く廃水中に含まれ,特に都市ご
み浸出液や下水汚泥の湿式酸化分離液中海は多酸に含ま
れそおり,色度やCODを高くする原因となっている。
Humic acid and fulvic acid are widely contained in wastewater, and in particular, municipal waste leachate and sewage sludge wet oxidation separation liquid Nakaumi tend to be contained in polyacids, causing high chromaticity and COD.

これらのt吻質は自浄作用では分解出来ず,また廃水処
理に広く行われている生物処理によっても分解出来ない
ことから,環境汚染上重要な問題になってきている。そ
こで各種の廃水処理方法が開発されているが,いずれも
汚濁負荷量の高い廃水の処理のためには大規模な設備や
膨大なラニングコストがかかるばかりでなく。
These truncates cannot be decomposed by self-purification, nor can they be decomposed by biological treatment, which is widely used in wastewater treatment, so they have become an important problem in terms of environmental pollution. Various wastewater treatment methods have been developed to address this issue, but all of them not only require large-scale equipment and enormous running costs to treat wastewater with a high pollution load.

十分な処理効果が得られていない。1クリえば代表的処
理方法である活性炭吸着法では,フミン酸やフルボ酸が
有機高分子fヒ合物であるために活性炭中の細孔への吸
着、拡散が著しく不良であり、捷た他の代表的処理方法
であるオゾン酸化法では酸化外1’+’iにより一部C
ODMル を低下させることが出来るが1選択性がある
ためその効果は低く、又酸化分解の過稈でに:成した低
分子化合物は生物易分解性物質に変化してBODを増大
させるなど両処理方法共欠売をfT してぃて実用−に
大きな間順になっている。これらの処理方法に比べ凝喝
沈澱処理方法は、フミン酸やフルボ酸の物理化学的特注
を利殖して分離する有′切な方法であるが、その有効訃
は「水のようにフミン酸やフルボ酸の含有量が低い重合
に限られ、fダ濁負IWj量の高い廃水でI′1COD
を低下せしめる効果は急激に減じてし1う欠点があった
Sufficient treatment effect is not obtained. In the activated carbon adsorption method, which is a typical treatment method, since humic acid and fulvic acid are organic polymer f-hybrid compounds, adsorption and diffusion into the pores in the activated carbon are extremely poor, resulting in breakage and other problems. In the ozone oxidation method, which is a typical treatment method for
Although it is possible to reduce ODM, the effect is low due to monoselectivity, and low-molecular-weight compounds formed by excessive oxidative decomposition change into easily biodegradable substances and increase BOD. The treatment method is commonly used for fT, and it is in the order of practical use. Compared to these treatment methods, the coagulation-precipitation treatment method is an effective method for harvesting and separating the physicochemical customization of humic acid and fulvic acid. Limited to polymerization with low acid content, I'1 COD in wastewater with high f da turbidity negative IWj content.
The disadvantage was that the effect of reducing the

本発明の目的は、上記〔疋来技術の欠点を除去し。The purpose of the present invention is to eliminate the above-mentioned drawbacks of the conventional technology.

フミノ酸、フルボ酸による汚濁自荷量の高い廃水の重合
でもCODを効果的に低下させることができる廃水処理
方法を提供することにある。
It is an object of the present invention to provide a wastewater treatment method that can effectively reduce COD even in the polymerization of wastewater with a high pollutant content due to humino acids and fulvic acids.

本発明者らは、汚濁負荷量の高い廃水に窒素飽和下で電
離性放射線を照射することにより、溶存有機物が高分子
化されることを見出し2 さらにこの生成した高分子物
質を効果的に除去する方法について研死を重ねた結唄、
この高分子物質を過酸fヒ水素と4塩とを用いて処理し
1次いでpf■調節することにより、高効率で凝集分離
を行なうことができることを見出し9本発明に到達し7
た。
The present inventors discovered that dissolved organic matter was polymerized by irradiating wastewater with a high pollution load with ionizing radiation under nitrogen saturation.2 Furthermore, the generated polymeric substances were effectively removed. Yuuta, who has spent a lot of time researching how to
It was discovered that coagulation and separation could be carried out with high efficiency by treating this polymeric substance with peracid f arsenic and tetrasalt and then adjusting pf. 9 Achieving the present invention 7
Ta.

すなわち1本発明はフミン酸、フルボ酸含有廃水を降水
処理するに際し、窒素飽和条件下で電離成分を水酸化秩
ブロックとして凝集分離させることを特徴とするもので
ある。
Namely, the present invention is characterized in that, when wastewater containing humic acid and fulvic acid is subjected to precipitation treatment, ionized components are coagulated and separated as hydroxide blocks under nitrogen-saturated conditions.

以F1図…1を用いて本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using FIG.

141図は、フミン酸、フルボ酸を含有する下水汚泥湿
式酸化分離液を廃水として用い、これを窒素飽和条P′
l:(曲線イ)と酸素飽和条件(曲線口)との各条件下
で50Co  をb(射した場合の線量に対する廃液の
CIJ DM7L  の変rヒを示したものである。第
1図から酸素1唱和条件下では放射線による水、酸素の
分解が辱こってラジカルが生成し、  COI)Mnが
崖・シに減少するのに7112.窒素飽和条件下ではC
0Dyn、 iはほぼ−・宝であることが分る。そこで
第1(ツ1の?S素砲和条注Fで10.9 M rod
照射した場合の啼液の汚濁物賓の分子量分イfiの変化
を、カラムトシてセファデックスG 25(17mm1
1.X 370=nm H)を1史甲したケルクロマト
グラフィで求めた浩采(曲線ハ)を未照射の場合のそれ
(曲細二)と削出して第2図に示す。第2図の曲線ハと
曲線変移しているのが4められ、これより4素中和下で
電離性放射線を照射することにより、廃液中の溶存有機
′吻質が高分子化されることが明らかである。」、記現
象は放射線照射によって溶存有機物のベンセン環の開裂
や結合の切断が起こり、鄭素飽和条件下であれば酸化に
よる低分子化が題行するのにiJL、窒素飽和条件下に
おいては重合により高分子fヒが起こるためである。
Figure 141 shows that a sewage sludge wet oxidation separation liquid containing humic acid and fulvic acid is used as wastewater, and this is subjected to a nitrogen-saturated condition P'.
Figure 1 shows the change in CIJ DM7L of the waste liquid with respect to the dose when 50Co is irradiated with b (curve A) and oxygen saturation conditions (curve inlet). Under one chorus condition, the decomposition of water and oxygen by radiation is humiliated and radicals are generated, and COI)Mn decreases to a cliff/shi.7112. Under nitrogen saturated conditions, C
It can be seen that 0Dyn, i is almost a treasure. Therefore, the first (tsu1?S gun Wajo note F is 10.9 M rod
The change in the molecular weight of the contaminated liquid when irradiated was measured using Sephadex G 25 (17 mm 1
1. The curve (curve C) determined by Kernel chromatography using X370=nm H) is shown in FIG. It can be seen that the curve 4 shifts from the curve C in Figure 2, which indicates that the dissolved organic proboscis in the waste liquid is polymerized by irradiation with ionizing radiation under tetranuclear neutralization. is clear. '', the phenomenon described is that radiation irradiation causes the cleavage of benzene rings and bonds in dissolved organic matter, and under nitrogen-saturated conditions, the molecules are reduced by oxidation, but under nitrogen-saturated conditions, polymerization occurs. This is because polymer f-hi occurs.

次に第」図に示した各線量の放射@照射廃液を試料とし
て用い、従来法に従いこれに横1(FpCl−3)によ
る凝集沈殿を行って沈殿物を除去した処理廃液のCOD
Mル低丁状態を第3図に示す。第3図中の各曲線毎の試
料に照射されていた放射線量は。
Next, using the radiation @ irradiation waste liquid of each dose shown in Figure 1 as a sample, the COD of the treated waste liquid was subjected to coagulation sedimentation with horizontal 1 (FpCl-3) to remove the precipitate according to the conventional method.
FIG. 3 shows the M-le low state. What is the radiation dose irradiated to the sample for each curve in Figure 3?

ホ:未照り、↑ −\: :”、、2 tVI rad
、  ) : 7.81VIrad、チ: J、 O(
J M radである。この結果から、試作[である廃
液が放射線未照射(曲線ホ)である場合に比べ、放射線
を照射した場合、その線量が増加するに従い、 、Fg
CA3による処理廃液のC0I)+、ut の低下度合
そのものは未だ1−分ではない。
Ho: Unlit, ↑ -\: :”,, 2 tVI rad
, ): 7.81 VIrad, Chi: J, O(
JM rad. From this result, when the waste liquid in the prototype [was irradiated with radiation compared to when it was not irradiated (curve E), as the dose increased, , Fg
The degree of decrease in C0I)+, ut of the treated waste liquid by CA3 is still not 1 min.

次に第1図の場合とlrj日壬にし2て得た!iシ射線
隈10、7 Mradの処理廃液と未照射廃液とに対し
Next, in the case of Figure 1 and lrj Hijimi, we obtained 2! For treated waste liquid and unirradiated waste liquid of 10,7 Mrad.

鉄塩(Fe5O4)と過酸化水素による酸化・凝集処理
を行った場合のCOD+An の低下因襲を第1表に示
す。
Table 1 shows the decrease in COD+An when oxidation/coagulation treatment with iron salt (Fe5O4) and hydrogen peroxide is performed.

第    1    表 =:’4p FcSO4ばFemW、 H2O,2は有
効酸素(H202中o)逆算第1表の結束から、同じ鉄
塩と過酸化水素に−よる酸ずヒ・イ疑1イモ処理による
場合でも、予め放射線を照射しておく場合は照射しない
場合に比べてCODeinは太幅に低−Fすることが分
る。また第3図の曲線チ(照射線量10.9 M ra
d )と第1表の照射線量J、 0. ’7 Mra、
dの場合を比較すると、照射線量はほぼ同等であるにも
拘らず、従来法にょる鉄塩のみによる凝集沈殿たけでは
CODM+L は390〜/lまでしか低下しないのに
比べ、鉄塩と過酸rヒ水素とを使用して酸化・凝集沈殿
処理することにより98mグ/l−4でCODM n 
 を減少させることが出来。
Table 1 =: '4p FcSO4 is FemW, H2O,2 is available oxygen (O in H202) Back calculation From the combination in Table 1, by acid treatment with the same iron salt and hydrogen peroxide. It can be seen that even in the case where radiation is irradiated in advance, CODein becomes wider and lower in -F than when not irradiated. In addition, the curve Q in Figure 3 (irradiation dose 10.9 M ra
d) and the irradiation dose J in Table 1, 0. '7 Mra,
Comparing case d, even though the irradiation dose is almost the same, CODM+L only decreases to 390~/l with the conventional method of coagulation and precipitation using only iron salts, whereas with iron salts and peracid CODM n at 98 mg/l-4 by oxidation and coagulation-precipitation treatment using r arsenic.
can be reduced.

その効果に大差があることが分る。It turns out that there is a big difference in the effects.

次に本発明で使用する諸要素を説明する。Next, various elements used in the present invention will be explained.

電離性放射線としては、アルファ線1重陽子線。Ionizing radiation includes alpha rays and single deuteron rays.

ベータ線、電子線、中性子線、ガンマ線のいずれを用い
ても良いが、効果や照射効率を考慮し9通常は放射性同
位元素からのノjンマ線、又は電子線加速器からの電、
子線を照射するのがOT寸しい。
Any of beta rays, electron rays, neutron rays, and gamma rays may be used, but in consideration of effectiveness and irradiation efficiency, normal rays from radioactive isotopes or electrons from electron beam accelerators are usually used.
Irradiating the sub-rays is too OT.

窒素は純粋である必要はなく、市販品程度で充麿゛であ
る。
Nitrogen does not need to be pure; commercially available nitrogen is sufficient.

本発明において、鉄塩としては硫酸第1鉄や塩化第1′
法などのFe (II)  イオンを有する化合′吻。
In the present invention, iron salts include ferrous sulfate and ferrous chloride.
Compounds with Fe(II) ions such as

硫酸第2鉄や塩化第2鉄などのF’、! (III) 
 イオンを有する化合物が用いられ、7時に硫酸第1秩
が高い酸化触媒能の点で望°ましく、低廉な価格の点で
も有利である。また硝酸第1鉄や硝酸第2秩などの硝酸
塩も十分な酸化触媒作用を有していて使用することがで
きるが、帛栄善化などの点で使用上留意する必架がある
。これらの鉄塩は同形物のまま。
F' such as ferric sulfate and ferric chloride,! (III)
A compound having ions is used, and sulfuric acid is preferred in terms of its high oxidation catalytic ability and is also advantageous in terms of its low price. In addition, nitrates such as ferrous nitrate and ferric nitrate have sufficient oxidation catalytic activity and can be used, but there are certain considerations that must be taken when using them in terms of improved performance. These iron salts remain isomorphic.

または水t74液として廃水へ4υ口することができる
Alternatively, it can be discharged into waste water as a water t74 liquid.

鉄塩の添Un量は多缶になる程C0I)や色兜を低下さ
せることができるが、一方ではスラノ/:lも1曽尺す
るため+ ’l’l 1嘱′F’e2+ とじて]、 
O〜1.5001q/1の範囲で添ノJI+される。又
堝酸化水素の添加量は通當は廃水中のCODN4n K
 TJ L過酸化水素中の有効酸素IIi!!算で01
〜2倍の範囲で添加される。これら快を席と過酸化水素
との添加量は一般には上記範囲内で被酸rヒ゛吻背の挿
項、濃度1反り時間などによって適宜・ぺ定される。
As the number of cans increases, the amount of iron salt added can lower C0I) and colored helmets, but on the other hand, since Surano/:l also increases by 1 scale, + 'l'l 1嘱'F'e2+ ],
It is added JI+ in the range of O to 1.5001q/1. The amount of hydrogen oxide added is generally CODN4nK in wastewater.
TJ L Effective oxygen in hydrogen peroxide IIi! ! Calculation: 01
It is added in a range of ~2 times. The amount of hydrogen peroxide to be added is generally determined as appropriate within the above-mentioned range based on the interpolation of the oxidized r, the proboscis, the concentration per warping time, etc.

反応時間は廃水中の被酸化物質の種類、儂妾。The reaction time depends on the type of oxidized substance in the wastewater.

反応温度、横置看、過酸化水素帛などにより異なるが、
 11fl 、嘱′、常温で、″1分〜24時間であり
、この間に反1芯は完結する。
It varies depending on the reaction temperature, horizontal orientation, hydrogen peroxide cloth, etc.
It takes 1 minute to 24 hours at 11 fl liters, 100 ml, and room temperature, and one core is completed during this time.

酸化処理を終了した酸化処理廃水の〃Hを調節するため
に使用するアルカリ剤としては、アルカリ性を呈するも
のであれば良く9例えば苛叶ノータ、苛性カリ、消石灰
、生石灰などいずれもよい。
The alkaline agent used to adjust the 〃H of the oxidized wastewater after oxidation treatment may be any alkaline agent, such as caustic powder, caustic potash, slaked lime, quicklime, etc.

次に本発明を実施するのに好適な装置系統の概略を第4
図に示す。第4図において、廃水タンク■には廃水が送
水管11から流5人し、一方、窒素供給管2からは窒素
カスが散気管;3を通して廃水中に散気され、廃水を曝
気して窒素飽和状態にする。窒素飽和状態となった廃液
は反応器15内に導入され、上方の電子線加速器4から
発生する電離性放射線が照射される。次に放射線を照射
された廃液は、酸化槽6に受は入れられ、これに過酸・
化水素注入管8と鉄塩投入管9とからそれぞれ薬剤が添
加され、廃液中の高分子化された溶存有機′吻を酸化分
解する。該酸化槽6の排液流路にはアル2ノリ液注入管
]0が役けられ、酸化分解後の廃液にアルカリ液がpH
4以上の沈1i−’ffiに適切なpFIになるように
逐次注入される。pH調節後の廃水は沈殿槽7に貯留さ
れ、ここで汚濁物質を水酸化鉄ブロックとして沈殿させ
て排泥管12から排出し。
Next, the outline of the equipment system suitable for carrying out the present invention will be explained in the fourth section.
As shown in the figure. In Figure 4, wastewater flows into the wastewater tank ■ from the water supply pipe 11, while nitrogen sludge is diffused into the wastewater from the nitrogen supply pipe 2 through the aeration pipe 3, which aerates the wastewater and nitrogenizes it. Bring to saturation. The nitrogen-saturated waste liquid is introduced into the reactor 15 and irradiated with ionizing radiation generated from the electron beam accelerator 4 above. Next, the irradiated waste liquid is received in the oxidation tank 6, which is filled with peracid and
Chemicals are added from the hydrogen chloride injection pipe 8 and the iron salt injection pipe 9, respectively, to oxidize and decompose the polymerized dissolved organic compounds in the waste liquid. An alkaline liquid injection pipe] 0 is used in the drainage flow path of the oxidation tank 6, and the alkaline liquid adjusts the pH of the waste liquid after oxidation and decomposition.
Four or more precipitates 1i-'ffi are injected sequentially to the appropriate pFI. The pH-adjusted wastewater is stored in a sedimentation tank 7, where the pollutants are precipitated as iron hydroxide blocks and discharged from the sludge pipe 12.

上澄液は廃水処理されたξ置市水質の廃水として流出さ
せる。
The supernatant liquid will be discharged as treated wastewater.

本発明によれば、自a)作用では分解できないフミン酸
やフルボ酸を旨い汚濁負荷量で含有する廃水を極めて簡
雫な操作で効率よく処理して良好な処理水とし−Cl1
tJ流することができる。また処理コストも極めて安価
である。
According to the present invention, a) wastewater containing humic acid and fulvic acid, which cannot be decomposed by natural action, in a high pollutant load is efficiently treated with extremely simple operations to produce good treated water - Cl1
tJ can flow. Furthermore, the processing cost is extremely low.

しJ下1本発明を実施例により具体的に説明する。The present invention will be explained in more detail with reference to Examples.

実)A、1列   4 [水汚泥の湿式酸化分離液を原廃水として、先ずこれを
生物処理により凝集沈殿せしめて沈殿物を分離し、た後
、窒素で曝気で窒素飽和状態と(7゜次いて″Cv  
を線源として電離開放射線を0.5 Mrqd 7時間
の線計率”7’ 5.0 M rad If!射した。
Actual) A, row 1 4 [Using the wet oxidation separated liquid of water sludge as raw wastewater, it was first coagulated and precipitated by biological treatment to separate the precipitate, and then aerated with nitrogen to bring it to a nitrogen saturated state (7° Then ``Cv
Ionizing open radiation was emitted at a line rate of 7' 5.0 Mrad If! for 7 hours using a radiation source of 0.5 Mrqd.

次にA酸fヒ水素を有効酸素換算で1.50 mq /
 tと、硫4′第1.T+をFl!2+ とじてsao
m17tとをそれぞれ添)ノf+ して約10分間酸化
した後、苛訃ノータによりpHを4.5〜5の範囲に調
整し、水酸fヒ第2鉄ブロックを沈殿分離した。各段階
及び婦略の放流水のCOl)+A11  を第2表に示
す。
Next, add A acid f arsenic to 1.50 mq/in terms of effective oxygen.
t and sulfur 4' 1st. Fl T+! 2+ close sao
After oxidizing for about 10 minutes, the pH was adjusted to a range of 4.5 to 5 using a caustic heater, and the ferric hydroxide block was separated by precipitation. Table 2 shows the CO1+A11 of the effluent water at each stage and stage.

実Mii l+1  2 都市ごみの熱分解撥水を原廃水として実施例1と同様に
廃水処理した。1目し、放射線lは2.0 +VIrn
d 、過酸化水素の冷加量は有効酸素換算で20’ng
/ t 、 fig第1秩ノ添加量ばFe”として10
0mq7tであった。結果を第2表に示す。
Wastewater was treated in the same manner as in Example 1 using the pyrolyzed water repellent of Mii l+1 2 municipal waste as raw wastewater. 1 eye, radiation l is 2.0 +VIrn
d. The amount of hydrogen peroxide cooled is 20'ng in terms of effective oxygen.
/t, fig 1st addition amount is 10 as “Fe”
It was 0mq7t. The results are shown in Table 2.

実施例 3 都市ごみ浸出液を凝集沈殿処理水を原廃水と(て実施例
1と同様に廃水処理した。但し、放射i惜は3.0 M
 rad 、過酸化水素の添加量は有効酸[換算で10
0mg/l、(+R酸第1秩の添υ11量はFe2とし
て300m?/lであった。結果を第2表にンす。
Example 3 Wastewater was treated in the same manner as in Example 1 by coagulating and precipitating the municipal waste leachate and treating the treated water with raw wastewater. However, the radiation concentration was 3.0 M.
rad, the amount of hydrogen peroxide added is equivalent to effective acid [10
The amount of added υ11 of the +R acid Daichichichichi was 300 m?/l as Fe2. The results are shown in Table 2.

第   2   表 〔CODMn:mg/l * 原廃水を4倍希釈したもの 第2表から分るように、放射線処理の段階で(COI)
Mn(d冶んど変化せず却って微増しているこれに過酸
化水素と鉄塩とによる酸化とさらにpfl調整による水
酸化鉄ブロックの化1股除去とを組み介わすることによ
り、CODMn を顕著に低下させることができる。
Table 2 [CODMn: mg/l *4-fold dilution of raw wastewater As can be seen from Table 2, at the stage of radiation treatment (COI)
By combining oxidation with hydrogen peroxide and iron salt and removal of the iron hydroxide block by adjusting pfl, CODMn (which does not change over time but increases slightly) can be reduced. can be significantly reduced.

4、 t’21 triの簡単な説明 第1図シま廃水の窒素飽和条件と酸素飽和条件との各集
注ドにおける放射線照射によるC0Dun、低下を比較
するグラフ、第2図は窒素飽和条件下での放射線照射に
よる溶存有機物の分子風分布の変イ)を示す図、第3図
は・疑集沈殿の前処理としての恢射線照射の有無および
線量の効果を示すグラフ。
4. Brief explanation of t'21 tri Figure 1 is a graph comparing the decrease in C0Dun due to radiation irradiation under nitrogen-saturated conditions and oxygen-saturated conditions for wastewater. Figure 2 is a graph comparing the decrease in C0Dun due to radiation irradiation under nitrogen-saturated conditions and oxygen-saturated conditions. Fig. 3 is a graph showing the effects of radiation exposure and dose as a pretreatment for collective precipitation.

第4図は本発明方法を実姉する装置系統の慨略図である
FIG. 4 is a schematic diagram of a system of equipment implementing the method of the present invention.

] 廃水タンク    2−窒素U(給管3 散気管 
     4 電子線加i末器5 反応器      
6−酸化槽 7・沈殿槽      8・過酸化水素注入管9 鉄塩
投入管   10・アルカリ液注入管11 ・送水管 
    12・・排泥管。
] Wastewater tank 2-Nitrogen U (supply pipe 3 aeration pipe
4 Electron beam adder 5 Reactor
6-Oxidation tank 7・Sedimentation tank 8・Hydrogen peroxide injection pipe 9 Iron salt injection pipe 10・Alkali solution injection pipe 11 ・Water pipe
12...Sludge drainage pipe.

第1図 0      10     20 24線量(M r
ad ) 第2図 ボ’I工+Lンク゛リコーIL相当令子量(−)イ’i
   n で1量 (m!) 第3図 第4図 425
Figure 1 0 10 20 24 dose (M r
ad ) Figure 2 Bo' I work + L link Ricoh IL equivalent weight (-) I'i
1 quantity in n (m!) Figure 3 Figure 4 425

Claims (1)

【特許請求の範囲】 (1)  フミン酸、フルボ酸含有廃水を廃水処理する
IC際し1.窒素飽和条件下で電離性放射線を照射した
後、横置と過酸rヒ水素とを添加して酸化分解し1次い
でpHを4以上に調整して峡+J’i分を水酸化鉄ブロ
ックとして凝集分離させることを特徴とするフミン酸、
フルボ酸含有廃水の処理方法。 +21  c!y訂請求の範囲第1頃において、u;嘆
は(随−第] r′I6であることを特徴とするフミン
酸。 フルボ酸含有廃水の処理方法。 (3)  特許請求の・!α囲第1項4たけ第2項にお
いて、横置の添加者はhs、2+ とじてl O〜1.
500my / 、l−であるフミン酸、フルボ酸含有
廃水の処理方法。 (・l) 侍へ′1請求の範囲第1項において、過酸f
ヒ水素の添加lは、廃水中のCI〕DM+L  に刑し
過酸化水素中の有効酸素換算で01〜2倍であるフミン
酸、フルボ含有廃水の処理方法。
[Scope of Claims] (1) When using an IC for treating wastewater containing humic acid and fulvic acid, 1. After being irradiated with ionizing radiation under nitrogen-saturated conditions, it was placed horizontally and oxidized and decomposed by adding arsenic peroxide, then the pH was adjusted to 4 or more, and the +J'i fraction was used as an iron hydroxide block. Humic acid characterized by coagulation and separation,
A method for treating wastewater containing fulvic acid. +21 c! Humic acid characterized in that in the first part of the claim, u; In the first term 4 and the second term, the horizontal additive is hs, 2+ and l O~1.
A method for treating wastewater containing humic acid and fulvic acid at a concentration of 500 my/l. (・l) To the Samurai'1 In claim 1, peracid f
A method for treating wastewater containing humic acid and fulvic acid, in which the amount of arsenic added is 0.1 to 2 times the amount of effective oxygen in hydrogen peroxide when the amount of CI in the wastewater is DM+L.
JP13728982A 1982-08-09 1982-08-09 Treatment of waste water containing humic acid and fulvic acid Pending JPS5929081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13728982A JPS5929081A (en) 1982-08-09 1982-08-09 Treatment of waste water containing humic acid and fulvic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13728982A JPS5929081A (en) 1982-08-09 1982-08-09 Treatment of waste water containing humic acid and fulvic acid

Publications (1)

Publication Number Publication Date
JPS5929081A true JPS5929081A (en) 1984-02-16

Family

ID=15195198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13728982A Pending JPS5929081A (en) 1982-08-09 1982-08-09 Treatment of waste water containing humic acid and fulvic acid

Country Status (1)

Country Link
JP (1) JPS5929081A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496980U (en) * 1991-01-31 1992-08-21
KR19980057625A (en) * 1996-12-30 1998-09-25 이대원 Wastewater treatment method containing polyvinyl alcohol (PVA) by electron beam irradiation
KR19980065219A (en) * 1997-01-06 1998-10-15 이대원 Leachate Treatment Method of Garbage Landfill by Electron Beam Irradiation
KR19980085025A (en) * 1997-05-27 1998-12-05 이대원 Paper Waste Treatment by Electron Beam Irradiation
KR19980085026A (en) * 1997-05-27 1998-12-05 이대원 Wastewater treatment method by electron beam irradiation and ozone addition
KR100420903B1 (en) * 1996-12-30 2004-04-17 이비테크(주) METHOD FOR REMOVING Cr AND Hg FROM WASTEWATER BY USING ELECTRONIC RAY
KR100431473B1 (en) * 1997-05-27 2004-07-16 이비테크(주) Method for treating dyeing wastewater containing polyvinylalcohol by electron beam irradiation
CN110615566A (en) * 2019-09-26 2019-12-27 常熟理工学院 Treatment method of high-concentration salt-containing organic waste liquid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0496980U (en) * 1991-01-31 1992-08-21
KR19980057625A (en) * 1996-12-30 1998-09-25 이대원 Wastewater treatment method containing polyvinyl alcohol (PVA) by electron beam irradiation
KR100420903B1 (en) * 1996-12-30 2004-04-17 이비테크(주) METHOD FOR REMOVING Cr AND Hg FROM WASTEWATER BY USING ELECTRONIC RAY
KR19980065219A (en) * 1997-01-06 1998-10-15 이대원 Leachate Treatment Method of Garbage Landfill by Electron Beam Irradiation
KR19980085025A (en) * 1997-05-27 1998-12-05 이대원 Paper Waste Treatment by Electron Beam Irradiation
KR19980085026A (en) * 1997-05-27 1998-12-05 이대원 Wastewater treatment method by electron beam irradiation and ozone addition
KR100431473B1 (en) * 1997-05-27 2004-07-16 이비테크(주) Method for treating dyeing wastewater containing polyvinylalcohol by electron beam irradiation
CN110615566A (en) * 2019-09-26 2019-12-27 常熟理工学院 Treatment method of high-concentration salt-containing organic waste liquid
CN110615566B (en) * 2019-09-26 2022-03-25 常熟理工学院 Treatment method of high-concentration salt-containing organic waste liquid

Similar Documents

Publication Publication Date Title
US5492633A (en) Water treatment process with ozone
JPS5929081A (en) Treatment of waste water containing humic acid and fulvic acid
CN113772886A (en) Full-quantitative treatment method of landfill leachate
JPH07124593A (en) Highly advanced water purifying treatment method
JPS6254075B2 (en)
KR100708367B1 (en) Method for enhancing biological treatment efficiency of nitrogen using radiation
JPH08318292A (en) Waste water treatment method and apparatus
KR0169809B1 (en) Method for the treatment of waste water with electron beam accelerator
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
KR100384390B1 (en) Leachate Treatment Method and Apparatus with UV Irradiation
Leeuwen Improved sewage treatment with ozonated activated sludge
KR100208956B1 (en) METHOD FOR TREATING WASTEWATER BY AN ELECTRON BEAM AFTER ADJUSTING pH
CN106745630A (en) A kind of composite dephosphorizing agent
KR100271945B1 (en) Treating method of sewage and waste water by radiation and TiO2catalyst
KR20210052340A (en) Fenton oxidation system, and a method for the oxidative degradation of organic pollutants using the same
KR100513567B1 (en) Wastewater Purification Apparatus
KR100251530B1 (en) Method of treating wastewater
JP3534614B2 (en) Sewage treatment method
JPS6218230B2 (en)
KR100431473B1 (en) Method for treating dyeing wastewater containing polyvinylalcohol by electron beam irradiation
JPH02172589A (en) Treatment of sludge-eliminated liquid
KR19980057625A (en) Wastewater treatment method containing polyvinyl alcohol (PVA) by electron beam irradiation
EP0563926B1 (en) Water treatment process with ozone
JPH09253695A (en) Method for treating waste water containing hardly decomposable organic matter
KR19980085026A (en) Wastewater treatment method by electron beam irradiation and ozone addition