JPS5928482A - Method for ester interchange reaction of fat or oil - Google Patents

Method for ester interchange reaction of fat or oil

Info

Publication number
JPS5928482A
JPS5928482A JP57136476A JP13647682A JPS5928482A JP S5928482 A JPS5928482 A JP S5928482A JP 57136476 A JP57136476 A JP 57136476A JP 13647682 A JP13647682 A JP 13647682A JP S5928482 A JPS5928482 A JP S5928482A
Authority
JP
Japan
Prior art keywords
reaction
oil
ester interchange
water
transesterification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57136476A
Other languages
Japanese (ja)
Other versions
JPH0412113B2 (en
Inventor
Eiji Nakai
英二 中井
Shoichiro Yamazaki
山崎 章一郎
Kazuaki Suzuki
鈴木 一昭
Yukinobu Murase
村瀬 行信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP57136476A priority Critical patent/JPS5928482A/en
Publication of JPS5928482A publication Critical patent/JPS5928482A/en
Publication of JPH0412113B2 publication Critical patent/JPH0412113B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

PURPOSE:To obtain a final reaction product with very little by-products, by bringing a water absorbent into contact with an ester interchange reaction mixture in a given stage of the ester interchange reaction of a fat or oil with an enzyme. CONSTITUTION:An ester interchange reaction is carried out by using a fat or oil, e.g. fat or oil, an alcoholic ester or fatty acid, as a substrate with an enzyme having the ester interchange reaction ability. In the process, 0.3-20wt%, preferably 1-15wt%, based on the substrate, water is added to the reaction system to carry out the ester interchange reaction. When the rate of the ester interchange reaction reaches 10% or more, preferably 30-45%, salt or metallic oxide free from water of crystallization, e.g. silica gel, zeolite, activated alumina, Glauber's salt, calcined gypsum or calcium carbonate, is brought into contact with the reaction system. The reaction is further continued to give 80% or more, preferably 90% or more, rate of the ester interchange reaction.

Description

【発明の詳細な説明】 本発明は酵素による油脂類のエステル交換反応方法に関
するものである。さらに詳しくは、エステル交換活性を
有する酵素を用いて酵素を活性化するに必要十分な水分
含阻以上の水分の存在下にてエステル交換反応し、エス
テル交換反応率が10係以上に達した時に反応系に吸水
剤を接触せしめ、反応を継続すると表を/+?徴とする
油脂類のエステル交換反応方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for enzymatic transesterification of oils and fats. More specifically, when an enzyme having transesterification activity is used to carry out a transesterification reaction in the presence of water in excess of the water content necessary and sufficient to activate the enzyme, and when the transesterification reaction rate reaches a factor of 10 or higher, When a water absorbing agent is brought into contact with the reaction system and the reaction continues, the table changes to /+? This invention relates to a method for transesterification of oils and fats.

従来、酵素に、しる油脂類のエステル交換反応は、酵素
活性を起す少量の水を添加して反応を行なっているが、
この少量の水でさえ加水分解反応が促進され、好棟しく
ない生成物分力えてし寸う。例えば、トリグリセリドを
主成分とする油脂のエステル交換反応を行なうと、トリ
グリセリド(TG)以外にジグリセリド(DG)、モノ
グリセリド(11/] a ) 、遊離脂肪酸(1” 
F A )、グリセリン(G)@の副生成物を多針に生
成し、TGの反応収率の低下だけでな(、TGのみを得
るためには後処理が非常に困難である。
Conventionally, the transesterification reaction of oils and fats has been carried out by adding a small amount of water that activates the enzyme to the enzyme.
Even this small amount of water accelerates the hydrolysis reaction and tends to produce undesirable products. For example, when transesterifying oils and fats whose main component is triglyceride, in addition to triglyceride (TG), diglyceride (DG), monoglyceride (11/] a ), and free fatty acid (1"
F A ), by-products of glycerin (G) are produced in many needles, which not only reduces the reaction yield of TG (but also makes post-treatment very difficult to obtain only TG).

これら副生成物の中で、特KDGの生成」J−が多く、
生成したDGfd後処理(精製含む)の際、TGK類似
した性質を有するため、実験室規模はともかく、TGと
DGの工業的大量分離方法は現在でも確立していない。
Among these by-products, there is a large amount of "J-" produced by KDG,
During post-treatment (including purification) of the produced DGfd, since it has properties similar to TGK, an industrial large-scale separation method for TG and DG has not yet been established, even on a laboratory scale.

そして、DGおよびDG以外の上記副生成物の存在は、
TGと共融混合物を作り易く、結晶核の生成を不完全に
するため、希望するTG酸成分分別する際に分別作用を
困難にし、また分別ロスが大きい。さらにTGを主成分
とする最終製品にこれらの副生成物が多量に混入してい
る場合、固体脂含有率の低下等の悪影響を与えてしまう
And, the presence of DG and the above-mentioned byproducts other than DG,
It is easy to form a eutectic mixture with TG, and the generation of crystal nuclei is incomplete, making it difficult to separate the desired TG acid components and causing a large fractionation loss. Furthermore, if a large amount of these by-products is mixed into a final product containing TG as a main component, it will have an adverse effect such as a decrease in solid fat content.

さらに、本発明者らの実験結果にょυ、反応物のDG含
有量が多い場合、後処理における精製工程中、特に高温
で処理される蒸留脱酸、分子蒸留、脱臭等の際、グリセ
リドのランダム化反応が促進され、反応で得られたグリ
セリド組成の変化が大きく、最終的に物性を変えるだけ
でなく、最終製品の着色も大になる傾向があることがわ
かった。このことは、DGを多量に含む高酸価天然油脂
を適切な処理をしないで高温にさらすと好ましくない物
性の変化、着色等の悪影響を与えることはしばしば油脂
技術者が経験することからも類推しうる。ここでいう適
切な後処理とは経験的には、脱ガム処理、アルカリ脱酸
、吸着処理等であるが、これらの方法によって除去でき
るDG@には限度があるために、工業的に考えるならば
、原料油のDG含有量1jlO%前後であろう。
Furthermore, according to the experimental results of the present inventors, when the DG content of the reactant is high, randomization of glycerides during the purification process in post-treatment, especially during distillation deacidification, molecular distillation, deodorization, etc., which are processed at high temperatures. It was found that the chemical reaction was accelerated and the glyceride composition obtained by the reaction changed significantly, which not only changed the physical properties but also tended to increase the coloration of the final product. This can be inferred from the fact that oil and fat engineers often experience that exposing high acid value natural oils and fats that contain large amounts of DG to high temperatures without proper treatment can have adverse effects such as changes in physical properties and coloration. I can do it. Appropriate post-treatments here include degumming treatment, alkali deoxidation treatment, adsorption treatment, etc., but from an industrial perspective, there are limits to the amount of DG@ that can be removed by these methods. For example, the DG content of the raw material oil would be around 1JlO%.

以上のことは、酵素を用いた油脂類のエステル交換反応
にも全く同じで、反応最終生成物中の副生成物を極力抑
えることは非常に重要な意味をもつことになる。
The above is exactly the same in transesterification of oils and fats using enzymes, and it is extremely important to suppress by-products in the final reaction product as much as possible.

しかしながら、一般に酵素を用いる反応は水分の多い系
においては反応活性が高くなるが、油脂類のエステル交
換反応においては、副反応である加水分解反応も大きく
なり、副生成物を多量に含むようになる。そこで、これ
らの欠点をなくすため、水分の少ない系で反応活性を有
する酵素剤の調製(特公昭57−27159号公報)、
およびエステル交換反応速度と加水分解反応速度のバラ
ンスをとる方法(特開昭52−fD4506号公報)に
よって対処しているのが現状である。
However, in general, reactions using enzymes have a high reaction activity in a system with a high water content, but in the transesterification of oils and fats, the hydrolysis reaction, which is a side reaction, also increases and a large amount of byproducts are included. Become. Therefore, in order to eliminate these drawbacks, preparation of an enzyme agent having reaction activity in a system with little water (Japanese Patent Publication No. 57-27159),
Currently, this problem is dealt with by a method of balancing the transesterification reaction rate and the hydrolysis reaction rate (Japanese Unexamined Patent Publication No. 52-fD4506).

通常、反応系内の水分が基質に対して0.2重量%未満
の少間の場合、また、それ以上でも吸水する物質が添加
された場合、多量の酵素を用いたとしてもエステル交換
反応速度は遅く、工業的には時間がかかりすぎるという
欠点があシ、また、反応系内の水分を0.2重量%以上
にした場合、水分が多い程、エステル交換反応速度は大
となるが、加水分解反応も大きくなり、結果として多量
の副生成物を生じ、そのバランスをとることは非常に高
度かつ細かい技術を必要とされる。
Normally, when the water content in the reaction system is small, less than 0.2% by weight based on the substrate, or when a substance that absorbs water even more than that is added, the transesterification reaction rate will be slow even if a large amount of enzyme is used. The disadvantage is that it is slow and takes too much time for industrial use.Also, when the water content in the reaction system is 0.2% by weight or more, the higher the water content, the faster the transesterification reaction rate. The hydrolysis reaction also becomes large, resulting in a large amount of by-products, and balancing them requires very advanced and detailed techniques.

そこで、本発明者らは、油脂類のエステル交換反応にお
いて、水分を少なくして反応を進行させる特殊な酵素剤
を調製したり、エステル交換反応速度と加水分解反応速
度の絶妙なバランスを必要としないで、副生成物の非常
に少ない最終反応物が得られ、かつ十分早い反応速度を
もつ油脂類のエステル交換反応方法について鋭意検討の
結果、酵素による油脂類のエステル交換反応を高活性で
行なうことができ、かつ副反応の非常に抑制された、本
発明の油脂類のエステル交換反応方法を完成した。
Therefore, in the transesterification reaction of oils and fats, the present inventors have developed special enzyme preparations that allow the reaction to proceed while reducing water content, and the need for an exquisite balance between the transesterification reaction rate and the hydrolysis reaction rate. As a result of extensive research into a transesterification method for fats and oils that yields a final reaction product with very few by-products and has a sufficiently fast reaction rate, we have developed a method for transesterifying fats and oils using enzymes with high activity. We have completed a transesterification method for oils and fats according to the present invention, which allows for the transesterification of oils and fats, and in which side reactions are extremely suppressed.

本発明の油脂類のエステル交換反応方法は、油脂類をエ
ステル交換活性を有する酵素を用いて、エステル交換す
るに際し、酵素を活性化するに必要な量以上の水分の存
在下で、反応率が10チ以上に達した時に反応系に結晶
水を失なった塩類又は金属酸化物を接触させ さらに反
応を継続せしめることを特徴とする。
The method for transesterification of fats and oils of the present invention involves transesterifying fats and oils using an enzyme having transesterification activity, and in the presence of an amount of water greater than the amount necessary to activate the enzyme, the reaction rate is reduced. The method is characterized in that when the reaction temperature reaches 10 or more, the reaction system is brought into contact with the salt or metal oxide that has lost crystal water, and the reaction is further continued.

本発明のエステル交換反応方法によれば、油脂、′アル
コールエステル、脂肪酸等の油脂類を基質として、エス
テル交換活性を有する酵素を用いて、反応を行なう際に
、水分を基質に対して0.3〜20重4チ、好ましくは
1〜15重吋チヲ添加して反応させ、ニスデル交換反応
率が10チ以上、好ましくは30〜45%程度に達した
時に反応系に結晶水を失なった塩類又は金属酸化物(吸
水剤)を接触せしめ、以後反応を継続し、エステル交換
反応率が80%以上、好寸しくIrJ−qo9!1以上
になるまで反応を行ない、副生成物の非常に少ない最終
反応生成物を得ることができる。
According to the transesterification method of the present invention, when the reaction is carried out using an enzyme having transesterification activity using fats and oils such as fats and oils, alcohol esters, and fatty acids as substrates, moisture is reduced to 0.0% relative to the substrate. 3 to 20 parts by weight and 4 parts, preferably 1 to 15 parts by weight, are added to react, and when the Nissdell exchange reaction rate reaches 10 parts or more, preferably about 30 to 45%, water of crystallization is lost in the reaction system. Salts or metal oxides (water absorbing agent) are brought into contact with each other, and the reaction is continued until the transesterification reaction rate is 80% or more, preferably IrJ-qo9!1 or more, and the by-products are completely removed. Less final reaction product can be obtained.

なお、上記基質とは油脂又は油脂及び脂肪酸をいい、グ
リセリン、モノグリセリド、ジグリセリドあるいは、脂
肪酸のアルコールエステル等が系中に存在する場合には
これらの物質も上記基質に含まれる。
The above-mentioned substrate refers to fats and oils or fats and oils and fatty acids, and when glycerin, monoglyceride, diglyceride, alcohol ester of fatty acid, etc. are present in the system, these substances are also included in the above-mentioned substrate.

本発明で用いられる上記油脂としては一般の植物性、動
物性の油脂もしくけ加工油脂あるいは、これらの混合油
脂があげられ、例えば、大豆油、綿実油、ナタネ油、オ
リーブ油、コーン油、ヤシ油、ザフラワー油、牛脂、ラ
ード、魚油等である。さらにカカオバター代用脂の原料
となる特定組成のグリセリド、すなわち、1,3−ジス
テアロー2−オレオグリセリド、1−パルミト−2オレ
オ−6−スチアログリセリド、1.3−ジパルミトー2
−オレオグリセリドをエステル交換反応の目的物とする
場合には、グリセリドの2位にオレイン酸を多量に含有
する油脂、例えばオリーブ油、椿油、山茶花油、パーム
油、サル脂、イリッペ脂、コクム脂、シア脂、マウア脂
、フルワラ脂、ポルネオタロー脂又はこれらの分別油脂
を使用することができる。
The above-mentioned fats and oils used in the present invention include general vegetable and animal fats, processed fats and oils, and mixtures thereof, such as soybean oil, cottonseed oil, rapeseed oil, olive oil, corn oil, coconut oil, These include safflower oil, beef tallow, lard, and fish oil. In addition, glycerides with specific compositions are used as raw materials for cocoa butter substitutes, namely 1,3-distearol-2-oleoglyceride, 1-palmito-2-oleo-6-stialoglyceride, and 1,3-dipalmito-2.
- When oleoglyceride is the target of the transesterification reaction, oils and fats containing a large amount of oleic acid at the 2-position of the glyceride, such as olive oil, camellia oil, sasanqua oil, palm oil, monkey fat, illipe butter, kokum butter, Shea butter, Maua butter, Furwara butter, Porneotallow butter, or fractionated fats and oils thereof can be used.

また、脂肪酸としては、炭素数2〜22の直鎖の飽和又
は不飽和の脂肪酸が利用できる。例えば、パルミチン酸
、ステアリン酸、オレイン酸等を利用することができる
Further, as the fatty acid, a linear saturated or unsaturated fatty acid having 2 to 22 carbon atoms can be used. For example, palmitic acid, stearic acid, oleic acid, etc. can be used.

また、脂肪酸のアルコールエステルとしては上記脂肪酸
と炭素数1〜6の1α鎖飽和−価アルコールのエステル
化物があシ、例えば、パルミチン酸メチル、パルミチン
酸エチル、ステアリン酸メチル、ステアリン酸エチルを
あげることができる。
Examples of alcohol esters of fatty acids include esters of the above fatty acids and 1α-chain saturated alcohols having 1 to 6 carbon atoms, such as methyl palmitate, ethyl palmitate, methyl stearate, and ethyl stearate. I can do it.

本発明で用いられるエステル交換活性全有する酵素とし
てはリパーゼが挙げられる。咳、リパーゼとしては、リ
ゾプス系、アスペルギルス系、カンデイダ系、ムコール
系、すい臓すハーゼ等が使用でき、これらのリパーゼの
多くは市販品として入手できる。またグリセリドの1.
3位の脂肪酸基を特異的にエステル交換を行なう場合に
は、該目的に合致した特性を有するリパーゼ、例えばリ
ゾプスデレマー、リゾプスヤボニカス、ムコールヤボニ
カス等を用いれば良い。
The enzyme having all transesterification activities used in the present invention includes lipase. As the cough lipase, Rhizopus type, Aspergillus type, Candida type, Mucor type, Pancreatic haze, etc. can be used, and many of these lipases are available as commercial products. Also, glyceride 1.
When specifically transesterifying the fatty acid group at the 3-position, a lipase having characteristics suitable for the purpose, such as Rhizopus deremer, Rhizopus abbonicus, Mucorjabonicus, etc. may be used.

好ましいリパーゼ酵素fat (活性単位U)は、基5
t、(単位量)に対して、5〜10000U/r。
Preferred lipase enzymes fat (activity unit U) contain the group 5
t, (unit amount), 5 to 10000 U/r.

より好ましくは50〜1ooou/rである。ただし、
酵素の活性単位Uは、オリーブ油乳化液5mlと0.1
Mリン酸塩緩衝液4ml’i?l酵素を加え、37℃で
30分間反応したときに、0.05N水酸化ナトリウム
水溶液0.06m1に相当する脂肪酸を生成する毎に1
活性単位(U)とした。
More preferably it is 50-10ou/r. however,
The activity unit U of the enzyme is 5ml of olive oil emulsion and 0.1
M phosphate buffer 4 ml'i? 1 enzyme was added and reacted for 30 minutes at 37°C, for every fatty acid produced corresponding to 0.06 ml of 0.05N aqueous sodium hydroxide solution.
It was defined as activity unit (U).

本発明のエステル交換反応は反応温度20〜60℃、好
ましくは30〜50℃で行なわれるのがよい。
The transesterification reaction of the present invention is preferably carried out at a reaction temperature of 20 to 60°C, preferably 30 to 50°C.

反応基質の中で、例えば高融点の油脂と脂肪酸の混合物
等を用いた場合、反応温度で不均一な系となることがあ
るが、そのような場合にはリパーゼに対して不活性な有
機溶剤に反応基質る。この種の有(残溶剤としては、n
−ヘキサノ、工業用ヘキサノ、石油エーテルなどがあり
、基質に対して0.1〜5倍量(重量)で用いることが
できる。
For example, if a mixture of high melting point oil and fatty acid is used as a reaction substrate, the reaction temperature may result in a non-uniform system, but in such cases, an organic solvent inert to lipase reaction substrate. Existence of this type (as residual solvent, n
-hexano, industrial hexano, petroleum ether, etc., and can be used in an amount of 0.1 to 5 times the amount (weight) of the substrate.

酵素は反応特異性のあるものも、これらの方法によって
反応収率を高くすることが1丁能である。また、酵素は
単独で使用することもできるが、通常はケイソウ土、ア
ルミナ、活性炭、その他の公知の支持体に吸着あるいは
固定化させて用いるのが望ましい。
Even if the enzyme has reaction specificity, it is possible to increase the reaction yield by using these methods. Further, although the enzyme can be used alone, it is usually preferable to use it by adsorbing or immobilizing it on diatomaceous earth, alumina, activated carbon, or other known supports.

反応中はエステル交換反応率を経時的に測定し、反応率
が10チ以上、好ましくは30〜45チ程度に達した時
にシリカゲル、ゼオライト、活性アルミナ、ボウ硝、焼
石コラ、炭酸カルシウム等の、結晶水を失なった塩舶又
は金属酸化物を接触させ、反応を継続する。冑、上記塩
顛又は金属酸化物の使用句は、それらの種類等によシ必
ずしも特定されないが、通常、iQ記基質と同量以下〜
基質に対して1重量%の範囲内で」1記エステル交換反
応率は、炭素数別グリセリド組成より、例えばC54を
とり、原料中の054の割合と平衡理論値を求め、を時
間後のC54の割合から次式によシ求める。
During the reaction, the transesterification reaction rate is measured over time, and when the reaction rate reaches 10 or more, preferably about 30 to 45, silica gel, zeolite, activated alumina, sulfur salt, baked stone kola, calcium carbonate, etc. The salt vessel or metal oxide that has lost its water of crystallization is brought into contact and the reaction is continued. The phrases used for the above-mentioned salts or metal oxides are not necessarily specified depending on their type, etc., but they are usually used in the same amount or less as the substrate listed in iQ.
Within the range of 1% by weight based on the substrate, 1. The transesterification reaction rate is determined by taking, for example, C54 from the glyceride composition by carbon number, determining the proportion of 054 in the raw material and the theoretical equilibrium value, and calculating the C54 after a period of time. It is calculated from the following formula from the ratio of .

これらの塩類又は金属酸化物の接触によシ、さらにエス
テル交換反応が促進され、接触のない場合よりも反応率
は向上し、かつ好ましくない副生成物が減少し、反応目
的成分の回収率の良好な反応物が得られる。この時の反
応時開け10〜80時間で、通常1’120〜70時間
であった。反応終了後は酵素、支持体、塩ゆ等油溶性以
外のものを、1過、吸着等によυ除去し、必要に応じて
後処理(精製、分別)を行なうことにより目的物を効率
良く、回収率が高く得られる。
Contact with these salts or metal oxides further accelerates the transesterification reaction, improving the reaction rate compared to the case without contact, reducing undesirable by-products, and improving the recovery rate of the reaction target component. Good reactants are obtained. The reaction time at this time was 10 to 80 hours, and usually 1'120 to 70 hours. After the reaction, non-oil-soluble substances such as enzymes, supports, salts, etc. are removed by filtration, adsorption, etc., and post-treatment (purification, fractionation) is performed as necessary to efficiently obtain the target product. , a high recovery rate can be obtained.

以下、本発明の効果を実施例を用いて説明する。Hereinafter, the effects of the present invention will be explained using Examples.

実施例1 パーム硬化油501及び大豆油702をセライト2.5
重量%、市販カンジダシリンドラセリパーゼ約2.5重
量%及び水15重泉チと共に40℃で密閉容器中でかき
まぜ、反応率が40チとなった所で吸水剤(ボウ硝)5
01を添加し反応を30時間まで継続した。得られた反
応混合物を濾過し、if3紙に残っている油はヘキサン
にて洗浄した。溶媒を蒸発して除去し反応油を得た。得
られた反応油の組成1’i:TG92%、DG6.5チ
、MG肌2襲、FF’A1.4チであった。また、最終
反応率は95%であった。反応率はアルコール金属触媒
の存在下で分子間エステル交換を完結した時の同一混合
物の組成をガスクロマトグラフィーの炭素数の比較で行
なった。
Example 1 Hydrogenated palm oil 501 and soybean oil 702 were mixed with Celite 2.5
About 2.5% by weight of commercially available Candida cylindracelipase and 15% of water were stirred in a closed container at 40°C, and when the reaction rate reached 40%, the water absorbing agent (Bou's Salt) was mixed with 5% of water.
01 was added and the reaction continued for up to 30 hours. The resulting reaction mixture was filtered, and the oil remaining on the if3 paper was washed with hexane. The solvent was removed by evaporation to obtain a reaction oil. The composition of the obtained reaction oil was 1'i: 92% TG, 6.5% DG, 2% MG skin, and 1.4% FF'A. Moreover, the final reaction rate was 95%. The reaction rate was determined by comparing the composition of the same mixture when intermolecular transesterification was completed in the presence of an alcohol metal catalyst and the number of carbon atoms measured by gas chromatography.

比較例1 反応途中で吸水剤(ボウ硝)を(ハ)加し、ない以外は
実施例1と同様な操作をし、反応を30時間行なった。
Comparative Example 1 The same operation as in Example 1 was carried out except that a water-absorbing agent (sulfuric acid) was (c) added during the reaction, and the reaction was carried out for 30 hours.

得られた反応油の組成はTG4B、6チ、DG28.4
チ、MG3.2%、FFA19.8%であり、最終反応
率は75チであった。
The composition of the obtained reaction oil was TG4B, 6chi, DG28.4
H, MG 3.2%, FFA 19.8%, and the final reaction rate was 75 H.

実施例2 パーム中間画分100部(重量部、以下同じ)及びステ
アリン酸75部に、1,5位置に特異性のある酵素0.
3部とセライト6部を水1.0部で浸潤させて添加し、
溶剤として工業用へキサン200部を添加し40℃で反
応させた。4時間反応後、ガスクロマトグラフィーで炭
素数変化を調べ、反応率が35%であったので、シリカ
ゲル10部を反応系に添加し、更に10時間反応させた
。得られた反応生成物の組成は表1の通りであった。
Example 2 100 parts (parts by weight, same hereinafter) of palm intermediate fraction and 75 parts of stearic acid were mixed with 0.0 parts of an enzyme specific for the 1,5 position.
3 parts and 6 parts of Celite were added by infiltrating with 1.0 part of water,
200 parts of industrial hexane was added as a solvent and reacted at 40°C. After 4 hours of reaction, the change in carbon number was examined by gas chromatography and the reaction rate was 35%, so 10 parts of silica gel was added to the reaction system and the reaction was continued for an additional 10 hours. The composition of the obtained reaction product was as shown in Table 1.

比較例2 反応途中でシリカゲルを添加しない以外は実施例2と同
様な操作をし、反応を14時間行なった。得られた反応
生成物の組成l−を表1の通υであった。
Comparative Example 2 The same operation as in Example 2 was carried out except that silica gel was not added during the reaction, and the reaction was carried out for 14 hours. The composition of the reaction product obtained was as shown in Table 1.

実施例8 パーム軟質油100部とステアリン酸90部に、1.3
位置に特異性のある酵素を0.3部とセライト0.6部
を水2.0部で浸潤させ、溶剤として工業用へキサン1
50部を添加し40℃で反応させた。5時間反応後、反
応率が40チであったので、焼ゼツコウ10部を反応系
に添加し、更に15時間反応させた。得られた反応生成
物の組成は表2の通シであった。
Example 8 To 100 parts of palm soft oil and 90 parts of stearic acid, 1.3
0.3 parts of a position-specific enzyme and 0.6 parts of Celite were infiltrated with 2.0 parts of water, and 1 part of industrial hexane was used as a solvent.
50 parts were added and reacted at 40°C. After reacting for 5 hours, the reaction rate was 40%, so 10 parts of baked radish was added to the reaction system, and the reaction was continued for an additional 15 hours. The composition of the obtained reaction product was as shown in Table 2.

比較例8 反応途中で焼セツコウを添加しない以外は実施例5と同
様な操作をし、反応を20時間行なった。得られた反応
生成物の組成を表2に示す。
Comparative Example 8 The reaction was carried out in the same manner as in Example 5, except that sacrifice was not added during the reaction, and the reaction was carried out for 20 hours. The composition of the obtained reaction product is shown in Table 2.

比較例4 水の使用類を0.1部とし、反応途中で焼セツコウを添
加しない以外は実施例3と同様な操作をし、反応を20
時間行なった。得られた反応生成物の組成を表2に示す
Comparative Example 4 The same operation as in Example 3 was carried out, except that the amount of water used was 0.1 part, and the addition of Yakisekko during the reaction was carried out, and the reaction was carried out for 20 minutes.
I did it for an hour. The composition of the obtained reaction product is shown in Table 2.

Claims (1)

【特許請求の範囲】 (11油脂類をエステル交換活性を有する酵素を用いて
エステル交換するに際し、酵素を活性化するに必要な種
以上の水分の存在下で、反応率が10チ以上に達した時
に反応系に結晶水を失なった塩顛又は金属酸化物を接触
させ、さらに反応を継続せしめることを特徴とする油脂
類のエステル交換反応方法。 (2)結晶水を失なつf:、塩類又は金属酸化物が、シ
リカゲル、ゼオライト、活性アルミナ、ボウ硝、焼石コ
ラ、炭酸カルシウムからなる群より選ばれた1種又は2
種以上の物質である特許請求の範囲第(1)項記載の油
脂類のエステル交換反応方法。
[Claims] (When transesterifying 11 oils and fats using an enzyme having transesterification activity, the reaction rate reaches 10% or more in the presence of more water than is necessary to activate the enzyme. A method for the transesterification reaction of oils and fats, which is characterized in that the reaction system is brought into contact with a chloride or metal oxide that has lost its water of crystallization, and the reaction is further continued. (2) Loss of water of crystallization f: The salts or metal oxides are one or two selected from the group consisting of silica gel, zeolite, activated alumina, sulfur salt, baked stone kola, and calcium carbonate.
The method for transesterification of oils and fats according to claim (1), which comprises more than one type of substance.
JP57136476A 1982-08-05 1982-08-05 Method for ester interchange reaction of fat or oil Granted JPS5928482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57136476A JPS5928482A (en) 1982-08-05 1982-08-05 Method for ester interchange reaction of fat or oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57136476A JPS5928482A (en) 1982-08-05 1982-08-05 Method for ester interchange reaction of fat or oil

Publications (2)

Publication Number Publication Date
JPS5928482A true JPS5928482A (en) 1984-02-15
JPH0412113B2 JPH0412113B2 (en) 1992-03-03

Family

ID=15176014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57136476A Granted JPS5928482A (en) 1982-08-05 1982-08-05 Method for ester interchange reaction of fat or oil

Country Status (1)

Country Link
JP (1) JPS5928482A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291689A (en) * 1985-06-19 1986-12-22 日清製油株式会社 Production of modified oils and fats retaining aroma
JPS6344892A (en) * 1986-08-13 1988-02-25 Kao Corp Ester exchange reaction of fats and oils
US5017476A (en) * 1988-05-06 1991-05-21 Degussa Aktiengesellschaft Method for the biocatalytic reaction of organic substances

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291689A (en) * 1985-06-19 1986-12-22 日清製油株式会社 Production of modified oils and fats retaining aroma
JPS6344892A (en) * 1986-08-13 1988-02-25 Kao Corp Ester exchange reaction of fats and oils
JPH0338837B2 (en) * 1986-08-13 1991-06-11 Kao Corp
US5017476A (en) * 1988-05-06 1991-05-21 Degussa Aktiengesellschaft Method for the biocatalytic reaction of organic substances

Also Published As

Publication number Publication date
JPH0412113B2 (en) 1992-03-03

Similar Documents

Publication Publication Date Title
US4268527A (en) Method for producing cacao butter substitute
EP0064855B1 (en) Fat processing
JP3720194B2 (en) Method for producing partial glycerides
JP5216277B2 (en) Method for producing edible fats and oils
IE44771B1 (en) Fat process and composition
JPS61181390A (en) Production of glyceride with enzyme
RU2528954C2 (en) Method of producing triglyceride composition
JPS6344892A (en) Ester exchange reaction of fats and oils
JPS63287492A (en) Method for ester interchange reaction of fats or oils
JPS5928482A (en) Method for ester interchange reaction of fat or oil
JPS61247390A (en) Production of partial ester of glycerine and condensed glycerine
CA2025124A1 (en) Transesterification
JP3785467B2 (en) Method for producing oil and fat composition
JP6557798B1 (en) Oil and fat manufacturing method
JPH0327199B2 (en)
JP2002088392A (en) Method for ester interchange of oils or fats
JP4945838B2 (en) Oil and fat manufacturing method
EP0084900B1 (en) Margarine fat blend with a reduced tendency to sandiness and a process for reducing the development of sandiness in fat blends
JPH07179882A (en) Antifreezing oil or fat and its production
JPH0665310B2 (en) Method for producing diglyceride
JPH0369516B2 (en)
JPS60251891A (en) Method of ester interchange reaction of fat and oil
JPH01104184A (en) Esterification with enzyme
JPH0248233B2 (en)
JPS61231947A (en) Agent for improving heat-resistance of plastic oil or fat