JPS5928424B2 - Method for reducing surface cracking of Nb, V steel slabs - Google Patents

Method for reducing surface cracking of Nb, V steel slabs

Info

Publication number
JPS5928424B2
JPS5928424B2 JP6385478A JP6385478A JPS5928424B2 JP S5928424 B2 JPS5928424 B2 JP S5928424B2 JP 6385478 A JP6385478 A JP 6385478A JP 6385478 A JP6385478 A JP 6385478A JP S5928424 B2 JPS5928424 B2 JP S5928424B2
Authority
JP
Japan
Prior art keywords
slab
plastic strain
temperature
range
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6385478A
Other languages
Japanese (ja)
Other versions
JPS54155123A (en
Inventor
洋夫 鈴木
重裕 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6385478A priority Critical patent/JPS5928424B2/en
Publication of JPS54155123A publication Critical patent/JPS54155123A/en
Publication of JPS5928424B2 publication Critical patent/JPS5928424B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は機械構造用高張力鋼素材あるいは石油輸送用パ
イプ素材として用いられるNbあるいはVの何れか1種
または両者を含有する鋼(以下台Nb、V鋼という)の
連続鋳造において鋳片表面割れ(大部分は表面から10
rIrrIL以内に生ずる)の発生を軽減する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a steel containing either one or both of Nb and V (hereinafter referred to as Nb and V steel) used as a high tensile strength steel material for machine structures or as a pipe material for oil transportation. During continuous casting, slab surface cracks (mostly cracks occur within 10 minutes from the surface).
The present invention relates to a method for reducing the occurrence of (occurring within rIrrIL).

従来公知の連続鋳造により製造されるスラブ、ビレツト
、プルーム等の鋳片におい℃はしばしば表面欠陥が生じ
問題となっている。
In cast slabs, billets, plumes, and the like produced by conventional continuous casting, the temperature often causes surface defects, which is a problem.

とりわけ、含Nb、V鋼の如(炭・窒化物(以下Nb(
CN)、V(CN)と略記)の析出する鋼では鋳片表面
割れが多発し、工業規模の生産を阻害していた。
In particular, Nb-containing, V steel (carbon/nitride (hereinafter Nb)
CN), V (abbreviated as CN)), the surface cracks of slabs frequently occur, hindering industrial-scale production.

従来、これらの表面割れ対策としては溶鋼の鋳込み温度
の低温化、電磁攪拌による鋳造組織の微細化、モールド
内パウダーの改良、鋳造速度の低減、さらには二次冷却
帯における冷却水量の管理等が行なわれている。
Conventionally, countermeasures against these surface cracks include lowering the casting temperature of molten steel, making the casting structure finer by electromagnetic stirring, improving the powder in the mold, reducing the casting speed, and controlling the amount of cooling water in the secondary cooling zone. It is being done.

しかしながら、これらのいずれの対策も抜本的な対応策
とはなっていない。
However, none of these measures is a drastic countermeasure.

従って本発明で対象とするような含Nb、V鋼において
は依然として表面割れが発生する。
Therefore, surface cracks still occur in Nb and V steels such as those targeted in the present invention.

而して一旦発生した鋳片表面欠陥は温間ないしは冷間で
、溶剤あるいは機械的研削等によって部分手入れするか
、あるいは場合によっては全面手入れを行なった後、後
工程に搬送しているが、このような作業を行なうには多
くの人手と労力を要するのみならず、製品歩留りの低下
を来たし、その結果製造コストの増加を招(ことにもな
る。
Once surface defects occur in the slab, it is either partially cleaned using solvents or mechanical grinding in warm or cold conditions, or in some cases, the entire surface is cleaned before being transported to the subsequent process. Carrying out such work not only requires a lot of manpower and labor, but also results in a decrease in product yield and, as a result, an increase in manufacturing costs.

また表面欠陥が極めて深(、且つ広範囲にわたるときに
は、全量スクラップ化される場合も生ずる。
Furthermore, if the surface defects are extremely deep (and widespread), the entire amount may be scrapped.

本発明者等はこのような鋳片の表面割れについて長年に
わたる研究を進めた結果、以下のことを明らかにした。
As a result of many years of research into such surface cracks in slabs, the present inventors have clarified the following.

すなわち、含Nb、V鋼の連鋳材で観察される表面割れ
の多(は溶鋼静圧ならびに2次冷却帯域におけるロール
間バルジング、および矯正域での曲げ矯正歪応力(彎曲
型ないしは垂直曲げ連鋳機の場合うによるものである。
In other words, many of the surface cracks observed in continuously cast materials of Nb and V steels are caused by static pressure of molten steel, bulging between rolls in the secondary cooling zone, and bending straightening strain stress in the straightening zone (curved or vertical continuous bending). In the case of casting machines, this is due to the

さらに冶金学的に考察すれば鋳片表層部温度がAr3変
態温度+150℃(ここにAr3温度は冷却時のオース
テナイト→初析フェライト変態開始温度をさす)からA
r3変態温度−150℃の温度域においてオーステナイ
ト粒界に析出したNb(CN)。
Furthermore, from a metallurgical perspective, the surface temperature of the slab changes from Ar3 transformation temperature + 150°C (here, Ar3 temperature refers to the temperature at which austenite → pro-eutectoid ferrite transformation starts during cooling) to A.
Nb (CN) precipitated at austenite grain boundaries in the temperature range of r3 transformation temperature - 150°C.

BN、V(CN)等の析出物を核としてオーステナイト
粒界に沿って析出したフィルム状初析フェライト領域に
ある限界値を越えた引張応力が負荷された場合にボイド
の核生成が生じ、それらのボイドが凝集一連結して最終
的な割れになる。
Void nucleation occurs when a tensile stress exceeding a limit value is applied to the film-like pro-eutectoid ferrite region that precipitates along austenite grain boundaries with precipitates such as BN and V (CN) as nuclei. The voids aggregate and form a final crack.

本発明はこのような知見に基づいてなされたもので、凝
固に引き銃(冷却過程において、鋳片表層部(表面から
1OrfrrrL以内)の温度が1100−900℃の
範囲で鋳片表層部に5・〜15%範囲の塑性歪を加える
ことによりオーステナイト粒度をA S T Ml’;
y、 3 (約0.1M直径以下)以上に微細化し、さ
らにはNb(CN)等の粒界析出を抑制することにより
オーステナイト粒界へのフィルム状初析フェライトの生
成を防止する。
The present invention has been made based on this knowledge, and is based on the fact that during solidification, a gun is applied to the surface layer of the slab (in the cooling process, when the temperature of the surface layer of the slab (within 1 OrfrrrL from the surface) is in the range of 1100 to 900°C.・A S T Ml' to increase the austenite grain size by applying plastic strain in the range of ~15%;
The formation of film-like pro-eutectoid ferrite at austenite grain boundaries is prevented by making the grain finer than y, 3 (approximately 0.1M diameter or less) and further suppressing grain boundary precipitation of Nb (CN) and the like.

かくして鋳片表面割れを著しく軽減できるに至った。In this way, it was possible to significantly reduce cracking on the surface of the cast slab.

本発明の対象を特に含Nb、V鋼に限定した理由を述べ
る。
The reason why the object of the present invention is specifically limited to Nb-containing, V steel will be described.

含Nb、V鋼の既存の連鋳機による連続鋳造により製造
される鋳片の表層部(り10rML)の鋳造材のオース
テナイト粒径は非常に太き(、大きいものは1〜5rI
rrn直径(ASTMA、 2以下)もある。
The austenite grain size of the cast material in the surface layer (10 rML) of a slab manufactured by continuous casting using an existing continuous casting machine for Nb-containing V steel is very large (larger ones are 1 to 5 rI).
rrn diameter (ASTMA, 2 or less).

従って、鋳片表層部が冷却する過程で、1000−70
0℃温度域において、この粗大なオーステナイト粒の粒
界にNb(CN)ないしはV(CN)の析出が生じ、こ
れらの析出物を核としてフィルム状の初析フェライトが
生成し、鋳片表向割れ感受性を著しく高めているからで
ある。
Therefore, in the process of cooling the surface layer of the slab, 1000-70%
In the 0°C temperature range, Nb (CN) or V (CN) precipitates at the grain boundaries of these coarse austenite grains, and film-like pro-eutectoid ferrite is formed with these precipitates as nuclei. This is because the susceptibility to cracking is significantly increased.

次に本発明における加工条件、すなわち鋳片表層部が1
100〜900℃の温度域にある間に鋳片に5〜15%
の範囲の塑性歪が負荷されるような処理を少くとも一回
以上加える点について説明する。
Next, the processing conditions in the present invention, that is, the surface layer of the slab is 1
5-15% to the slab while in the temperature range of 100-900℃
We will explain the point of applying at least one treatment that applies a plastic strain in the range of .

数多(の報告にみられるようにラインパイプ用素材ない
し機械構造用鋼として用いられるSi −Mn鋼をベー
スとした含Nb;V鋼におけるNb(CN)、v(CN
)の析出温度域は1100〜700℃(AC3+150
℃〜Ar3 150℃:ここにAC3は昇温時のα→γ
変態点)の範囲にある。
As seen in numerous reports, Nb (CN) and v (CN) in Nb-containing Nb;
) precipitation temperature range is 1100~700℃ (AC3+150
℃~Ar3 150℃: Here, AC3 is α→γ when the temperature is increased.
(transformation point).

従って、本発明においては、鋳片の表層部(く10 r
rm )の温度が1100〜900℃の範囲にある間に
鋳片に5〜15チの範囲の塑性歪が負荷されるような処
理を少くとも一回以上加えることによってオーステナイ
ト粒の再結晶細粒化を施すと同時に、導入された転位の
不ントワークないしそれらで構成される小傾角粒界面上
にNb(CN)。
Therefore, in the present invention, the surface layer part (10 r
Recrystallization of fine austenite grains is achieved by applying at least one treatment in which a plastic strain in the range of 5 to 15 inches is applied to the slab while the temperature of rm) is in the range of 1100 to 900°C. At the same time, Nb (CN) is formed on the introduced dislocation untworks or on the low-angle grain interfaces composed of them.

v(cN)を析出させ、その結果とし℃割れの発生場所
となる大傾角のオーステナイト粒界へのNb(CN)な
どの析出を抑制し、割れの伝播経路となるフィルム状初
析フェライトの生成を抑制しようとするものである。
As a result, the precipitation of Nb (CN) and other substances at large-angle austenite grain boundaries, where °C cracks occur, is suppressed, and film-like pro-eutectoid ferrite is formed, which becomes the crack propagation route. It is an attempt to suppress the

後述する実施例1(第2図、第2表参照)に示すように
、試料を溶融し試料表面が50℃/see以下の冷却速
度で冷却途中700〜900℃温度域で引張変形した際
には、延性が著しく低下する。
As shown in Example 1 (see Figure 2 and Table 2), which will be described later, when a sample is melted and the surface of the sample undergoes tensile deformation in the temperature range of 700 to 900°C during cooling at a cooling rate of 50°C/see or less, , the ductility decreases significantly.

これは通常の連続鋳造において、鋳片表層部温度が70
0−900℃になった際に溶鋼静圧とかロール間バルジ
ング曲げ矯正等により引張歪が加わった際に生ずる表面
割れの実態を忠実に再現しているものである。
This means that in normal continuous casting, the surface temperature of the slab is 70
It faithfully reproduces the actual condition of surface cracks that occur when tensile strain is applied due to static pressure of molten steel or straightening of bulging bending between rolls when the temperature reaches 0-900°C.

さらに、700〜900℃域に生ずる脆化の原因はオー
ステナイト粒が粗大なこと、そのオーステナイト粒界に
すでにNb(CN)等の析出が生じでいること、700
〜900℃範囲でこれらのオーステナイト粒界からフィ
ルム状初析フェライトが生成しており、これらの状態の
ところに引張応力が負荷されると、粒界割れが生じてし
まうためである。
Furthermore, the cause of the embrittlement that occurs in the 700-900°C range is that the austenite grains are coarse, and that Nb (CN) etc. have already precipitated at the austenite grain boundaries.
This is because film-like pro-eutectoid ferrite is generated from these austenite grain boundaries in the range of ~900°C, and if tensile stress is applied to these conditions, intergranular cracks will occur.

しかしながら、本発明のごとく、1100・〜900℃
温度域において5〜15%の範囲の塑性歪が加えられる
ような処理を1回以上加えると粒界割れは生じに((な
り表面割れも著しく軽減される。
However, as in the present invention, 1100-900℃
If a treatment that applies plastic strain in the range of 5 to 15% in a temperature range is applied one or more times, intergranular cracking will not occur (((and surface cracking will also be significantly reduced).

ここで述べる塑性歪の物理的意味は下記の如(である。The physical meaning of plastic strain described here is as follows.

外部応力負荷により導入される転位は1100℃以上の
高温では転位の上昇運動等によって消滅してしまうが、
1100〜900℃間の温度域では導入された転位によ
りオーステナイト粒の再結晶が生じ、粒度の微細化につ
ながる。
Dislocations introduced by external stress loading disappear at high temperatures of 1100°C or higher due to upward movement of dislocations, etc.
In the temperature range of 1100 to 900°C, the introduced dislocations cause recrystallization of austenite grains, leading to refinement of grain size.

他方一部の転位は粒内にあって、Nb(CN)等の析出
核トして作用し、粒界析出を抑制する効果をもつ。
On the other hand, some dislocations are within the grains and act as precipitation nuclei of Nb (CN), etc., and have the effect of suppressing grain boundary precipitation.

1100〜900℃の範囲において5〜15%の塑性歪
で導入される転位密度は3×lO〜5×1010個/c
st程度と考えられる。
The dislocation density introduced at 5 to 15% plastic strain in the range of 1100 to 900°C is 3 x lO to 5 x 1010/c.
It is thought to be about st.

これらの範囲の転位を導入すると前述の効果が得られる
ことになる。
When dislocations in these ranges are introduced, the above-mentioned effects can be obtained.

一回の塑性歪量が5多以下の場合には加ニー再結晶によ
る結晶粒の微細化効果が期待できない。
If the amount of plastic strain at one time is less than 5, no effect of grain refinement by kneading recrystallization can be expected.

一方、15係を越える塑性歪を加えた場合には、結晶粒
界に応力が集中しヱしまい、粒界割れを助長する危険性
もあり、かえつ℃鋳片の表面割れをひき起す結果となる
On the other hand, if a plastic strain exceeding a factor of 15 is applied, stress will concentrate at the grain boundaries and there is a risk of promoting intergranular cracking, resulting in surface cracking of the slab. Become.

従って、本発明においては一回の塑性歪量を5−15係
に限定した。
Therefore, in the present invention, the amount of plastic strain at one time is limited to 5-15 times.

また塑性歪を繰返して複数回行う場合には一回の塑性歪
により導入された転位が回復し、再結晶した後天の加工
を行なう方がよい。
In addition, when plastic strain is repeated multiple times, it is better to perform processing after the dislocations introduced by one plastic strain are recovered and recrystallized.

すなわち、加工を連続的に行なうと加工歪が集積して鋳
片表面割れ感受性を高めてしまう結果となるからである
That is, if machining is performed continuously, machining strain accumulates, resulting in increased susceptibility to cracking on the slab surface.

本発明において鋳片に塑性歪を加える手段としては■鋳
片をガイドロール間を通過させる間にロールにより直接
的な応力負荷を加える方法、■硬ヵ1質微粒子を鋳片に
衝突させ、衝撃的な負荷を加える方法(所謂ジョンドプ
ラスト法等)、■レーザーパルスを鋳片表面に加える方
法等があり、実施例に示すようにいずれも有効である。
In the present invention, the methods of applying plastic strain to the slab include: (1) applying stress directly to the slab while it passes between guide rolls; (2) impacting the slab with hard carbonaceous fine particles; There are methods such as applying a physical load (such as the so-called John de Plast method), and (2) applying a laser pulse to the surface of the slab. All of these methods are effective, as shown in the examples.

また超音波による衝撃波の負荷も接触子の開発がなされ
れば適用可能となろう。
Furthermore, if a contactor is developed, it will become possible to apply a shock wave load caused by ultrasonic waves.

次に比較例および実施例により本発明の内容を具体的に
述べる。
Next, the content of the present invention will be specifically described with reference to comparative examples and examples.

比較例 鋳片厚み250rranのスラブ(巾2200m)を彎
曲型連鋳機を用い、鋳造速度1m/rML、注水比1、
a/Kgで鋳造した際の凝固シェル厚み、および鋳片表
面温度の推移(計算値)を第1図に示す。
Comparative Example A slab with a thickness of 250 rran (width 2200 m) was cast using a curved continuous casting machine, casting speed 1 m/rML, water injection ratio 1,
Fig. 1 shows the changes in solidified shell thickness and slab surface temperature (calculated values) when casting at a/Kg.

このような条件下で、第1表に示すような成分を有する
含Nb鋼A、Bを鋳造した場合第6図に示す如(表面割
れが多発する。
When Nb-containing steels A and B having the components shown in Table 1 are cast under these conditions, surface cracks occur frequently (as shown in FIG. 6).

実施例 l 連続鋳造時の表面割れ感受性の評価を実験室規模で行な
った結果を示す。
Example 1 The results of a laboratory-scale evaluation of surface crack susceptibility during continuous casting are shown.

すなわち、横型引張試験機を用い、通電加熱により10
Irr1nOの丸棒を溶融し、凝固途中ないしは凝固後
の任意の温度で圧縮ないしは引張変形を行なう。
That is, using a horizontal tensile tester, 10
A round bar of Irr1nO is melted and subjected to compression or tensile deformation at an arbitrary temperature during or after solidification.

試料温度と応力負荷は予めセントしたプログラムにより
実機における連鋳スラブの表面冷却条件等に合わせるこ
とが出来る。
The sample temperature and stress load can be adjusted to match the surface cooling conditions of the continuous casting slab in the actual machine using a pre-set program.

このような実験手法を用い、溶融−凝固−それに引き続
く冷却過程で単純に引張変形を行なった場合と所定の温
度で加ニー再結晶等を(り返した後、引張変形を行なっ
た場合を比較した(第2図)。
Using such an experimental method, we compared the case where tensile deformation was simply performed during the melting-solidification-following cooling process and the case where tensile deformation was performed after kneading recrystallization etc. (repeated) at a predetermined temperature. (Figure 2).

実験にはC0,15%、Si 0.2%、 Mn 1.
5%、Nb0.03係、Vo、04係、NO,0070
係、A/1,0.03%の成分を含有する連鋳片を用い
た代表的な結果を第2表に示す。
For the experiment, C0.15%, Si 0.2%, Mn 1.
5%, Nb0.03 section, Vo, 04 section, NO, 0070
Table 2 shows typical results using a continuously cast piece containing 0.03% of A/1.

第2表に示されるように、1100〜900℃温度域に
おいて5〜15係の範囲の圧下を加えることにより、オ
ーステナイト粒度は微細化し、800℃引張変形におけ
る断面収縮率は著しく改善される。
As shown in Table 2, by applying a reduction in the range of 5 to 15 in the temperature range of 1100 to 900°C, the austenite grain size becomes finer and the cross-sectional shrinkage rate in tensile deformation at 800°C is significantly improved.

なお、連続的に圧下を加えた場合には、圧下時に割れて
しまいデータは得られなかった。
In addition, when rolling was applied continuously, it cracked during rolling and no data could be obtained.

実施例 2 第1表に示す含Nb@但圧0.17%C,0,36%S
i 、1.45%Mn、0.016%P、0.003係
S、0.035係At、0.03係Nb%0.04係V
、0.0025チN〕を用い、第3図に示すような連続
鋳造装置により鋳造した。
Example 2 Contains Nb shown in Table 1 @ pressure 0.17%C, 0.36%S
i, 1.45% Mn, 0.016% P, 0.003 coefficient S, 0.035 coefficient At, 0.03 coefficient Nb% 0.04 coefficient V
, 0.0025 inch N] using a continuous casting apparatus as shown in FIG.

第3図において、1は溶鋼、2はモールド、3は溶鋼が
凝固したシェル、4,4′〜5,5′はロール群、6,
6′は水冷ノズルである。
In Fig. 3, 1 is molten steel, 2 is a mold, 3 is a shell of solidified molten steel, 4,4' to 5,5' are roll groups, 6,
6' is a water-cooled nozzle.

このような装置で鋳造するに際し、ロール4,4′〜5
,5′を用い5チづつ圧下を施した。
When casting with such a device, rolls 4, 4' to 5
, 5' was used to reduce the pressure by 5 inches.

この場合、鋳片表層部≦5rIrJrtの温度は110
01000℃範囲になるように鋳造速度と冷却水量を制
御した。
In this case, the temperature of the surface layer of the slab ≦5rIrJrt is 110
The casting speed and amount of cooling water were controlled so that the temperature was within the range of 0.01000°C.

その結果は第6図に示すとおりで鋳片表面疵の発生が著
しく抑制され、無欠陥鋳片に近いものが得られた。
The results are shown in FIG. 6, where the occurrence of defects on the surface of the slab was significantly suppressed, and a nearly defect-free slab was obtained.

実施例 3 第4図に示すような鋳造装置を用い、実施例2と同様の
成分の溶鋼1を1 m/FIRで鋳造するに際して、モ
ールド出口直下から約1.5mの位置(鋳片サイズ25
0rrrm厚、鋳片表面温度1100−1000℃)で
ショツトブラスト装置7,1′を用いて0.1−1.
Orran直径の鉄粉を鋳片表面に衝撃的に負荷した。
Example 3 Using a casting apparatus as shown in FIG. 4, when casting molten steel 1 with the same composition as in Example 2 at a rate of 1 m/FIR, a casting machine was cast at a position approximately 1.5 m from directly below the mold outlet (slab size 25
0rrrm thickness, slab surface temperature 1100-1000°C) using shot blasting equipment 7, 1' to 0.1-1.
Iron powder of Orran diameter was impact loaded onto the surface of the slab.

この際ショツトブラスト装置の能力は1OH)で約50
に7のショットを60〜70m/seeで鋳片表面に投
射した。
At this time, the capacity of the shot blasting device is approximately 50
7 shots were projected onto the slab surface at 60 to 70 m/see.

その結果、鋳片表層部において5・−15チの塑性歪に
対応する転位が導入され、鋳片表層部において加ニー再
結晶が繰返し生じ結晶粒も微細化し、かつショットを負
荷した領域は負荷なしの領域に比べ表面疵発生率は約5
0係低減した。
As a result, dislocations corresponding to plastic strain of 5.-15 inches are introduced in the surface layer of the slab, repeated recrystallization occurs in the surface layer of the slab, and the crystal grains become finer. The surface flaw occurrence rate is approximately 5% compared to the area without
The zero factor was reduced.

その結果を第6図に示す。なお第4図において4,4′
〜5,5′はガイドロール、6,6′は水冷ノズルであ
る。
The results are shown in FIG. In addition, in Fig. 4, 4,4'
5 and 5' are guide rolls, and 6 and 6' are water-cooled nozzles.

実施例 4 第5図に示すような鋳造装置を用い、実施例2と同様の
成分の溶鋼1を1m/rranで鋳造するに際してモー
ルド出口直下から約1.5mの位置(鋳片サイズ250
#厚、鋳片表面温度1100−1000℃)KIMW’
−IGW/crAの範囲の出力、1〜10回/分の発振
周期、パルス長(時定数)20nse c のパルスレ
ーザ−装置8,8′を設置し、鋳片表面温度が1100
〜950℃の温度状態で1MW/crAの出力で3回/
分の発振周期、パルス長20 n5ecのパルスレーザ
−を鋳片の全面に走査照射した。
Example 4 Using a casting apparatus as shown in FIG. 5, when casting molten steel 1 having the same composition as in Example 2 at a rate of 1 m/rran, a cast member was cast at a position approximately 1.5 m from directly below the mold outlet (slab size 250
#thickness, slab surface temperature 1100-1000℃) KIMW'
- Pulse laser devices 8 and 8' with an output in the range of IGW/crA, an oscillation cycle of 1 to 10 times/min, and a pulse length (time constant) of 20 nsec are installed, and the slab surface temperature is 1100.
3 times/with an output of 1MW/crA at a temperature of ~950℃
The entire surface of the slab was scanned and irradiated with a pulsed laser having an oscillation period of 1 minute and a pulse length of 20 n5 ec.

この場合鋳片表面にはlK4/rnjt程度の圧力が負
荷されることになるが、これを塑性歪に換算すると約7
%の歪が負荷されることになり、その結果鋳片表層部は
再結晶を繰り返し粒度は微細化する。
In this case, a pressure of approximately lK4/rnjt will be applied to the surface of the slab, which is converted into plastic strain of approximately 7
As a result, the surface layer of the slab undergoes repeated recrystallization and the grain size becomes finer.

そこでこれをレーザーを負荷しない領域と比較すると表
面疵は約40係低減し、表面疵の深さも5桐以下になっ
ており極めて良好な結果となった。
Comparing this with the area where the laser was not applied, the surface flaws were reduced by about 40 times and the depth of the surface flaws was 5 paulownia or less, which is an extremely good result.

結果を第6図に示す。なお、レーザーのパルス長を20
0 n5ec にすると鋳片表面層は一部溶融する。
The results are shown in Figure 6. In addition, the laser pulse length is 20
When the temperature is set to 0 n5ec, the surface layer of the slab is partially melted.

従ってすでにモールド内部で発生した表面疵の補修も可
能である。
Therefore, it is also possible to repair surface flaws that have already occurred inside the mold.

またレーザー装置は必ずしも鋳片表面上を走査するに限
る必要はなく、被数個のレーザー装置により鋳片の全面
を照射するようにしてもよい。
Further, the laser device is not necessarily limited to scanning the surface of the slab, and several laser devices may be used to irradiate the entire surface of the slab.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、250m厚の鋳片を1 m /un、注水比
IA/Kyで連続鋳造した際の凝固シェル厚み、鋳片表
面温度の推移(計算値)を示す図表、第2図は、実施例
1における溶融−凝固−引張シミュレーションプログラ
ムを示す図でDは単純引張(比較例)、■は連続冷却中
の加工、■は恒温保持中の加工におけるプログラムを示
す、第3図−第5図は本発明法を実施する装置の実施例
を示す説明図(図中の番号は以下の部位を示す)、第6
図は鋳片表面割れ発生状況を示す図である。 1;溶鋼、2;モールド、3;凝固シェル、4゜4′お
よび5,5’;ロール、6 、6/ ;水冷ノズル、γ
、γ′;ショットフラスト装置、8.8’:パルスレー
ザ−装置。
Figure 1 is a chart showing the changes in solidified shell thickness and slab surface temperature (calculated values) when a 250 m thick slab was continuously cast at 1 m /un and water injection ratio IA/Ky. Figures 3 to 5 show the melting-solidification-tension simulation program in Example 1, where D is simple tension (comparative example), ■ is the program during processing during continuous cooling, and ■ is the program during processing during constant temperature maintenance. The figure is an explanatory diagram showing an embodiment of the apparatus for carrying out the method of the present invention (numbers in the figure indicate the following parts).
The figure shows the occurrence of cracks on the slab surface. 1; Molten steel, 2; Mold, 3; Solidified shell, 4゜4' and 5,5'; Roll, 6, 6/; Water-cooled nozzle, γ
, γ': Schottfrust device, 8.8': Pulse laser device.

Claims (1)

【特許請求の範囲】 1 含Nb 、V鋼の連続鋳造において、鋳片表層部温
度が1100〜900℃の範囲で、鋳片表層部に5・〜
15チの範囲の塑性歪または実効的に5〜15チの範囲
の塑性歪を加えるに等しい処理を少(とも−回収上加え
ることによりオーステナイト粒度をASTMA、3以上
(粒径0.1喘以下)に微細化すると同時にNb(CN
)、V(CN)の粒界析出を抑制することにより、オー
ステナイト粒界からのフィルム状初析フェライトの核生
成を防止することを特徴とする含Nb、V鋼鋳片の表面
割れを軽減する方法。 2 塑性歪を加える手段としてロールによる圧下を加え
ることを特徴とする特許請求の範囲1記載の方法。 3 塑性歪を加える手段として鋳片表面に微粒子を衝突
させることを特徴とする特許請求の範囲1記載の方法。 4 塑性歪を加える手段としてレーザーパルスを鋳片表
面に加えることを特徴とする特許請求の範囲1記載の方
法。
[Claims] 1. In continuous casting of Nb-containing V steel, when the temperature of the surface layer of the slab is in the range of 1100 to 900°C, 5.
Plastic strain in the range of 15 inches or a treatment equivalent to effectively applying a plastic strain in the range of 5 to 15 inches is applied to increase the austenite grain size to ASTMA, 3 or more (grain size 0.1 mm or less). ) at the same time as Nb (CN
), suppressing grain boundary precipitation of V(CN) to reduce surface cracking of Nb-containing steel slabs characterized by preventing nucleation of film-like pro-eutectoid ferrite from austenite grain boundaries. Method. 2. The method according to claim 1, characterized in that rolling reduction by rolls is applied as means for applying plastic strain. 3. The method according to claim 1, characterized in that fine particles are caused to collide with the surface of the slab as a means for applying plastic strain. 4. The method according to claim 1, characterized in that a laser pulse is applied to the surface of the slab as a means for applying plastic strain.
JP6385478A 1978-05-30 1978-05-30 Method for reducing surface cracking of Nb, V steel slabs Expired JPS5928424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6385478A JPS5928424B2 (en) 1978-05-30 1978-05-30 Method for reducing surface cracking of Nb, V steel slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6385478A JPS5928424B2 (en) 1978-05-30 1978-05-30 Method for reducing surface cracking of Nb, V steel slabs

Publications (2)

Publication Number Publication Date
JPS54155123A JPS54155123A (en) 1979-12-06
JPS5928424B2 true JPS5928424B2 (en) 1984-07-12

Family

ID=13241332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6385478A Expired JPS5928424B2 (en) 1978-05-30 1978-05-30 Method for reducing surface cracking of Nb, V steel slabs

Country Status (1)

Country Link
JP (1) JPS5928424B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58128255A (en) * 1982-01-25 1983-07-30 Nippon Kokan Kk <Nkk> Continuous casting method of steel
JPS6027453A (en) * 1983-07-22 1985-02-12 Nippon Kokan Kk <Nkk> Method and device for preventing generation of surface defect of horizontal and continuous casting billet
US4709572A (en) * 1984-07-31 1987-12-01 Sumitomo Metal Industries, Ltd. Method of processing continuously cast slabs
DE102017207942A1 (en) * 2017-05-11 2018-11-15 Sms Group Gmbh Continuous casting plant and process for the production of a metallic product

Also Published As

Publication number Publication date
JPS54155123A (en) 1979-12-06

Similar Documents

Publication Publication Date Title
JP4514137B2 (en) Method for preventing rolling surface flaw of Ni-containing steel
JP5999294B2 (en) Steel continuous casting method
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
JPS5928424B2 (en) Method for reducing surface cracking of Nb, V steel slabs
JP3453990B2 (en) Cooling method for continuous casting bloom
JPH08295989A (en) High carbon resistance welded tube excellent in wear resistance
JP5416342B2 (en) Cooling method for bloom slab
JPH0947854A (en) Method for restraining surface crack of cast slab
JP6954514B1 (en) Continuous casting method
Crowther et al. The influence of composition on the hot cracking susceptibility during casting of microalloyed steels processed to simulate thin slab casting conditions
JP3264956B2 (en) Accelerated cooling type manufacturing method for thick steel plate
JPH0688125A (en) Method for hot-working continuously cast slab and steel ingot
JP3406459B2 (en) Cooling method for continuous casting bloom
JPH07251265A (en) Method for scarfing cast steel slab
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JP5402790B2 (en) Method for cooling continuous cast bloom slab and method for manufacturing the slab
JPS63168260A (en) Hot working method for continuously cast billet
CA1191077A (en) Interrupted quench process
JP3393677B2 (en) Direct heat treatment method for wire rod
JPH057914A (en) Hot rolling method for steel for preventing generation of surface flaw
JPH08209241A (en) Production of steel plate for line pipe excellent in carbon dioxide corrosion resistance and low temperature toughness
JPH06246414A (en) Continuous casting of high carbon steel
JPS6155570B2 (en)
JPH08295988A (en) High carbon resistance welded tube excellent in wear resistance
JP2000246411A (en) Manufacture of continuously cast bloom