JPS5928138B2 - DC machine with ironless armature - Google Patents

DC machine with ironless armature

Info

Publication number
JPS5928138B2
JPS5928138B2 JP9512277A JP9512277A JPS5928138B2 JP S5928138 B2 JPS5928138 B2 JP S5928138B2 JP 9512277 A JP9512277 A JP 9512277A JP 9512277 A JP9512277 A JP 9512277A JP S5928138 B2 JPS5928138 B2 JP S5928138B2
Authority
JP
Japan
Prior art keywords
armature
magnetic
winding
metal plate
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9512277A
Other languages
Japanese (ja)
Other versions
JPS5430406A (en
Inventor
和雄 田原
正二 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9512277A priority Critical patent/JPS5928138B2/en
Publication of JPS5430406A publication Critical patent/JPS5430406A/en
Publication of JPS5928138B2 publication Critical patent/JPS5928138B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Dc Machiner (AREA)
  • Windings For Motors And Generators (AREA)

Description

【発明の詳細な説明】 本発明は電機子巻線を円板、あるいは円筒状に形成して
ギャップワインディングとした無鉄心電機子を有する直
流機に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a DC machine having a coreless armature in which the armature winding is formed into a disc or cylinder shape and is gap wound.

この種直流機では、電機子巻線が直接磁束と鎖交するギ
ャップワインディングであるので、実効空隙が大きい。
This type of DC machine has a gap winding in which the armature winding is directly interlinked with the magnetic flux, so the effective air gap is large.

この為、出力を大きくするのに電機子巻線の巻数を多く
している。
For this reason, the number of turns in the armature winding is increased to increase the output.

この結果電機子ガスロットを持っていないにもかかわら
ず、整流を受けている電機子巻線のインダクタンスが大
きくなり、電流変化時に大きなりアクタンス電圧が発生
して整流特性を悪くしている。
As a result, even though it does not have an armature gas slot, the inductance of the armature winding receiving rectification becomes large, and when the current changes, a large actance voltage is generated, which deteriorates the rectification characteristics.

本発明の目的は電機子巻線の特に整流中のコイルのイン
ダクタンスを減少させて電流変化時に発生する整流中の
コイルのりアクタンス電圧を小さくし、整流性能の向上
を計るものである。
An object of the present invention is to reduce the inductance of the armature winding, especially the coil during rectification, to reduce the actance voltage of the coil during rectification that occurs when the current changes, and to improve rectification performance.

本発明の特徴は非磁性の良導電性金属板を磁極間におい
て、磁極表面と電機子表面との間のギャップと略同じキ
ャップを隔てて、前記電機子表面に対向設置しこれによ
って電機子コイルのうち磁極に対向する直前及び磁極と
の対向が終了した直後の整流コイルのみが非磁性の良導
電性金属板と対面する様にして、主磁束に鎖交する電機
子コイル部分のインダクタンスを低下させることなく整
流コイルのインダクタンスのみを低減できる様にした点
にある。
A feature of the present invention is that a non-magnetic, highly conductive metal plate is placed between the magnetic poles and facing the armature surface with a cap that is approximately the same as the gap between the magnetic pole surface and the armature surface, and thereby the armature coil Of these, only the rectifier coil immediately before facing the magnetic pole and immediately after facing the magnetic pole faces the non-magnetic, highly conductive metal plate to reduce the inductance of the armature coil portion linked to the main magnetic flux. The main point is that only the inductance of the rectifier coil can be reduced without causing any damage.

以下図面に示す一実症例に基づき本発明になる無鉄心電
機子を有する直流機を詳説する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The DC machine having a coreless armature according to the present invention will be explained in detail below based on an actual case shown in the drawings.

第1図にセす実症例は円板状の無鉄心電機子を有する謂
所偏平型直流機に本発明を適用したものである。
The actual case shown in FIG. 1 is an example in which the present invention is applied to a so-called flat type DC machine having a disk-shaped ironless armature.

回転子はシャフト1に円板状の電機子3と整流子5とを
軸方向に順次固定されている。
In the rotor, a disk-shaped armature 3 and a commutator 5 are sequentially fixed to a shaft 1 in the axial direction.

電機子3は扇形状の偏平な巻線群を円板状に配置し、各
巻線4の端末は所定の間隔で整流子5に接続し、モール
ド樹脂で巻線群と整流子5とを一体にモールド成形する
The armature 3 has a fan-shaped flat winding group arranged in a disk shape, the terminals of each winding 4 are connected to the commutator 5 at predetermined intervals, and the winding group and the commutator 5 are integrated with molded resin. Mold into.

整流子5の外筒にはブラシ6を摺動させて電機子5に電
力の供給を行う。
A brush 6 is slid on the outer cylinder of the commutator 5 to supply power to the armature 5.

一方、固定子はシャフト1と軸受2を介してハウジング
7と8で回転子を囲むようにし、ハウジング7には扇形
状の永久磁石9を所定の間隔に固着する。
On the other hand, the stator has housings 7 and 8 surrounding the rotor via the shaft 1 and bearing 2, and fan-shaped permanent magnets 9 are fixed to the housing 7 at predetermined intervals.

このため永久磁石9の磁束は永久磁石9がら空隙10を
介して電機子巻線4と直接鎖交し、さらに空隙10aを
介して対向するハウジング8に達し、ハウジング8内で
は周方向に通過して隣りの永久磁石(図示せず)に向っ
て空隙、磁石のピッチ分だけはなれた隣りの電機子巻線
及び空隙を介し磁石に達した磁束はハウジング7を同方
向に通過して磁石9にもどり、ここに閉磁路を形成する
Therefore, the magnetic flux of the permanent magnet 9 directly interlinks with the armature winding 4 through the air gap 10 from the permanent magnet 9, further reaches the opposing housing 8 through the air gap 10a, and passes through the housing 8 in the circumferential direction. The magnetic flux that reaches the magnet through the air gap and the adjacent armature winding separated by the pitch of the magnet and the air gap passes through the housing 7 in the same direction and reaches the magnet 9. Return to form a closed magnetic path here.

電機子巻線4には永久磁石9からの磁束と、ブラシ6を
介して通電された電機子電流とでトルクが発生し、電機
子を回転させる。
Torque is generated in the armature winding 4 by the magnetic flux from the permanent magnet 9 and the armature current passed through the brush 6, causing the armature to rotate.

10はアルミニウムや銅のような非磁性で良導電性を有
する金属板で、電機子巻線の端面に対向するハウジング
8の内面にはり付けられる。
Reference numeral 10 denotes a non-magnetic and highly conductive metal plate such as aluminum or copper, which is attached to the inner surface of the housing 8 facing the end face of the armature winding.

ブラシ6、整流子5を介して巻線4に電流Iaが供給さ
れる。
A current Ia is supplied to the winding 4 via the brush 6 and commutator 5.

巻線4が回転するとブラシ6に接触する整流子5が切換
って第3図すに示す如く巻線4に流れる電流の向きが逆
になる。
When the winding 4 rotates, the commutator 5 in contact with the brush 6 switches so that the direction of the current flowing through the winding 4 is reversed as shown in FIG.

この瞬間に電流の急変が生じる巻線4aのまわりにこの
電流変化を阻げる方向、即ち第3図aに実線矢印で示す
方向に磁束φが発生する。
At this instant, a magnetic flux φ is generated around the winding 4a where the current suddenly changes in a direction that can prevent this current change, that is, in the direction shown by the solid arrow in FIG. 3a.

この磁束φが金属板10を通過しようとすると、金属板
10の表面に第3図aに点線矢印で示すように渦電流i
eが発生する。
When this magnetic flux φ tries to pass through the metal plate 10, an eddy current i appears on the surface of the metal plate 10 as shown by the dotted arrow in FIG.
e occurs.

この渦電流ieによって生ずる磁束はちょうど磁束φを
打消す方向に発生する。
The magnetic flux generated by this eddy current ie is generated in a direction that exactly cancels the magnetic flux φ.

巻線4aの巻数をnとすると電流変化の瞬間にこの巻線
4aに生じる誘起電圧eは と表わされるが、前述のようにしてφの一部が打消され
るので誘起電圧eが減少する。
When the number of turns of the winding 4a is n, the induced voltage e generated in the winding 4a at the moment of current change is expressed as follows.As described above, a part of φ is canceled, so the induced voltage e decreases.

誘起電圧eはn・φ=L−iなる関係からとも表わされ
るが、lは打消されることはないので、結局巻線4aの
インダクタンスLが減少したといえる。
The induced voltage e can also be expressed from the relationship n·φ=Li, but since l is not canceled out, it can be said that the inductance L of the winding 4a has decreased after all.

この結果、巻線4aが接続されている整流子片がブラシ
6からはなれる時に生ずるブラシ火花が生じなくなり、
整流特性が向上する。
As a result, brush sparks that occur when the commutator piece to which the winding 4a is connected are separated from the brush 6 are no longer generated.
Improves rectification characteristics.

第4図は縦軸にインダクタンスの変化率hα〕を、横軸
に同波数f(Hz)をとり、金属板の厚みを変えた時の
周波数に対するインダクタンスの変化率を表わしたもの
である。
FIG. 4 shows the rate of change in inductance with respect to frequency when the thickness of the metal plate is changed, with the vertical axis representing the rate of change in inductance hα] and the horizontal axis representing the same wave number f (Hz).

aは金属板なし、bは厚み0.057X7M、Cは0.
5mal、 dは1.□mi、 eは5.Q mxの場
合をそれぞれ示す。
a has no metal plate, b has a thickness of 0.057 x 7M, and C has a thickness of 0.
5mal, d is 1. □mi, e is 5. The cases of Q mx are shown respectively.

これでわかるように金属板の厚みを厚くすれば同波数に
関係なくインダクタンスを減少させることができる。
As you can see, by increasing the thickness of the metal plate, the inductance can be reduced regardless of the same wave number.

これは、回転機の回転数が低速でも高速でも、良好な整
流特性が得られ、効率のよい運転ができることを示して
いる。
This indicates that good rectification characteristics can be obtained and efficient operation can be achieved regardless of whether the rotation speed of the rotating machine is low or high.

一方、本実症例のように整流子5を構成する整流子片数
が少ない小型の直流機では、ブラシカバリングも2つ以
下となる。
On the other hand, in a small DC machine where the number of commutator pieces constituting the commutator 5 is small as in this actual case, the number of brush coverings is two or less.

このため、電機子巻線4の電流が脈動し、かつ整流中の
電流波形もひずみを生じ、ブラシを通じて過不足の短絡
電流iが第5図実線、鎖線矢印で示す如く流れるために
永久磁石9に対して変動磁束φ′が第5図紙面に直交す
る方向に発生する。
As a result, the current in the armature winding 4 pulsates, and the current waveform during rectification is also distorted, causing excessive or insufficient short-circuit current i to flow through the brushes as shown by solid lines and chain arrows in FIG. In contrast, a fluctuating magnetic flux φ' is generated in a direction perpendicular to the plane of FIG.

この結果電機子巻線4と永久磁石9との間に働く電磁力
が変化し、ハウジング7.8を加振し、特有の振動音を
発生する。
As a result, the electromagnetic force acting between the armature winding 4 and the permanent magnet 9 changes, causing the housing 7.8 to vibrate and producing a characteristic vibration sound.

しかし、第1図に示すように金属板10を設けると前述
の理由で変動磁束が減じるので電機子巻線4と永久磁石
9間の電磁力の変化を小さくすることができるので加振
力が弱まり、振動音が減少する効果がある。
However, if the metal plate 10 is provided as shown in FIG. 1, the fluctuating magnetic flux will be reduced for the reason mentioned above, and the change in electromagnetic force between the armature winding 4 and the permanent magnet 9 can be reduced, so that the excitation force can be reduced. This has the effect of reducing vibration noise.

第6図は永久磁石9の側面周囲にサーチコイルを巻装し
て、積分器を介して偏平型直流機運転中に測定した磁束
φ′の変動波形を示し、第6図aは金属板がない場合、
第6図すは3.5mmの金属板を第2図すに示す如く設
けた場合をそれぞれ示す。
Figure 6 shows the fluctuation waveform of the magnetic flux φ' measured through an integrator during operation of a flat type DC machine with a search coil wound around the side surface of the permanent magnet 9; If not,
Figure 6 shows the case where a 3.5 mm metal plate is provided as shown in Figure 2.

横線の間隔VはO,t Vである。The interval V between the horizontal lines is O,tV.

この実験により銅板を設けると磁束変動量が約50係減
少し、加振源のエネルギーを小さくしていることがわか
る。
This experiment shows that the provision of the copper plate reduces the amount of magnetic flux fluctuation by about 50 times, reducing the energy of the excitation source.

尚、金属板10は(実症例では銅板)第2図すに示すよ
うに磁石9のはまる穴を設けて、金属板全磁極にはめ込
むようにしてもよい。
Incidentally, the metal plate 10 (in the actual case, a copper plate) may be provided with holes into which the magnet 9 fits, as shown in FIG. 2, so that the metal plate 10 is fitted into all magnetic poles of the metal plate.

第4図は、円板状の電機子の両面に磁石を対向設置した
型式の偏平型直流機に本発明を適用したものである。
FIG. 4 shows the present invention applied to a flat type DC machine in which magnets are placed oppositely on both sides of a disc-shaped armature.

第2図すに示すように金属板を型成し、両方の磁石に金
属板をはめ込む。
A metal plate is molded as shown in Figure 2, and both magnets are fitted with the metal plate.

更に一方の金属板の外周を折曲げて電機子の周縁部を囲
むようにすると、コイルエンド部の鎖交磁束をも低減で
きる効果がある。
Furthermore, if the outer periphery of one metal plate is bent to surround the peripheral edge of the armature, there is an effect that the interlinkage magnetic flux at the coil end can also be reduced.

第7図a〜第7図Cは本発明をカップ状の無鉄心電機子
を有する謂所、低慣性電動機に適用した場合の実姉態様
を示す。
FIGS. 7a to 7c show a sister embodiment in which the present invention is applied to a so-called low-inertia electric motor having a cup-shaped ironless armature.

4は電機子巻線で、円筒状に形成してギャップワインデ
ィングとして無鉄心電機子巻線である。
4 is an armature winding, which is formed into a cylindrical shape and is a coreless armature winding as a gap winding.

この電機子は円筒状継鉄7aの内聞に適当間隔はなして
固定した磁石9と継鉄で囲まれた空間の中心に固定され
た電機子鉄心3aとのつくる円筒状空隙内に非接触状態
で挿入される。
This armature is placed in a non-contact state within a cylindrical gap created by a magnet 9 fixed at an appropriate interval inside the cylindrical yoke 7a and an armature core 3a fixed at the center of the space surrounded by the yoke. will be inserted.

10a、10bは非磁性で良導電性を有する金属円筒で
ある。
10a and 10b are metal cylinders that are nonmagnetic and have good conductivity.

10aは電機子鉄心3aの外周に固定し、10bは磁石
9の挿入される穴9aを持っていて、磁石9のまわりに
はめ込まれる。
10a is fixed to the outer periphery of the armature core 3a, and 10b has a hole 9a into which the magnet 9 is inserted, and is fitted around the magnet 9.

尚円筒状の金属板10を、磁石9の表面にはりつけても
よい。
Note that a cylindrical metal plate 10 may be attached to the surface of the magnet 9.

以上説明したように本発明によれば、電機子コイルのう
ち、磁極間に位置する整流中のコイルのインダクタンス
のみ減少させることができる様に、磁極間において電機
子表面に非磁性の良導電体を対面させ、そのギャップは
磁極表面と電機子表面との間のギャップと略等しくした
ので、電機子コイルの内整流中でない部分、即ち磁極と
対面する部分のコイルのインダクタンスを減少させるこ
となく整流中のコイルのインダクタンスのみを低減する
ことができ、従って脈動分を含む電流で運転される場合
においても極めて良好な整流特性を得ることができる。
As explained above, according to the present invention, a non-magnetic, highly conductive material is placed on the armature surface between the magnetic poles so that only the inductance of the rectifying coil located between the magnetic poles of the armature coil can be reduced. Since the gap is approximately equal to the gap between the magnetic pole surface and the armature surface, the armature coil can be rectified without reducing the inductance of the part of the armature coil that is not being commutated, that is, the part facing the magnetic pole. Only the inductance of the coil inside can be reduced, and therefore extremely good rectification characteristics can be obtained even when operating with a current that includes pulsation.

更に本発明では磁極間に設けた非磁性の良導電性金属板
を磁極と電機子との間のギャップと略等しいギャップを
隔てて電機子表面に対向させたので、整流中のコイルの
まわりに形成される磁束であって磁極を通らない磁束に
鎖交できその整流特性は著しく改善される。
Furthermore, in the present invention, since the non-magnetic, highly conductive metal plate provided between the magnetic poles is opposed to the armature surface with a gap approximately equal to the gap between the magnetic poles and the armature, The magnetic flux that is formed can be interlinked with the magnetic flux that does not pass through the magnetic poles, and its rectification characteristics are significantly improved.

更にまた、本発明では磁極表面に非磁性の良導電体層を
設けないので磁極表面と電機子表面との間のエアギャッ
プを従来のものより大きく設計する必要がなく、この点
で、回転機の性能の低下もない。
Furthermore, since the present invention does not provide a non-magnetic, highly conductive layer on the magnetic pole surface, there is no need to design the air gap between the magnetic pole surface and the armature surface to be larger than in the conventional case. There is no deterioration in performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の偏平型電動機に適用した一実帷例を示
す図面、第2図aは他の実帷例を示す図面、第2図すは
本発明になる金属板の形状の一例を示す図面、第3図a
は本発明の詳細な説明する為の図面、第3図すは電機子
巻線の整流作用を説明する為の図面、第4図は金属板の
厚さら本発明の効果に及ぼす影響を示す図面、第5図は
実帷例の効果を説明する為の図面、第6図a、第6図す
は実症例の効果を示す図面、第7図aは本発明を低慣性
電動機に適用した実帷例を示す図面、第7図すは円筒状
金属板の形状を示す図面、第7図Cは同じく他の金属筒
体を示す図面である。 4−・・・・・電機子巻線、5−・・・・−整流子、6
・・−・・・ブラシ、9・・・・・・磁石、10・・・
・・・金属板。
Fig. 1 is a drawing showing one practical example of a sheet applied to a flat motor of the present invention, Fig. 2a is a drawing showing another practical example, and Fig. 2 is an example of the shape of a metal plate according to the present invention. Drawing showing, Figure 3a
3 is a drawing for explaining the rectifying action of the armature winding, and FIG. 4 is a drawing for showing the effect of the thickness of the metal plate on the effect of the invention. , Fig. 5 is a drawing for explaining the effect of an actual case, Fig. 6a is a drawing showing the effect of an actual case, and Fig. 7a is an actual drawing in which the present invention is applied to a low inertia electric motor. FIG. 7 is a drawing showing an example of a envelope, FIG. 7 is a drawing showing the shape of a cylindrical metal plate, and FIG. 7C is a drawing showing another metal cylinder. 4-... Armature winding, 5-... Commutator, 6
...Brush, 9...Magnet, 10...
...Metal plate.

Claims (1)

【特許請求の範囲】[Claims] 1 電機子巻線を円板もしくは円筒状に成形してギャッ
プワインディングとした無鉄心回転子を有し、前記電機
子巻線の近傍に電機子の回転を阻げないように非磁性で
良導電性の金属板を設けたものにおいて、前記非磁性の
良導電性金属板を磁極間において、磁極表面を電機子表
面との間のギャップと略同じギャップを隔てて、前記電
機子表面に対向設置し、もって前記電機子の整流中のコ
イルを流れる電流の変化によって前記電機子コイルのま
わりに生じる磁束が前記薄板に交鎖するようにしたこと
を特徴とする無鉄心電機子を有する直流機。
1 It has a coreless rotor in which the armature winding is formed into a disc or cylindrical shape and is gap wound, and there is a non-magnetic and highly conductive rotor in the vicinity of the armature winding so as not to hinder the rotation of the armature. The non-magnetic and highly conductive metal plate is placed between the magnetic poles, and the magnetic pole surface is placed opposite to the armature surface with a gap substantially the same as the gap between the armature surface and the magnetic pole surface. A direct current machine having a coreless armature, characterized in that the magnetic flux generated around the armature coil due to a change in the current flowing through the coil during rectification of the armature intersects with the thin plate.
JP9512277A 1977-08-10 1977-08-10 DC machine with ironless armature Expired JPS5928138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9512277A JPS5928138B2 (en) 1977-08-10 1977-08-10 DC machine with ironless armature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9512277A JPS5928138B2 (en) 1977-08-10 1977-08-10 DC machine with ironless armature

Publications (2)

Publication Number Publication Date
JPS5430406A JPS5430406A (en) 1979-03-06
JPS5928138B2 true JPS5928138B2 (en) 1984-07-11

Family

ID=14129018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9512277A Expired JPS5928138B2 (en) 1977-08-10 1977-08-10 DC machine with ironless armature

Country Status (1)

Country Link
JP (1) JPS5928138B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815555A (en) * 1981-07-22 1983-01-28 Cosmo Co Ltd Visbreaker tar-containing asphalt composition
JPS6310665A (en) * 1986-06-30 1988-01-18 Nichireki Chem Ind Co Ltd Modified asphalt

Also Published As

Publication number Publication date
JPS5430406A (en) 1979-03-06

Similar Documents

Publication Publication Date Title
US6313558B1 (en) Electric rotary machine having concentrated winding stator
US3842300A (en) Laminated rotor structure for a dynamoelectric machine
JPS61280744A (en) Rotor with permanent magnet
WO2006047401A2 (en) Rotor-stator structure for electrodynamic machines
FR2543754B1 (en) ELECTROMAGNETIC ROTARY MACHINE WITH BRUSHLESS DIRECT CURRENT
JP2005130656A (en) Rotor of rotary electric machine
JP2000050590A (en) Dc brushless motor
KR102317325B1 (en) electric machine
JP5056920B2 (en) Coreless electromechanical device
JP2004007917A (en) Motor
JPH08126277A (en) Flat rotating machine
US5907205A (en) Constant reluctance rotating magnetic field devices with laminationless stator
JPS62293959A (en) Brushless dc motor
EP1810391B1 (en) Rotor-stator structure for electrodynamic machines
JPS5928138B2 (en) DC machine with ironless armature
JPH1189123A (en) Motor provided with auxiliary magnetic circuit
EP3282567A2 (en) Electric motor
JPH03164039A (en) Armature of rotary electric machine
CN214255874U (en) Motor and electric appliance
JP2002027707A (en) Electric blower
JPH08126275A (en) Core-less rotating machine
WO1994007295A1 (en) Dynamoelectric machine and stators therefor
JPH0426342A (en) Single-phase synchronous fan motor
JPS5914352A (en) Flat motor
JPS5939826Y2 (en) Alternator for speed detection