JPS592785B2 - external combustion engine - Google Patents

external combustion engine

Info

Publication number
JPS592785B2
JPS592785B2 JP2926678A JP2926678A JPS592785B2 JP S592785 B2 JPS592785 B2 JP S592785B2 JP 2926678 A JP2926678 A JP 2926678A JP 2926678 A JP2926678 A JP 2926678A JP S592785 B2 JPS592785 B2 JP S592785B2
Authority
JP
Japan
Prior art keywords
working fluid
air
cylinder
cycle
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2926678A
Other languages
Japanese (ja)
Other versions
JPS54123640A (en
Inventor
勇 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2926678A priority Critical patent/JPS592785B2/en
Publication of JPS54123640A publication Critical patent/JPS54123640A/en
Publication of JPS592785B2 publication Critical patent/JPS592785B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Description

【発明の詳細な説明】 この発明は空気又はヘリウムや水素等を作動流体とする
外燃機関に関するものであり、又カルノサイクルにでき
るだけ近い熱力学サイクルを行なうことのできる熱機関
を提供しようとするものである。
[Detailed Description of the Invention] This invention relates to an external combustion engine that uses air, helium, hydrogen, etc. as a working fluid, and also aims to provide a heat engine that can perform a thermodynamic cycle as close as possible to the Carno cycle. It is something.

熱機関の熱効率には限界があり、カルノサイクルの熱効
率が最大であるが、カルノサイクルは第6図のPV(圧
力、容積)線図に示す如く、熱機関の外部仕事を表わす
閉鎖曲線イ220、ハ二内の面積が狭く、やせている。
There is a limit to the thermal efficiency of a heat engine, and the Carno cycle has the highest thermal efficiency, but the Carno cycle has a closed curve 220 representing the external work of the heat engine, as shown in the PV (pressure, volume) diagram in Figure 6. , the inner area of the body is narrow and thin.

従って機械的仕事が小さく、十分な仕事を取シ出す為に
は、圧力、容積とも非常に大きくしなければならない。
Therefore, the mechanical work is small, and in order to extract sufficient work, both pressure and volume must be extremely large.

その為シリンダ容積、重量とも極端に大きくなってしま
う。
Therefore, both the cylinder volume and weight become extremely large.

これを小さな容積のシリンダで実理させ、熱効率がよく
、出力の大きな熱機関を作りだす事がこの発明の目的で
ある。
The purpose of this invention is to realize this with a small-volume cylinder and create a heat engine with good thermal efficiency and high output.

こ9発明の発想は第6図に示す如く2つの等温変化と2
つの断熱変化からなるカルノサイクルに等容過程を付は
加え、ト、チ、ハ及びホ、へ、イで示す面積が小さな細
い先端部分を切り落して、カルノサイクルに必要な行程
容積V1 を図示する如くV2に縮め、“しかも行程容
積V2を広げずに、ト、チ及びホ、への線で表わす等容
過程の線を先端450に近すげる事である。
The idea behind these nine inventions is that two isothermal changes and two
Add an isovolume process to the Carno cycle, which consists of two adiabatic changes, and cut off the narrow tip portions with small areas indicated by G, C, C, H, H, and A to illustrate the stroke volume V1 required for the Carno cycle. "Moreover, without expanding the stroke volume V2, the line of the isovolume process represented by the lines G, C, and E is brought closer to the tip 450.

云い換えればシリンダ容積は小さく、圧力差は大きくす
る為のアイデアである。
In other words, the idea is to keep the cylinder volume small and the pressure difference large.

先ず本発明の構造を図面に基づいて説明する。First, the structure of the present invention will be explained based on the drawings.

A及びBは2行程サイクル往復動ピストン機械である。A and B are two-stroke cycle reciprocating piston machines.

A1 y Bt はシリンダ、A23 B2はピスト
ン、A3jB3は吸気口、A4 、B4は排気口であ
る□ A55B5はシリンダヘッドに設けられた送気弁
であり、シリンダA、、B1 内で圧縮された作動流体
を空気加熱器に送る為の弁である。
A1 y Bt is the cylinder, A23 B2 is the piston, A3jB3 is the intake port, A4 and B4 are the exhaust ports □ A55B5 is the air supply valve provided in the cylinder head, and the compressed operation inside the cylinders A, B1 This is a valve for sending fluid to the air heater.

A6.B6はシリンダヘッドに設けられた空気噴出弁で
あり、空気加熱器で加熱され高温、高圧になった作動流
体をシリンダA、、B1 内に送り込むタイミングを規
制する為の弁である。
A6. B6 is an air jet valve provided in the cylinder head, and is a valve for regulating the timing at which working fluid heated by an air heater to a high temperature and high pressure is sent into the cylinders A, B1.

Cは空気加熱器であり、燃料燃焼装置と作動流体を通す
加熱管C1,C2よシなっている。
C is an air heater, which consists of heating tubes C1 and C2 through which the fuel combustion device and working fluid pass.

加熱管C1゜C2はそれぞれ独立しており、2つはつな
がっていない。
The heating tubes C1 and C2 are independent, and the two are not connected.

加熱管C1は送気弁A5 と空気噴出弁B6につながっ
ており、加熱管C2は送気弁B。
The heating pipe C1 is connected to the air supply valve A5 and the air jetting valve B6, and the heating pipe C2 is connected to the air supply valve B.

と空気噴出弁A6につながっている。and is connected to air jet valve A6.

Dは過給気であり、Dlはタービン、B2は圧縮機であ
る。
D is supercharging air, Dl is a turbine, and B2 is a compressor.

タービンD1 と圧縮機D2は同軸上にある。Turbine D1 and compressor D2 are coaxial.

排気口A4 、B4は過給機りのタービンD1側排気入
口D3につながっており、排気出口D4は冷却器Eに接
続している。
The exhaust ports A4 and B4 are connected to an exhaust inlet D3 on the turbine D1 side of the supercharger, and the exhaust outlet D4 is connected to a cooler E.

冷却器Eの出口は過給機りの圧縮機B2側空気入口D5
につながっており、空気出口D6は冷却器Fに接続して
いる。
The outlet of the cooler E is the air inlet D5 on the compressor B2 side of the supercharger.
The air outlet D6 is connected to the cooler F.

冷却器Fの出口は吸気口A3.B3と接続している。The outlet of the cooler F is the intake port A3. Connected to B3.

図に於いては吸気口B3の入口、及び排気口B4の出口
を切っであるが、これ等はそれぞれ冷却器Fの出口、及
び過給機りの排気入口D3につながっており、本発明は
密閉サイクルである。
In the figure, the inlet of the intake port B3 and the outlet of the exhaust port B4 are cut, but these are connected to the outlet of the cooler F and the exhaust inlet D3 of the supercharger, respectively. It is a closed cycle.

次に本発明の作動を図面に基づいて説明する。Next, the operation of the present invention will be explained based on the drawings.

説明を簡単にする為、2行程サイクル往復動ピストン機
械Aの作動から説明する。
To simplify the explanation, the operation of the two-stroke cycle reciprocating piston machine A will be explained first.

第1図に示す如くピストンA2が吸気口A3、及び排気
口A4 を通過して上昇すると圧縮行程となる、この時
送気弁A5、空気噴出弁A6は共に閉ざされている。
As shown in FIG. 1, when the piston A2 passes through the intake port A3 and the exhaust port A4 and rises, a compression stroke occurs, and at this time, both the air supply valve A5 and the air jet valve A6 are closed.

第2図に示す如くピストンA2が上昇し圧縮行程後期に
なると送気弁A5が開き、作動流体は空気加熱器C内の
加熱管C1に圧送され、燃料の定常的燃焼により加熱さ
れて高温、高圧になる。
As shown in Fig. 2, when the piston A2 rises and enters the latter half of the compression stroke, the air supply valve A5 opens, and the working fluid is forced into the heating pipe C1 in the air heater C, heated by steady combustion of fuel, and heated to a high temperature. The pressure becomes high.

空気加熱器C内の加熱器C1に押し込まれた作動流体は
第5図に示す如く2行程サイクル往復動ピストン機械B
のピストンB2が上死点に達するまで、即ちクランクシ
ャフトが半回転する間C1内に閉じ込められ加熱される
The working fluid forced into the heater C1 in the air heater C is transferred to a two-stroke cycle reciprocating piston machine B as shown in FIG.
The piston B2 is confined within C1 and heated until it reaches the top dead center, that is, while the crankshaft makes half a revolution.

次に第3図に示す如くピストンA3が上死点に達すると
送気弁A5は閉ざされ、空気噴出弁A6が開く、A6が
開くと前行程に於いて2行程サイクル往復動ピストン機
械Bにより圧縮され、クランクシャフトが半回転する間
、即ち2行程サイクル往復動ピストン機械Aに於いて圧
縮行程が行なわれていた間、空気加熱器C内で加熱され
ていた加熱管C2内の作動流体が、シリンダA1 内に
噴出する。
Next, as shown in Fig. 3, when the piston A3 reaches the top dead center, the air supply valve A5 is closed and the air injection valve A6 is opened. During the compression stroke of the crankshaft, that is, during the compression stroke in the two-stroke cycle reciprocating piston machine A, the working fluid in the heating tube C2 heated in the air heater C is compressed. , ejects into cylinder A1.

即ちこの時点で作動流体の交換が行なわれる。That is, at this point, the working fluid is replaced.

シリンダA1内に噴出した作動流体は膨張しピストンA
2を押し下げ膨張行程を行なう。
The working fluid ejected into the cylinder A1 expands and the piston A
2 to perform the expansion stroke.

膨張行程が進みピストンA2が成る程度下降するまで、
作動流体の噴出が続くが、第4図に示す如く膨張行程途
中に於いて空気噴出弁A6が閉ざされると、シリンダA
1 内の作動流体は高熱源から切り離され内部エネルギ
を消費[7て膨張を続は外部仕事を行なう。
Until the expansion stroke progresses and piston A2 descends to the extent that
The working fluid continues to be ejected, but when the air ejection valve A6 is closed during the expansion stroke as shown in FIG.
The working fluid within 1 is separated from the high heat source and consumes internal energy [7] and then expands and performs external work.

そして第5図に示す如くピストンA2が下死点近くに下
降すると、先ず排気口A4が開き作動流体は排気口A4
からシリンダA1外へ排出される。
As shown in FIG. 5, when the piston A2 descends to near the bottom dead center, the exhaust port A4 first opens and the working fluid flows through the exhaust port A4.
is discharged from the cylinder A1.

次に吸気口A3が開くと過給機りにより圧縮され冷却器
Fで温度を下げられた新たな作動流体が吸気口A3から
送り込まれ掃気を行なう。
Next, when the intake port A3 opens, new working fluid, which has been compressed by the supercharger and whose temperature has been lowered by the cooler F, is sent through the intake port A3 to perform scavenging.

この時点、即ちピストンA2が下死点、ピストンB2が
上死点にある時、2行程サイクル往復動ピストン機械B
の空気噴出弁B6が開き、ピストンA2が膨張行程を行
なっていた間(ピストンB2が圧縮行程を行なっていた
間)加熱管C1内で加熱されていた作動流体がシリンダ
B1内に噴出する。
At this point, when piston A2 is at the bottom dead center and piston B2 is at the top dead center, the two-stroke cycle reciprocating piston machine B
The air jet valve B6 opens, and the working fluid heated in the heating tube C1 while the piston A2 was performing the expansion stroke (while the piston B2 was performing the compression stroke) is jetted into the cylinder B1.

排気口A4を出た作動流体は過給機りに送られタービン
D1 を回転させる。
The working fluid exiting the exhaust port A4 is sent to the supercharger and rotates the turbine D1.

タービンD1 を回転させて排気出口D4 を出た作動
流体は冷却器Eに流れ、ここで放熱を行なう。
The working fluid that rotates the turbine D1 and exits the exhaust outlet D4 flows into the cooler E, where it radiates heat.

冷却器E内で冷却された作動流体は、過給機りに吸い込
まれ圧縮機D2で圧縮されて冷却機Fに送り込まれる。
The working fluid cooled in the cooler E is sucked into the supercharger, compressed by the compressor D2, and sent to the cooler F.

圧縮により上昇した作動流体の温度はここで下げられ、
次に作動流体は吸気口A3よりシリンダA1内に送り込
まれる。
The temperature of the working fluid, which has increased due to compression, is lowered here,
Next, the working fluid is sent into the cylinder A1 from the intake port A3.

以上の作動が2行程サイクル往復動ピストン機械A、B
に於いて交互に行なわれる。
The above operation is a two-stroke cycle reciprocating piston machine A, B
This is done alternately.

次に本発明の理想熱力学サイクルを第1図のpv(圧力
、容積)線図、第8図のTS(温度、エントロピー)線
図に基づいて説明する。
Next, the ideal thermodynamic cycle of the present invention will be explained based on the PV (pressure, volume) diagram in FIG. 1 and the TS (temperature, entropy) diagram in FIG.

先ず作動流体(空気又はヘリウムや水素)はシリンダA
1.B、の外で過給機りの圧縮機D2により圧縮され圧
力を増すが、冷却器Fにより熱を奪われ近似的に等温圧
縮となる。
First, the working fluid (air, helium, or hydrogen) is in cylinder A.
1. B, the compressor D2 of the supercharger compresses the compressor to increase the pressure, but heat is removed by the cooler F, resulting in approximately isothermal compression.

この過程は第7図のPv線図、第8図のTS線図に於い
て、イー口で示す。
This process is shown by E in the Pv diagram in FIG. 7 and the TS diagram in FIG.

次にシリンダA1又はB1 に送り込まれた作動流体は
ピストンA2.B2の上昇により圧縮される。
Next, the working fluid sent to cylinder A1 or B1 is transferred to piston A2. It is compressed by the rise of B2.

この過程は第7図、第8図に於いてローハで示す断熱圧
縮過程である。
This process is an adiabatic compression process indicated by ROHA in FIGS. 7 and 8.

ピストン上昇行程後期に於いて、送気弁A5.B、が開
くと作動流体は空気加熱器Cに送り込まれ、上死点近く
で送気弁A5.B5が閉じるとクランクシャフトが半回
転する間ゆっくりと容積一定で加熱される。
In the latter half of the piston's upward stroke, air supply valve A5. When A5. When B5 is closed, the crankshaft is heated slowly and with a constant volume while the crankshaft rotates half a revolution.

第7図、第8図に於いてハーニで示す等等加熱の過程で
ある。
This is the process of iso-heating as shown by hani in FIGS. 7 and 8.

本発明に於いて高熱源からの受熱のプロセスに等等加熱
の過程を加えたのは次の理由による。
The reason why the process of equal heating is added to the process of receiving heat from a high heat source in the present invention is as follows.

カルノサイクルでは高熱源の温度に対し無限小の温度差
まで断熱圧縮により作動流体の温度を上げてやらなけれ
ばならない。
In the Carno cycle, the temperature of the working fluid must be raised by adiabatic compression to an infinitesimal temperature difference with respect to the temperature of the high heat source.

これでは外部から機関に対し、してやらなければならな
い仕事が犬き過き゛て実際」−は不可能である。
In fact, it would be impossible to do this because the work that must be done from the outside to the institution would be too much.

従って断熱圧縮は成る程度の圧縮比でとどめ、燃料の燃
焼による加熱により作動流体の内部エネルギを増加させ
、圧力と温度を高めた方が得策である。
Therefore, it is better to keep the adiabatic compression at a certain compression ratio and increase the internal energy of the working fluid through heating by combustion of the fuel, thereby raising the pressure and temperature.

云い換えると、内部エネルギの変化量は熱力学の第一法
則により ΔU=Q−W で表わされる、この内部エ
ネルギを増加させる手段として、カルノサイクルは熱量
Qをまったく与えず断熱圧縮による外部から系への負の
仕事にのみ頼っている、本発明に於いては、外部から系
えの仕事、即ち断熱圧縮は成る程度にとどめ、等等加熱
によシ系え熱量を与える事により内部エネルギの変化量
ΔUの増加を図っているのである。
In other words, the amount of change in internal energy is expressed as ΔU=Q-W according to the first law of thermodynamics.As a means of increasing this internal energy, the Carno cycle does not provide any heat Q at all, but instead uses adiabatic compression to In the present invention, the external work, that is, adiabatic compression, is limited to the extent that it can be done, and the internal energy is reduced by adding additional heat to equal heating. The aim is to increase the amount of change ΔU.

ある状態から、他の状態への内部エネルギの変化量は、
途中の道すじには関係なく、初めと終わりの状態によっ
てのみ決まるから、内部エネルギを増加させる方法とし
てはカルノサイクルに於ける状態変化より、本発明に於
ける状態変化の方が、現実の熱機関では実現しやすいと
考えるのである。
The amount of change in internal energy from one state to another is
Since it is determined only by the state at the beginning and end, regardless of the path along the way, the state change in the present invention is a better way to increase the internal energy than the state change in the Carno cycle. I think this is easy to achieve.

そしてこの容積一定での加熱をできるだけゆっくり行な
わせる事により非可逆性を少なりシフ、又過給により高
温側と低温側の圧力差を大きくした事が本発明の1つの
ポイントである。
One of the points of the present invention is to reduce the irreversibility by performing heating at a constant volume as slowly as possible, and to increase the pressure difference between the high temperature side and the low temperature side by supercharging.

次に空気噴出弁A6.B6が開くと高温、高圧になった
作動流体はシリンダA1 、B1内に噴出し膨張する、
この時作動流体は加熱器C1即ち高熱源につながってい
る為熱量が与えられボイルの法則に従い温度一定の状態
変化を行なって、第7図、第8図に示す二一ホの等温膨
張となる。
Next, air jet valve A6. When B6 opens, the high-temperature, high-pressure working fluid is ejected into the cylinders A1 and B1 and expands.
At this time, the working fluid is connected to the heater C1, that is, a high heat source, so it is given heat and undergoes a constant temperature change according to Boyle's law, resulting in isothermal expansion as shown in Figures 7 and 8. .

即ちこの過程で受熱した熱量は全部外部仕事に変えられ
る。
That is, all the heat received in this process is converted into external work.

空気噴出弁A6 、B6が閉じると作動流体は高熱源か
ら切り離され内部エネルギを消費してシリンダ内で断熱
膨張し外部に仕事を続ける。
When the air injection valves A6 and B6 are closed, the working fluid is separated from the high heat source, consumes internal energy, expands adiabatically within the cylinder, and continues to perform work to the outside.

この過程は第7図、第8図に於いてホーへで示す。This process is shown by hohe in FIGS. 7 and 8.

次に排気口A、、B4が開くと作動流体はシリンダA1
.B1外へ排出され、冷却器Eで冷却される、この低熱
源への熱の移動は容積一定で行われ第7図のPV線図に
示すヘート、第8図のTS線図に示すヘーロの等容赦熱
となる。
Next, when the exhaust ports A, B4 open, the working fluid flows into the cylinder A1.
.. This heat transfer to the low heat source, which is discharged outside B1 and cooled by the cooler E, is carried out at a constant volume, and the heat is transferred to the heat source shown in the PV diagram in Fig. 7 and the hero shown in the TS diagram in Fig. 8. It becomes an unrelenting fever.

しかしシリンダA、、B、 を出た作動流体は冷却器
Eに入る前に過給機りに送り込まれ、ここで断熱膨張を
続けてタービンD1を廻し、シリンダA1.B1に吸気
される作動流体を圧縮する仕事、即ち過給を行なう為、
第7図のPv線図に示すヘーイートーへで囲まれる面積
の仕事量、第8図のTS線図に示すヘーローイーへで囲
まれる熱量は有効仕事として回収される。
However, the working fluid exiting the cylinders A, B, is sent to the supercharger before entering the cooler E, where it continues to undergo adiabatic expansion to rotate the turbine D1, and the working fluid flows through the cylinders A1, . In order to perform the work of compressing the working fluid taken into B1, that is, supercharging,
The amount of work in the area surrounded by the area shown in the Pv diagram in FIG. 7 and the amount of heat surrounded by the area shown in the TS diagram in FIG. 8 are recovered as effective work.

即ち第6図で説明したカルノサイクルを等容変化で切り
落1〜たホーヘーイーホで囲まれた面積はシリンダ容積
を大きくする事なく付は加える事ができるのである。
That is, the area surrounded by 1~hoheeeho, which is obtained by cutting off the Carno cycle explained in FIG. 6 with equal volume change, can be added without increasing the cylinder volume.

又第6図のトーチ−ハートで囲まれた仕事量を示す部分
、云い換えれば第8図のハーチーニーハで囲まれたカル
ノサイクルより低下する熱量を示す部分は、過給により
圧縮比が高まり温度も高くなって、その面積を小さくす
る事ができるのである。
In addition, the part surrounded by the torch heart in Figure 6, which indicates the amount of work, or in other words, the part surrounded by the heart of the torch in Figure 8, which shows the amount of heat that is lower than the Carno cycle, shows that the compression ratio increases due to supercharging and the temperature also decreases. This makes it possible to increase the height and reduce the area.

そうしてタービンD1 を回転させた作動流体はタービ
ンD1内で断熱膨張し低熱源との温度差が少なくなって
から、低熱源である冷却器Eに送られ、ここで低熱源−
・の熱の移動を行なう。
The working fluid that rotates the turbine D1 expands adiabatically within the turbine D1, and after the temperature difference between it and the low heat source becomes small, it is sent to the cooler E, which is a low heat source, and here it is sent to the cooler E, which is a low heat source.
・Transfers heat.

このように本発明は密閉サイクルである為過給による効
果が大きく、高温側の圧力と温度を高め、低温側の圧力
と温度を低める事ができて熱効率及び仕事量が向上する
As described above, since the present invention is a closed cycle, the effect of supercharging is large, and the pressure and temperature on the high temperature side can be increased and the pressure and temperature on the low temperature side can be lowered, improving thermal efficiency and workload.

即ち本発明はシリンダ容積は小さく保ち圧力差を大きく
する事が可能となり、しかもカルノサイクルに極めて近
い熱力学サイクルを行なう事ができるので、従来の熱機
関より熱効率がよく、又出力も大きな熱機関となる。
In other words, the present invention makes it possible to keep the cylinder volume small and increase the pressure difference, and also to perform a thermodynamic cycle that is very similar to the Carno cycle, resulting in a heat engine that has better thermal efficiency and higher output than conventional heat engines. becomes.

以上の事から本発明の効果を列記すると次の如くになる
Based on the above, the effects of the present invention are listed as follows.

1)本発明はカルノサイクルに極めて近い熱力学サイク
ルを行なう為極めて熱効率がよい。
1) The present invention performs a thermodynamic cycle that is very similar to the Carno cycle, so it has extremely high thermal efficiency.

従って省エネルギエンジンとなる。Therefore, it becomes an energy saving engine.

11)2行程サイクル往復動ピストン機械を外燃機関に
適用しているため1気筒当り1回転に1度出力を取り出
す事ができる上、過給により高温側と低温側の圧力差及
び温度差が増す為、小型高出力エンジンとなる。
11) Since a two-stroke cycle reciprocating piston machine is applied to an external combustion engine, output can be extracted once per rotation per cylinder, and supercharging reduces the pressure difference and temperature difference between the high temperature side and the low temperature side. Because of this, it becomes a small high output engine.

111)外燃機関である為多種多様のエネルギを使用で
きる。
111) Since it is an external combustion engine, it can use a wide variety of energy.

vl)外燃機関であり、燃料の燃焼が定常的である為、
排出ガスがきれいである。
vl) Since it is an external combustion engine and the combustion of fuel is steady,
Exhaust gas is clean.

■)外燃機関である為、混合気の爆発がないので、騒音
、振動が少なく静粛な機関である。
■) Since it is an external combustion engine, there is no explosion of the mixture, so it is a quiet engine with little noise and vibration.

以上本発明は燃料選択の自由、省エネルギ、低燃費、排
出ガス浄化、騒音公害防止等現代社会の要請に答え得る
熱機関である。
As described above, the present invention is a heat engine that can meet the demands of modern society such as freedom of fuel selection, energy saving, low fuel consumption, exhaust gas purification, and noise pollution prevention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の構造及び作動を示す基本系統
図、第6図は本発明の発想をカルノサイクルと比較して
説明する為のPv線図、第7図は本発明の理想熱力学サ
イクルを示すPv線図、第8図は同じくTS線図。 図に於いてA、B・・・2行程サイクル往復動ピストン
機械、A1 、B1・・・シリンダ、A2 、B2・・
・ピストン、A3 、B3・・・吸気口、A4 、B4
・・・排気口、A5 、B5・・・送気弁、A6.B
6・・・空気噴出弁、C・・・空気加熱器、C1、C2
・・・加熱管、D・・・過給機、Dl・・・タービン、
B2・・・圧縮機、B3・・・排気入り、 B4・・・
排気出口、B5・・・空気入口、B6・・・空気出口、
E、F・・・冷却器、Vl ・・・カルノ熱機関に必要
な行程容積、v2・・・カルノ熱機関より小さくする事
ができる本発明の行程容積。
Figures 1 to 5 are basic system diagrams showing the structure and operation of the present invention, Figure 6 is a Pv diagram for explaining the idea of the present invention in comparison with the Carno cycle, and Figure 7 is a diagram of the present invention. A Pv diagram showing an ideal thermodynamic cycle, and FIG. 8 is a TS diagram as well. In the figure, A, B...2-stroke cycle reciprocating piston machine, A1, B1... cylinder, A2, B2...
・Piston, A3, B3...Intake port, A4, B4
...Exhaust port, A5, B5...Air supply valve, A6. B
6...Air jet valve, C...Air heater, C1, C2
...Heating tube, D...Supercharger, Dl...Turbine,
B2...Compressor, B3...Exhaust intake, B4...
Exhaust outlet, B5... air inlet, B6... air outlet,
E, F... Cooler, Vl... Stroke volume required for the Carnot heat engine, v2... Stroke volume of the present invention that can be made smaller than the Carnot heat engine.

Claims (1)

【特許請求の範囲】 1 複数の2行程サイクル往復動ピストン機械、複数の
加熱管をもつ空気加熱器、過給機、2つの冷却器、これ
等よシなる空気又はヘリウムや水素を作動流体とする密
閉サイクル外燃機関に於いて2行程サイクル往復動ピス
トン機械のシリンダ頭部に、圧縮された作動流体を空気
加熱器に送シ出す為の送気弁、及び空気加熱器で加熱さ
れ高温、高圧になった作動流体をシリンダ内に噴出させ
る空気噴出弁をそれぞれ設け、一方のピストン機械の送
気弁に接続した加熱管は他方のピストン機械の空気噴出
弁に接続させ、先ず作動流体を過給機で圧縮した後、冷
却器で冷却し近似的に等温圧縮を行ない、その作動流体
をシリンダ内で断熱圧縮し、圧縮行程後期に於いて送気
弁を開いて作動流体を空気加熱器に送り込み、クランク
軸が手回転する間ゆっくり等容加熱を行ない、もう一方
のピストン機械のピストンが上死点に来た時、そのピス
トン機械の空気噴出弁を開いてシリンダ内に作動流体を
噴出させ、作動流体を交換して等温膨張を行なわせ、膨
張行程途中で空気噴出弁を閉じて作動流体に断熱膨張を
行なわせ、下死点付近に於いて排気口が開くと作動流体
をシリンダ外部に排出し、吸気口より新たな作動流体を
シリンダ内に圧送して掃気を行ない、排気口を出た作動
流体を過給機のタービンに送り込んで断熱膨張を続けさ
せる事により過給機の圧縮機を回転させにの排気。 を冷却器に送り込んで放熱を行なわせ、冷却された作動
流体を過給機の圧縮機に送り込む事により1サイクルを
閉じる。 以上の熱力学サイクルを行なう外燃機関。
[Claims] 1. A plurality of two-stroke cycle reciprocating piston machines, an air heater with a plurality of heating tubes, a supercharger, two coolers, etc., using air or helium or hydrogen as a working fluid. In a closed cycle external combustion engine, there is an air supply valve at the cylinder head of the two-stroke cycle reciprocating piston machine to send the compressed working fluid to the air heater, and the air heater heats the fluid to a high temperature. Each cylinder is equipped with an air jet valve that jets high-pressure working fluid into the cylinder, and the heating tube connected to the air supply valve of one piston machine is connected to the air jet valve of the other piston machine. After compression in the feeder, it is cooled in a cooler to perform approximately isothermal compression, the working fluid is adiabatically compressed in the cylinder, and in the latter half of the compression stroke, the air supply valve is opened to transfer the working fluid to the air heater. While the crankshaft is being rotated by hand, the piston is slowly heated isovolumically, and when the piston of the other piston machine reaches top dead center, the air jet valve of that piston machine is opened and the working fluid is jetted into the cylinder. , the working fluid is replaced to perform isothermal expansion, the air jet valve is closed during the expansion stroke to allow the working fluid to perform adiabatic expansion, and when the exhaust port opens near the bottom dead center, the working fluid is released outside the cylinder. After exhausting the air, new working fluid is pumped into the cylinder from the intake port to scavenge air, and the working fluid that has exited the exhaust port is sent to the turbocharger turbine to continue adiabatic expansion, thereby improving the turbocharger compressor. Rotate the exhaust. The fluid is sent to the cooler to dissipate heat, and the cooled working fluid is sent to the compressor of the supercharger to close one cycle. An external combustion engine that performs the above thermodynamic cycle.
JP2926678A 1978-03-16 1978-03-16 external combustion engine Expired JPS592785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2926678A JPS592785B2 (en) 1978-03-16 1978-03-16 external combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2926678A JPS592785B2 (en) 1978-03-16 1978-03-16 external combustion engine

Publications (2)

Publication Number Publication Date
JPS54123640A JPS54123640A (en) 1979-09-26
JPS592785B2 true JPS592785B2 (en) 1984-01-20

Family

ID=12271467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2926678A Expired JPS592785B2 (en) 1978-03-16 1978-03-16 external combustion engine

Country Status (1)

Country Link
JP (1) JPS592785B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905728B1 (en) * 2006-09-11 2012-11-16 Frederic Thevenod HYBRID ENGINE WITH EXHAUST HEAT RECOVERY

Also Published As

Publication number Publication date
JPS54123640A (en) 1979-09-26

Similar Documents

Publication Publication Date Title
JP2524139B2 (en) Internal combustion engine and operating method thereof
US6095100A (en) Combination internal combustion and steam engine
US5228415A (en) Engines featuring modified dwell
US6340004B1 (en) Internal combustion engine with regenerator and hot air ignition
WO2009066178A4 (en) Heat engines
US6606970B2 (en) Adiabatic internal combustion engine with regenerator and hot air ignition
US20100307432A1 (en) Cylinder linkage method for a multi-cylinder internal-combustion engine and a multicylinder linkage compound internalcombustion engine
JP2005509795A (en) Static regenerator, reciprocating reciprocating engine
US3591958A (en) Internal combustion engine cycle
US4817388A (en) Engine with pressurized valved cell
US7004115B2 (en) Internal combustion engine with regenerator, hot air ignition, and supercharger-based engine control
US5199262A (en) Compound four stroke internal combustion engine with crossover overcharging
US2249997A (en) Internal combustion method
JP4286419B2 (en) Piston type internal combustion engine
US3143850A (en) Supercharged integral compression engine
JPS592785B2 (en) external combustion engine
CN103104370B (en) Single-cylinder three-valve entropy circulation engine
JPH0338410Y2 (en)
JP3077398B2 (en) 2-4 stroke switching engine
RU2477375C2 (en) Method of piston engine cycling and piston engine
US6799563B1 (en) Two stroke internal combustion engine
WO1999030017A1 (en) Internal combustion engine
JPS61190125A (en) Complete expansion type internal-combustion engine
RU101092U1 (en) HEAT ENGINE
JP3123190B2 (en) Two-stroke engine with turbocharger