JPS5926511A - Device for spinning in electric field - Google Patents

Device for spinning in electric field

Info

Publication number
JPS5926511A
JPS5926511A JP13464482A JP13464482A JPS5926511A JP S5926511 A JPS5926511 A JP S5926511A JP 13464482 A JP13464482 A JP 13464482A JP 13464482 A JP13464482 A JP 13464482A JP S5926511 A JPS5926511 A JP S5926511A
Authority
JP
Japan
Prior art keywords
electric field
spinning
spinneret
spun yarn
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13464482A
Other languages
Japanese (ja)
Other versions
JPS6353281B2 (en
Inventor
Tadashi Konishi
小西 忠
Takatoshi Kuratsuji
倉辻 孝俊
Tsutomu Kiriyama
勉 桐山
Kazumi Okawa
大河 和己
Katsuo Kunugi
功刀 克男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP13464482A priority Critical patent/JPS5926511A/en
Publication of JPS5926511A publication Critical patent/JPS5926511A/en
Publication of JPS6353281B2 publication Critical patent/JPS6353281B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain yarn having controlled molecular orientation, by setting an electric field generator separated from a spinneret, applying an electric field approximately parallel to spun yarn to it. CONSTITUTION:The electric field generator 2 separated from the spinneret 1 is set right below the spinneret 1, and an electric field approximately parallel to the spun yarn Y is applied to it. The electric field generator 2, for example, consists of a pair of the electrodes 5 and 5' and the insulating material 6 to support them. The chamber 7 consisting of the electrodes 5 and 5', and the insulating material 6 is preferably sealed in a gas (e.g., sulfur hexafluoride, nitrogen, etc.) to prevent corona discharge. The electric field generated may be direct current or alternating current, and the field strength is preferably >=1KV/cm. The distance between the electrodes is preferably <=30cm.

Description

【発明の詳細な説明】 本発明は電界紡糸装置に関する。その目的とするところ
は電界によって紡出糸条の分子配向に影響を与え、配向
の制御された繊維を得るための紡糸装置を提供するKあ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrospinning apparatus. The purpose is to provide a spinning device for obtaining fibers with controlled orientation by influencing the molecular orientation of the spun yarn using an electric field.

従来より人造繊維を製造するには、まず紡糸1糧で分子
配向のあまり進行していない未延伸糸な延伸、熱処叩し
て配向、結晶化させる方法が一般的にとられている。近
年釦なって3000〜4000m/分という比較的高速
の紡糸速度で紡糸を行ない1分子をある程度配向させた
部分配向糸(poy)を得た後、わずかな延伸と仮撚と
を同時に行なう方゛法(POY−DTY加工法)が行な
われ始めている。更Kl近に至っては、高配向糸を延伸
することなく一段で得ようとする超高速紡糸が研究され
ている。しかし、この方法にあっては、分子の全体とし
ての配向けかなりの水準まで到達するが、非晶部の分子
の乱れは、従来の未延伸糸を延伸して得られた繊維より
も大きくなることがわかってきた。
Conventionally, in order to produce man-made fibers, a method has generally been adopted in which first, an undrawn yarn in which the molecular orientation has not progressed very much is drawn using a single spinning material, and then subjected to heat treatment for orientation and crystallization. In recent years, a method has been developed in which a partially oriented yarn (poy) in which one molecule is oriented to some degree is obtained by spinning at a relatively high spinning speed of 3000 to 4000 m/min, and then a slight stretching and false twisting are performed at the same time. (POY-DTY processing method) is beginning to be implemented. In order to reach even higher Kl, ultrahigh-speed spinning is being studied to obtain highly oriented yarns in one step without drawing. However, in this method, although the overall orientation of the molecules reaches a considerable level, the disorder of the molecules in the amorphous region is greater than in the fiber obtained by drawing conventional undrawn yarn. I've come to understand that.

他方、従来の紡糸法によって得られた繊維を高い張力を
かけながら急速に加熱と冷却をくり返す、いわゆるゾー
ン延伸法や、その後に高い張力をかけながら熱処理する
ゾーン熱処理を行い、ポリマーののび切り釦結晶組織か
らなる高弾性率、高強力繊維を得ようとする考え方があ
る(例えばPa、雑学会誌、第38巻、第6号、第25
7頁(1982))。
On the other hand, the so-called zone drawing method, in which fibers obtained by conventional spinning methods are rapidly heated and cooled while applying high tension, and zone heat treatment, in which the fibers are subsequently heat-treated while applying high tension, are used to stretch the polymer. There is a way of thinking to obtain high elastic modulus and high strength fibers consisting of button crystal structure (for example, Pa, Journal of Japanese Society, Vol. 38, No. 6, No. 25).
7 (1982)).

しかしこの方法においては、溶融ポリマー流を冷却して
繊16Iに変え、再び加熱したり冷却したりする点にお
いて省エネルギー的製糸法とは言えないばかりか、かか
るゾーン延伸、ゾーン熱処理法で得られる繊維の物性は
、最初の紡糸段階での原糸の配向状態に左右されるとい
う一限界があるつ このよ5に紡出糸条の分子配向を制御するということは
極めて重要な技術となつ【きている。
However, in this method, the molten polymer stream is cooled and converted into fibers 16I, and not only is it not an energy-saving method in that it is heated and cooled again, but also the fibers obtained by such zone drawing and zone heat treatment methods are One limitation is that the physical properties of spun fibers depend on the orientation of the raw fibers at the initial spinning stage.5 Therefore, controlling the molecular orientation of spun yarns has become an extremely important technology. ing.

一方、紡糸口金を一つの電極とし、口金下方に対極を設
け、その間に高電圧をかけて紡糸する研究もなされてい
る(例えばジャーナルオブボリマーサイエンス、ポリマ
ーフイジツクスエデイション(J、 Polym、 S
et、 I’olym、 Phys、Ed、+第19巻
、第909頁(1981))。この方法は、紡糸時に紡
出中の糸条に電界をかけるものであるが、紡糸口金とそ
の対極との間に電圧をかけているので、紡糸パンク本体
との絶縁のために複雑な構造をとらなくてはならず、工
業的な実施には不適当であるばかりか、紡糸直後の極め
て分子運てしまい、紡出糸条の分子配向を制御するのが
困難である。
On the other hand, research has also been conducted in which the spinneret is used as one electrode, a counter electrode is provided below the spinneret, and a high voltage is applied between them for spinning (for example, Journal of Polymer Science, Polymer Physics Edition (J, Polym. S
et, I'olym, Phys, Ed, + vol. 19, p. 909 (1981)). This method applies an electric field to the yarn being spun during spinning, but since a voltage is applied between the spinneret and its opposite electrode, a complicated structure is required to insulate it from the spinning puncture body. Not only is this method unsuitable for industrial implementation, but it also causes a large amount of molecular transport immediately after spinning, making it difficult to control the molecular orientation of the spun yarn.

本発明者らは、紡出糸条に電界を作用させて分子配向を
制御する装置について、倹約を取ねた結果、電界発生装
置を紡糸口金から分離して設けることにより、装置が簡
素化され、しかも分子配向の制御も容易となることを見
出し、本発明に到達した。
The present inventors tried to be frugal with regard to the device that controls molecular orientation by applying an electric field to the spun yarn, and as a result, the device was simplified by providing the electric field generating device separately from the spinneret. Furthermore, the present invention was achieved by discovering that the molecular orientation can be easily controlled.

即ち、本発明は、紡糸口金から、巻取装置までの間に1
紡出糸灸に対してほぼ5F行方向の電気力線を生ぜしめ
、かつ紡糸口金とは分離された電界発生装置を設けたこ
とを1時機とする電界紡糸装置である。
That is, in the present invention, one
This electrospinning device is equipped with an electric field generating device that generates electric lines of force approximately in the 5F row direction for spun yarn moxibustion, and is separated from the spinneret.

以下、本発明を図面により説明する。Hereinafter, the present invention will be explained with reference to the drawings.

第1図は、溶融紡糸の除に用いる本発明装置の一例を示
すものであり、1は紡糸口金、又は電界発生装置、3.
3′は引取ゴデツトローラ、4は惟取装置である。紡糸
口金から溶融吐出された糸条Yは、引取ゴデツトローラ
3.3′により、一定の紡糸速度で引取られ、巻取装置
4に巻取られる。紡出糸条YK対しては、紡糸口金lの
直下に設けた電界発生装置2により、はぼ平行らなり、
電極5.5′と絶縁体6によって形成される室7には、
コロナ放電を防止するだめのガスが封入されている。コ
ロナ放電防止用ガスとし【は、六弗化イオウ、窒素等が
用いられるが、低電圧の場合は空気でもさしつかえない
。8はコロナ放電防止用ガスの導入口、9は直流電源で
ある。電極5.5′は通常、中心部に糸条通路10.1
0′を股げた円板状のものが用いられ、その材質は銅、
アルミニウム、異給、ステンレス等が好ましく、特に不
純物の含有!11°が少ないものがよい。電極5.5′
の形状は、高7に圧をかけるので部分的な電ゲー集中が
起らぬ様、できるだけ平板状のものが好ましいが、場合
によってドーナツ状でも中空円筒状、中空円錐袷状のも
のでもよい。糸Φ通路l0110′は、紡出糸条YKか
かる電界の強さをできるだけ太き(するために、紡出糸
条Yが接触しない範囲で、できるだけ小さくするのが望
ましい。
FIG. 1 shows an example of the apparatus of the present invention used for melt spinning, in which 1 is a spinneret or an electric field generating device, 3.
3' is a take-up godet roller, and 4 is a draining device. The yarn Y melted and discharged from the spinneret is taken off at a constant spinning speed by a take-up godet roller 3.3' and wound onto a winding device 4. The spun yarn YK is made almost parallel by an electric field generating device 2 installed directly under the spinneret l.
The chamber 7 formed by the electrode 5.5' and the insulator 6 contains:
It is filled with gas to prevent corona discharge. As the gas for preventing corona discharge, sulfur hexafluoride, nitrogen, etc. are used, but in the case of low voltage, air may also be used. 8 is an inlet for a gas for preventing corona discharge, and 9 is a DC power source. The electrode 5.5' typically has a thread passageway 10.1 in its center.
A disk-shaped piece with 0′ crossed is used, and its material is copper,
Aluminum, aluminum, stainless steel, etc. are preferable, especially those containing impurities! The one with the least 11° angle is better. Electrode 5.5'
It is preferable that the shape is as flat as possible so as not to cause local electric game concentration since pressure is applied to the height 7, but it may be donut-shaped, hollow cylindrical shape, or hollow cone-like shape depending on the case. In order to make the strength of the electric field applied to the spun yarn YK as thick as possible, the yarn Φ path l0110' is desirably made as small as possible within a range where the spun yarn Y does not come into contact with it.

電界発生装置又は、紡糸口金1とは分離して設けること
が必要である。紡糸口金を一方の電極とし、その対極と
の間に電圧をかけるようにしたのでは紡糸口金を絶縁す
るのに極めて複雑な構造をとる必撰が生じ、工業的実施
には、適尚でない。また、このような装置では紡出直後
の極めて分子運動の激しい状態で電界が作用せしめられ
るため一旦、分子が配向しても、再び乱れた状態にもど
ってしまい、紡出糸条の配向を制御するのが困難となる
。電、界発生装蓚そを股げる位置け、紡出糸鉛Yの固化
が完了するまでの間、即ち、紡出糸条の結晶化速度が十
分に遅くて、かつ高温状態で細化現象が進行している領
域が最も好ましいが、特にこり位置に駆足されるもので
はなく、紡糸口金1と巻取装置40間であれば任意の位
置に設けることができる。
It is necessary to provide it separately from the electric field generator or the spinneret 1. If the spinneret is used as one electrode and a voltage is applied between it and the opposite electrode, an extremely complicated structure will be required to insulate the spinneret, which is not suitable for industrial implementation. In addition, in such devices, the electric field is applied immediately after spinning when the molecules are in a state of extremely strong motion, so even if the molecules are once oriented, they return to the disordered state, making it difficult to control the orientation of the spun yarn. It becomes difficult to do so. Until the solidification of the spun yarn lead Y is completed, that is, the crystallization speed of the spun yarn is sufficiently slow and the fiber is thinned at high temperature. The region where the phenomenon is progressing is most preferable, but it is not particularly necessary to place it in a stiff position, and it can be provided at any position between the spinneret 1 and the winding device 40.

但し、完全に冷却固化した状態で電界をかけても、分子
配向を制御することは困難なので、なるべく、紡出糸Q
Yの温度が高くて分子が動き易い状態にある間に電界を
かけるようにすることが肝要である。溶融紡糸の場合は
、紡糸り金1から60〜150tM離れたところまでに
11界発生装置色を設けるのが好ましい。尚、本発明で
いう巻取装置は、ワ・fンダーに限られるものではなく
、ケンス、ネット等の桶@装置をも含むものである。
However, even if an electric field is applied in a completely cooled and solidified state, it is difficult to control the molecular orientation, so it is difficult to control the molecular orientation when the spun yarn Q
It is important to apply the electric field while the temperature of Y is high and the molecules are easily mobile. In the case of melt spinning, it is preferable to provide 11 field generators at a distance of 60 to 150 tM from the spinneret 1. Note that the winding device in the present invention is not limited to a winder, but also includes bucket devices such as cans and nets.

本発明装置は、溶融紡糸のみならず、乾式紡糸にも適用
することができる。乾式紡糸、湿式紡糸においても、電
界発生装置の設置位置は、紡出糸条の固化が完了する士
での間、即ち、紡出糸条と共存する溶媒残存殴が5係以
上で、糸条細化現象が進行している領域(紡糸口金から
1〜2m離れたところ)が最も好ましいが、特にこの位
置に限定されるものでな℃・ことは、溶融紡糸の場合と
同様である。
The apparatus of the present invention can be applied not only to melt spinning but also to dry spinning. In both dry spinning and wet spinning, the electric field generating device should be installed at a point where the solidification of the spun yarn is completed, that is, when the number of residual solvents coexisting with the spun yarn is 5 or more, The region where the thinning phenomenon is progressing (at a distance of 1 to 2 m from the spinneret) is most preferable, but it is not particularly limited to this location, as in the case of melt spinning.

電界発生装置は、発生する電気力線の方向が紡出糸条に
対して、はぼ平行となるように股りられる。ここで、は
ぼ平行とは、電気力線の方向(電界のベクトル)と紡出
糸条とのなす角度が45度未満であることを意味し、特
に30度以下であることが望ましい。また、fit界を
かける方向は、紡出糸条の走行方向と同じ方向でもよく
、逆の方向でもよい。更に′電界は、直流17゜界であ
っても、又電界のベクトル方向が経時的に変化する交番
電界であってもよい。これらは、その目的によって、任
意に選択使用することができる。
The electric field generating device is straddled so that the direction of the lines of electric force generated is substantially parallel to the spun yarn. Here, "substantially parallel" means that the angle formed between the direction of the electric lines of force (vector of the electric field) and the spun yarn is less than 45 degrees, and preferably 30 degrees or less. Further, the direction in which the fit field is applied may be the same direction as the running direction of the spun yarn, or may be the opposite direction. Further, the electric field may be a direct current 17° field or an alternating electric field in which the vector direction of the electric field changes over time. These can be arbitrarily selected and used depending on the purpose.

第2図に1本発明装置における市、界発生装置の一対の
1!極5.5′の間で発生する電界のベクトル方向(図
中点線で示す)との相互関係は第2図(1F)の如く、
直流電源9により紡出糸条Yの走行方向と同一方向の電
気力線を生ぜしめる場合もあり、(b)の如く、直流電
源9′により紡出糸条Yの走行方向と反対方向の電気力
線を生ぜしめる場合もあり、また、(c)の如く、交流
電源9′により、電気力線の方向を経時的に変化させる
場合もあり、更に(d)の如く、紡出糸条Yの走行方向
と電気力線の方向が45度未満の任意の角度θをなす如
く傾いている場合もある。これらは、いずれも[紡出糸
条に対して、はぼ平行方向の電気力線を生せしめ」ると
いう範ちゅうに含まれるものである。これらの電界発生
装置は、種々組合せて使用することもでき、(−)、(
f)は、(a)、(b)、 (C)、(d)を種々組合
せた例を示すものである。
Figure 2 shows a pair of field generators in the device of the present invention. The mutual relationship with the vector direction of the electric field (indicated by the dotted line in the figure) generated between the poles 5.5' is as shown in Figure 2 (1F).
In some cases, the DC power source 9 generates electric lines of force in the same direction as the running direction of the spun yarn Y, and as shown in (b), the DC power source 9' generates electric lines of force in the opposite direction to the running direction of the spun yarn Y. As shown in (c), the direction of the electric lines of force may be changed over time by the AC power source 9', and as shown in (d), the spun yarn Y In some cases, the traveling direction of the vehicle and the direction of the electric lines of force are inclined so that they form an arbitrary angle θ of less than 45 degrees. All of these are included in the category of ``generating lines of electric force in a direction substantially parallel to the spun yarn.'' These electric field generators can be used in various combinations, such as (-), (
f) shows examples of various combinations of (a), (b), (C), and (d).

第3図は、電界の強さと時間との関係の例を示す。電界
発生装置の糸条通路における電界の強さは、第3回(−
)の如くいつも一定であってもよく、(b)の如く、そ
の電界の強さが時間と共に変化してもよい。更に、その
電界の変化の仕方が(c)の如くステップ状の値をとり
ながら変化してもよい。
FIG. 3 shows an example of the relationship between electric field strength and time. The strength of the electric field in the yarn path of the electric field generating device is
) may be constant at all times, or the strength of the electric field may vary over time as shown in (b). Furthermore, the electric field may change in a stepwise manner as shown in (c).

これら、電界における電気力線の方向([界のベクトル
方向)及び電界の強さは、紡出糸条の分子配向をどのよ
うに制御したいかという目的に従って、任意に選択使用
される。
The direction of the electric lines of force in the electric field (vector direction of the field) and the strength of the electric field are arbitrarily selected and used according to the purpose of controlling the molecular orientation of the spun yarn.

本発明装置区におlする電界発生装置では、紡出糸条に
かける電界の強さは、約I KV / on以上である
ことが望ましく、好ましくは5KV/crn以上であり
、501(V/crn程度、もしくはそれ以上の強い電
界がかけられるようKしておくのが好ましい。紡出糸条
にかける電界の強さは、溶融紡糸に適用する場合には、
溶媒を用いてポリマー溶液粘度が相対的に低くなってい
る乾式紡糸及び湿式紡糸の場合よりも、より大きく、−
ぐるのが好ましい。しかし1.界の強さの最適値は紡出
するポリマーの種類、用℃・る溶媒の種類、紡糸温度、
等によって異なってくる。
In the electric field generating device included in the device section of the present invention, the strength of the electric field applied to the spun yarn is preferably about I KV/on or more, preferably about 5 KV/crn or more, and 501 (V/crn) or more. It is preferable to apply a strong electric field of crn or higher.The strength of the electric field applied to the spun yarn is as follows when applied to melt spinning:
greater than in the case of dry spinning and wet spinning, where the polymer solution viscosity is relatively low using solvents, -
Guruno is preferred. But 1. The optimum field strength depends on the type of polymer being spun, the type of solvent used, the spinning temperature,
It varies depending on the situation.

本発明の紡糸装4.は、紡糸口金から吐出された糸条を
重力の作用する方向、即ち上から下へ向って走行させて
巻取る通常の紡糸装置であっても」、く、また、その逆
に、下に設けた紡糸口金から、紡出糸条を上方へ引取る
ようにした紡糸装置であってもよい。更に、紡糸口金か
らの紡出糸条を水平方向に走行させて引取るようにした
紡糸装置、であってもさしつかえない。
Spinning device of the present invention 4. Even if it is a normal spinning device that winds the yarn discharged from a spinneret by traveling in the direction of gravity, that is, from top to bottom, or vice versa, The spinning device may be configured to take the spun yarn upward from a spinneret. Furthermore, a spinning device may be used in which the spun yarn from the spinneret is moved horizontally and taken up.

本発明の紡糸装置は、フンシュゲート紡糸、能である。The spinning device of the present invention is capable of spinning Funschgate.

”また、異形断面糸、中梁断面糸等の紡糸にも適用する
ことができろう 本発明の紡糸装置においては、電界発生装置と共に他の
エネルギー付加装置又は、繊維加工装置を組み合わせて
使用することも可能である。
``Also, the spinning apparatus of the present invention can be applied to spinning irregular cross-section yarns, medium beam cross-section yarns, etc. The spinning apparatus of the present invention may be used in combination with an electric field generating apparatus and other energy adding apparatuses or fiber processing apparatuses. is also possible.

例えば、他のエネルギー付加手段として、超伝導マグネ
ット等からなる出湯発生装置を用い、本発明装置の電界
発生装置の前、又は後に併用して、紡出糸条の分子配向
の制御をより確実、有効ならしめることができる。また
、エネルギー付加手段として、超音波、マイクロ波、赤
外線、紫外線、電離性11(射線等の照射装置を組合せ
て使用することもできる。更に、例えば電界発生装置の
次に、インタレース加工ノズルとか捲縮加工装置などの
繊維加工手段を種々組み合わせて、繊維を形成すること
も可能である。
For example, as another energy adding means, a tapping generating device made of a superconducting magnet or the like may be used in combination before or after the electric field generating device of the device of the present invention to more reliably control the molecular orientation of the spun yarn. It can be made effective. Furthermore, as an energy adding means, irradiation devices such as ultrasonic waves, microwaves, infrared rays, ultraviolet rays, and ionizing rays can be used in combination.Furthermore, for example, next to the electric field generator, an interlace processing nozzle or the like can be used. It is also possible to form fibers by combining various fiber processing means such as crimping devices.

以上、説明した如く、本発明の紡糸装置は、紡糸口金か
ら巻取jA置までの間に、紡出糸条に対してほぼ平行方
向の電気力線を生ぜしめ、かつ紡糸口金とは分離された
電界発生装置を設けたものであるから、紡糸装置を複雑
化させることなく極めて容易に紡出糸条の分子配向を制
御することができる。
As explained above, the spinning apparatus of the present invention generates electric lines of force in a direction substantially parallel to the spun yarn between the spinneret and the winding position JA, and is separated from the spinneret. Since the electric field generating device is provided, the molecular orientation of the spun yarn can be controlled extremely easily without complicating the spinning device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明装置の一例な模式的に示す概略図、@
2図は本発明装置に用いら+する電界発生装置の種々の
実施態様を示す断面図、第3図は本発明装置に用いられ
る1を界発生装置における電界の強さと時間との関係を
示すグラフである。 1・・・・・・・・・紡糸口金   2・・・・・・・
・・電界発生装置4・・・・・・・・・巻取装置   
Y・・・・・・・・・紡出県東特許出願人 帝人株、(
会社
FIG. 1 is a schematic diagram showing an example of the device of the present invention, @
Figure 2 is a sectional view showing various embodiments of the electric field generating device used in the device of the present invention, and Figure 3 shows the relationship between electric field strength and time in the field generating device used in the device of the present invention. It is a graph. 1... Spinneret 2...
...Electric field generator 4... Winding device
Y・・・・・・・・・Toshiken Higashi Patent Applicant Teijin Co., Ltd. (
company

Claims (1)

【特許請求の範囲】 ! 紡糸口金から巻取装置までの間に1紡出糸条に対し
てほぼ平行方向の電気力線を生せしめ、かつ紡糸口金と
は分離された電界発生装置を設けたことを特徴とする電
界紡糸装置。 2 電界発生装置が、直流電界を発生させるものである
特許請求の範囲第1項記載の電界紡糸装置。 3 電界発生装置が、交番電界を発生させるものである
特許請求の範囲第1項記載の電界紡糸装し 4 電界発生装置がIKV/m以上の電界強さを有する
ものである特許請求の範囲第1項記載の電界紡糸装置。 5 %界発生装置の電極間距離が3(lcrn以下であ
る特許請求の範囲@1項記載の電界紡糸装置。
[Claims]! Electrospinning characterized by an electric field generation device that generates lines of electric force in a direction substantially parallel to one spun yarn between the spinneret and the winding device, and that is separated from the spinneret. Device. 2. The electrospinning device according to claim 1, wherein the electric field generating device generates a DC electric field. 3. An electrospinning device according to claim 1, in which the electric field generating device generates an alternating electric field. 4. Claim 1, in which the electric field generating device has an electric field strength of IKV/m or more. The electrospinning apparatus according to item 1. The electrospinning device according to claim 1, wherein the distance between the electrodes of the 5% field generating device is 3 (lcrn or less).
JP13464482A 1982-08-03 1982-08-03 Device for spinning in electric field Granted JPS5926511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13464482A JPS5926511A (en) 1982-08-03 1982-08-03 Device for spinning in electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13464482A JPS5926511A (en) 1982-08-03 1982-08-03 Device for spinning in electric field

Publications (2)

Publication Number Publication Date
JPS5926511A true JPS5926511A (en) 1984-02-10
JPS6353281B2 JPS6353281B2 (en) 1988-10-21

Family

ID=15133178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13464482A Granted JPS5926511A (en) 1982-08-03 1982-08-03 Device for spinning in electric field

Country Status (1)

Country Link
JP (1) JPS5926511A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608212A (en) * 1976-07-29 1986-08-26 Isner Robert E Method for the electrostatic treatment of monofilaments
US4668448A (en) * 1984-08-10 1987-05-26 Bayer Aktiengesellschaft Thermoplastic processing of thermotropic liquid-crystalline polymers under the influence of electric fields
US4810319A (en) * 1984-02-16 1989-03-07 Isner Robert E Method of making a monofilament having on the surface embedded filamentons material
KR19990082988A (en) * 1998-04-08 1999-11-25 무라타 기카이 가부시키가이샤 Melt spinning process and melt spinning device
FR2790486A1 (en) * 1999-03-05 2000-09-08 Rhodianyl Production polyamide yarn, fibers or filaments comprises spinning and/or drawing in the presence of an electric field to modify mechanical properties
JP2004238749A (en) * 2003-02-04 2004-08-26 Japan Vilene Co Ltd Electrostatic spinning method and electrostatic spinning apparatus
JP2004256974A (en) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd Method for electrospinning and device for electrospinning
JP2004256973A (en) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd Method for electrospinning and device for electrospinning
JP2010509056A (en) * 2006-11-13 2010-03-25 リサーチ・トライアングル・インスティチュート Particle filter system incorporating nanofibers

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608212A (en) * 1976-07-29 1986-08-26 Isner Robert E Method for the electrostatic treatment of monofilaments
US4810319A (en) * 1984-02-16 1989-03-07 Isner Robert E Method of making a monofilament having on the surface embedded filamentons material
US4668448A (en) * 1984-08-10 1987-05-26 Bayer Aktiengesellschaft Thermoplastic processing of thermotropic liquid-crystalline polymers under the influence of electric fields
KR19990082988A (en) * 1998-04-08 1999-11-25 무라타 기카이 가부시키가이샤 Melt spinning process and melt spinning device
FR2790486A1 (en) * 1999-03-05 2000-09-08 Rhodianyl Production polyamide yarn, fibers or filaments comprises spinning and/or drawing in the presence of an electric field to modify mechanical properties
JP2004238749A (en) * 2003-02-04 2004-08-26 Japan Vilene Co Ltd Electrostatic spinning method and electrostatic spinning apparatus
JP2004256974A (en) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd Method for electrospinning and device for electrospinning
JP2004256973A (en) * 2003-02-27 2004-09-16 Japan Vilene Co Ltd Method for electrospinning and device for electrospinning
JP2010509056A (en) * 2006-11-13 2010-03-25 リサーチ・トライアングル・インスティチュート Particle filter system incorporating nanofibers
US8652229B2 (en) 2006-11-13 2014-02-18 Research Triangle Institute Particle filter system incorporating nanofibers

Also Published As

Publication number Publication date
JPS6353281B2 (en) 1988-10-21

Similar Documents

Publication Publication Date Title
JPS5926511A (en) Device for spinning in electric field
JP5260274B2 (en) Method for producing polyphenylene sulfide filament yarn
JPS648732B2 (en)
JPS60126373A (en) Electret producing method and its product
JP2893638B2 (en) Method for producing polyamide fiber having high modulus and high tensile strength
TW200902778A (en) Linear fibrous formation comprising polymer nanofibres, production method and device for production of such formation
US6210622B1 (en) Process of making polymeric fibers
US2433842A (en) Method of drying rayon thread by high-frequency electric currents
US2402609A (en) Device for treating filamentary material
US2859472A (en) Apparatus for reducing shrinkage and creep of thermoplastic yarns
US3030173A (en) Process for the uniform preparation of shaped structures such as filaments or foils from high-melting linear polyesters
US3052009A (en) Apparatus for the crimping of synthetic fibers by electrostatic means
JPS6328121B2 (en)
JPS648729B2 (en)
JPS5822565B2 (en) High speed spinning method
US4054025A (en) Process for the production of filament yarns with statistically distributed, broken individual filaments
US3379808A (en) Method and apparatus for fibrillating synthetic thermoplastic yarn
US5266254A (en) Process for the high-speed spinning of monofilaments
JPS6328122B2 (en)
JPS5947408A (en) Spinning device
US3379807A (en) High temperature yarn fibrillation method
JPS62184111A (en) Novel polyethylene filament
KR100607415B1 (en) Method of manufacturing a continuous filament by electrospinning and continuous filament manufactured thereby
JP2888888B2 (en) Method for producing polyester fiber and closed vertical spinning cylinder
US2591243A (en) Process for the manufacture of rayon from viscose with high elongation and spooling in centrifugal cups