JPS592579A - Controller for inverter - Google Patents

Controller for inverter

Info

Publication number
JPS592579A
JPS592579A JP57111178A JP11117882A JPS592579A JP S592579 A JPS592579 A JP S592579A JP 57111178 A JP57111178 A JP 57111178A JP 11117882 A JP11117882 A JP 11117882A JP S592579 A JPS592579 A JP S592579A
Authority
JP
Japan
Prior art keywords
phase
output
current
level
electric valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57111178A
Other languages
Japanese (ja)
Inventor
Katsumi Fukazawa
深沢 勝美
Katsu Maekawa
克 前川
Toshiaki Kudo
工藤 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57111178A priority Critical patent/JPS592579A/en
Publication of JPS592579A publication Critical patent/JPS592579A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To prevent an interference which occurs when all of the m-phases are controlled at instantaneous value by controlling ON or OF of an electric valve of the remaining one phase in response to the ON or OFF control state of an electric valve of (m-1) phase to be controlled at the instantaneous current value. CONSTITUTION:Outputs in response to phase load currents from current detectors 5U-5W and phase current command values from current command generators 6U-6W are inputted to comparators 7U-7W and compared thereby. A logic sequence circuit 13 inputs outputs of the comparators 7U-7W and level detectors 12U-12W, controls ON or OFF the electric valves of positive and negative sides of the remaining one phase in response to the electric valves of 2 phases to be controlled at the instantaneous current value irrespective of the outputs of the comparators 7U-7W, and produces an output of sequentially switching between the electric valves of the 2 phases and the electric valve of the remaining one phase at the prescribed phase of the output current phase. These outputs are respectively applied via amplifiers 8U-8Z to the electric valves GU-GZ.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はインバータ制御装置の改良に係り、特に中性点
端子のない交流電動機等の駆動制御に適するインバータ
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement of an inverter control device, and particularly to an inverter control device suitable for drive control of an AC motor or the like without a neutral point terminal.

〔発明の技術的背景〕[Technical background of the invention]

交流電動機の駆動制御にはインバータ制御装置が広く用
いられている。
Inverter control devices are widely used for drive control of AC motors.

第1図は従来から、三相交流電動機の電流瞬時値制御に
用いられている三相インバータ制御装置の構成例を示ず
もので、正側電源IPと負側電源INの直列回路に接続
された正、負母線2P 、 2N間には、ゲートターン
オフサイリスタあるいはジャイアントトランジスタ等か
ら成る電気弁GU、 GX 、 GV。
Figure 1 does not show a configuration example of a three-phase inverter control device conventionally used for instantaneous current value control of a three-phase AC motor. Between the positive and negative bus lines 2P and 2N, there are electric valves GU, GX, and GV consisting of gate turn-off thyristors or giant transistors.

GY、 GW 、 Gz が2個ずつ直列して接続され
ている。
Two each of GY, GW, and Gz are connected in series.

これらの電気弁には夫々整流、素子りが逆並列に接続さ
れている。
Each of these electric valves has a rectifier and an element connected in antiparallel.

各直列電気弁の中点と、負荷電動機3の各相巻線U 、
V 、Wの間は導線4U 、 4v 、 4w で接続
されており、また負荷電動機3の中性点Nと、直流電諒
1p、INの中点の間は導線4Nで連結されている。
The midpoint of each series electric valve and each phase winding U of the load motor 3,
Conductive wires 4U, 4v, and 4w connect V and W, and a conductive wire 4N connects the neutral point N of the load motor 3 and the midpoint of the DC currents 1p and IN.

導4j14tr、4v、4w には夫々、電流検出器5
U 、 5v 。
A current detector 5 is installed for each of the conductors 4j14tr, 4v, and 4w.
U, 5v.

5wが結合されており、それらの出カニu、工vt:I
wは各相用の電流指令発生器6σ、 6V 、 61y
からの電流指令値工晶、工;、■番と共に比較器7υ、
 7V 、 7Wにインプットされて比較される。
5w are combined, and their output u, engineering vt:I
w is the current command generator for each phase 6σ, 6V, 61y
The current command value from the comparator 7υ,
It is input to 7V and 7W and compared.

比較器7U、 7V 、 7Wは各相電流指令値1二、
 l:!工÷が各相゛屯流検出器出力lU、工V、工W
より大きい時にはレベル111を、そうでない時にはレ
ベルlO″を出力する。これらの比較器の出カフυOv
 7Vow’7woは夫々、増巾器sU、 8V 、 
swにインプットされると共に、否定回路9U、 9V
、 9Wを経た後、増巾器8x、8Y、8z にインプ
ットされる。
Comparators 7U, 7V, 7W each phase current command value 12,
l:! Work ÷ is each phase's tonnage flow detector output lU, work V, work W
When it is greater than 111, it outputs level 111, and when it is not, it outputs level lO''.The output cuff of these comparators υOv
7Vow'7wo are amplifiers sU, 8V,
Input to sw and negative circuit 9U, 9V
, 9W, and then input to amplifiers 8x, 8Y, and 8z.

増巾器sU、 sv、 sw、 8X、 8Y、 sz
 の出力は夫々、電気弁GU 、 Gy 、 Gw 、
 Gx 、 Gy 、 Gz の各ベース端子にインプ
ットされる。従って、比較器’y、、 、 7v 、7
Wの出力がレベル“110時には正側電気弁GU、 G
v。
Amplifier sU, sv, sw, 8X, 8Y, sz
The outputs of electric valves GU, Gy, Gw,
It is input to each base terminal of Gx, Gy, and Gz. Therefore, the comparator 'y, , , 7v , 7
When the output of W is level “110”, the positive side electric valves GU, G
v.

Gwカオンとなり、負側電気弁Gx、GY、G2はオフ
となる。反対に、比較器の出力レベルが自01になると
、正側電気発がオフとなり、負側電気弁はオンとなる。
Gw is turned on, and the negative side electric valves Gx, GY, and G2 are turned off. Conversely, when the output level of the comparator becomes 01, the positive side electric generator is turned off and the negative side electric valve is turned on.

なお、比較器?0 、7v 、 7W にはヒステリシ
ス特性を持たせるため、出力端に接続した分圧抵抗10
U 、 10v 、 iow 、 IIU 、 llv
 、 llv、の中点電圧が入力側にフィードバックさ
れるよう構成されている。
Also, a comparator? In order to provide hysteresis characteristics to 0, 7V, and 7W, a voltage dividing resistor 10 connected to the output terminal is used.
U, 10v, iow, IIU, llv
, llv, is configured to be fed back to the input side.

第2図は上述のように構成したインバータ制御装置にお
ける0相の電流制御動作波形を示している。同図中、工
Pは比較器7Uのヒステリシス特性の上限値であり、よ
りはその下限値を示し、比較器7Uの出力は電流検出器
5Uの出力I、が工Pとよりの間にあるときは変化しな
い。
FIG. 2 shows the zero-phase current control operation waveform in the inverter control device configured as described above. In the figure, P is the upper limit value of the hysteresis characteristic of the comparator 7U, and Yari indicates its lower limit, and the output of the comparator 7U is between the output I of the current detector 5U and P. Time does not change.

前述のように比較器7Uの出カフUQがレベル111の
ときには電気弁GUけオン、GXはオフとなり、出力?
troがレベルw01のときには電気弁Gυはオフ、G
Xはオンとなる。
As mentioned above, when the output cuff UQ of the comparator 7U is at level 111, the electric valve GU is turned on, GX is turned off, and the output?
When tro is at level w01, electric valve Gυ is off, G
X is turned on.

負荷電動機3に流れるU相狗P電流に比例する電流検出
器5Uの出力電流IUが減少してきて、比較器7Uのヒ
ステリシス下限値IBニ達した時点(to)で、比較器
用カフUQはレベル111となり、電気弁GUがオン、
GXがオフとなる。従って、U相負荷電流は正側電源工
P−導線2P−電気弁Gυ−負荷電動機のU相巻線−中
性点N−導線4N−電源中点Oの経路で流れる。
When the output current IU of the current detector 5U, which is proportional to the current flowing through the load motor 3, decreases and reaches the hysteresis lower limit value IB of the comparator 7U (to), the comparator cuff UQ reaches level 111. Then, electric valve GU turns on.
GX is turned off. Therefore, the U-phase load current flows through the path of the positive power source P, the conductor 2P, the electric valve Gυ, the U-phase winding of the load motor, the neutral point N, the conductor 4N, and the power supply midpoint O.

[Ja亀電流増加して電流検出器5Uの出力電流工Uが
ヒステリシス上限値IPに膿」達し、た時点t1で比較
器用カフUOはレベル101となり、電気弁はG、がオ
フ、Gxがオンとなる。従って、U相電流は負側電源i
N−電源中点〇−導線4N−中性点N−負荷のU相巻線
−導線4U−電気弁Dx−N−2Nの経路で流れる。
The current increases and the output current U of the current detector 5U reaches the hysteresis upper limit IP, and at time t1 the comparator cuff UO reaches level 101, the electric valve G is off and Gx is on. becomes. Therefore, the U-phase current is negative side power supply i
It flows through the path of N - power supply middle point - conductor 4N - neutral point N - load U phase winding - conductor 4U - electric valve Dx - N - 2N.

0相電流が減少し、検出器出力電流I、が再びヒステリ
シス下限値■Pに達した時点t2以降においても、上記
と同様に電気弁GU、 GXの切替えば行なわれ、負荷
電流は導線2Pまたは2Nと、導線4Nを流して流れる
Even after time t2 when the 0-phase current decreases and the detector output current I reaches the hysteresis lower limit ■P again, switching of the electric valves GU and GX is performed in the same way as above, and the load current is changed to the conductor 2P or 2N and conductor wire 4N.

以上はU相負荷における動作波形であるが、■相および
W相負荷においても同様である。
The above is the operating waveform for the U-phase load, but the same applies to the ■-phase and W-phase loads.

従って負荷電動機3の各相巻線には120°の相差角を
もって正弦波近似の負荷電流が流れるととKなる。この
場合、中性点Hにおける負荷電流の基本波は互いに打消
し合うので導線4Nを流れることはないが、高調波成分
が残るため、電源中点0と負荷中性点Nの間を導線、4
Nで接続せずに各相の電流瞬時値を独立に制御しようと
すると、各相電流が干渉し合い、良好な制御を行なうこ
とができない。
Therefore, if a load current approximately like a sine wave flows through each phase winding of the load motor 3 with a phase difference angle of 120°, then K is obtained. In this case, the fundamental wave of the load current at the neutral point H cancels each other, so it does not flow through the conductor 4N, but since harmonic components remain, the conductor between the power supply neutral point 0 and the load neutral point N, 4
If an attempt is made to control the instantaneous current values of each phase independently without connecting with N, the currents of each phase will interfere with each other, making it impossible to perform good control.

〔背景技術の問題点〕[Problems with background technology]

上述の如く、背景技術においては、負荷に流れる各相電
流を独立して瞬時値制御する場合には電源中点と負荷中
性点の間を短絡しておく必要があるため、中性点端子を
有する特殊仕様の電動機にしか適用できず、標準の電動
機を使用することができないという欠点があった。また
、電源も正側と負側の2個を必要とするため、回路格成
が複雑化し、コストアップを招来するという欠点があっ
た。
As mentioned above, in the background technology, when controlling the instantaneous value of each phase current flowing through the load independently, it is necessary to short-circuit between the power supply neutral point and the load neutral point. It has the disadvantage that it can only be applied to a special specification electric motor with a standard electric motor. Furthermore, since two power supplies are required, one on the positive side and one on the negative side, there is a drawback that the circuit layout becomes complicated and the cost increases.

〔発明の目的〕[Purpose of the invention]

本発明は背景技術における上述の如き不都合を除去し、
中性点端子のない標準の交流電動機でも良好に電流制御
ができ、また、電源設備も1回路で済むインバータ制御
装置を提供1−ることを目的とするものである。
The present invention eliminates the above-mentioned disadvantages in the background art,
It is an object of the present invention to provide an inverter control device that can perform good current control even with a standard AC motor without a neutral point terminal, and that requires only one power supply circuit.

〔発明の概要〕[Summary of the invention]

本発明のインバータ制御装置は、直流電源にm組(mは
2以上の整数)の直列電気弁を接続し、これらの直列電
気弁の各中点なm摺電荷端子に接続したインバータ回路
において、各摺電荷電流に応じた電流検出器出力と各相
電源指令値とを入力して両者を比較し、レベル111ま
たはレベル101の論理出力を生ずる比較器と、これら
のm相の比較器とレベル検出器の出力を人力し、電流瞬
時値制御される(m−’1)相の電気弁のオン・オフ状
態に応じて残りの1相の正側および負側の電気弁を前記
比較器の出力に無関係にオン・オフ制御し、出力電流位
相の所定位相毎に前記(m−13相の電気弁と残りの1
相の電気弁を順次切換える出力を生ずる論理ンーケンス
回路を備えたことを主たる特徴とするものである。
The inverter control device of the present invention has an inverter circuit in which m sets (m is an integer of 2 or more) of series electric valves are connected to a DC power source, and connected to m sliding charge terminals at the midpoint of each of these series electric valves. A comparator that inputs the current detector output corresponding to each sliding charge current and each phase power supply command value and compares the two to generate a logic output of level 111 or level 101, and a comparator for these m phases and a level The output of the detector is manually input, and the positive side and negative side electric valves of the remaining one phase are controlled by the comparator according to the on/off state of the electric valve of the (m-'1) phase, which is controlled by the instantaneous current value. On/off control is performed regardless of the output, and the above (m-13 phase electric valve and the remaining 1
The main feature is that it is equipped with a logic sequence circuit that produces an output that sequentially switches the phase electric valves.

〔発明の実施例〕[Embodiments of the invention]

以下、第3図および第4図を参照して本発明装領の実施
例と作動を説明する。なお、これらの図では、第1図に
おけると同一の部品にはそれらと同じ符号を付しである
Hereinafter, embodiments and operations of the device of the present invention will be described with reference to FIGS. 3 and 4. In these figures, the same parts as in FIG. 1 are given the same reference numerals.

直流′電源1には導線2F 、 2Nを介して電気弁G
U。
An electric valve G is connected to the DC' power source 1 via conductors 2F and 2N.
U.

GX、 Gv、 GY 、 GW、、 GZ が2個ず
つ直列接続されており、また各電気弁にはダイオードD
が逆並列に接続されている。直列接続した各相電気弁の
中点と負荷電動機3の各相巻線の間を連結する導線4U
Two GX, Gv, GY, GW, and GZ are connected in series, and each electric valve has a diode D.
are connected in antiparallel. Conductive wire 4U connecting between the midpoint of each phase electric valve connected in series and each phase winding of load motor 3
.

4v 、 4Wには夫々各相電流を検出する電流検出器
5U 、 5V 、 5Wが結合されており、それらの
出力lu。
Current detectors 5U, 5V, and 5W are coupled to 4V and 4W to detect the current of each phase, respectively, and their outputs lu.

工v、工wは各相用の電流指令発生器6U 、 6V 
、 6Wからの電流指令値■δ、工6 、1番と共に、
比較器7[。
Engineering v and Engineering w are current command generators 6U and 6V for each phase.
, current command value ■δ from 6W, engineering 6, together with No. 1,
Comparator 7 [.

7v 、 7Wにインプットされ、電流指令値工品、■
受、工番が電流検出器出力lU、工V、工Wより大きい
時にはレベル11”、そうでないときはレベル10Iを
出力する。なお、各比較器の出力端には夫々に分圧抵抗
ioU 、 10y 、 IOWとIIU 、 IIV
 、 l1wが直列に接続されており、これらの直列抵
抗の中点電圧は比較器7U 、 7v 、 7W の入
力側にフィードバックされ、各比較器に、第2図におけ
ると同様のヒステリシスlh゛性を付与する。
Input to 7V, 7W, current command value, ■
When the input and engineering numbers are larger than the current detector outputs lU, engineering V, and engineering W, level 11" is output; otherwise, level 10I is output. In addition, at the output terminal of each comparator, there is a voltage dividing resistor ioU, 10y, IOW and IIU, IIV
, l1w are connected in series, and the midpoint voltage of these series resistors is fed back to the input side of the comparators 7U, 7v, 7W, giving each comparator a hysteresis lh' property similar to that in FIG. Give.

電流指令発生器6U、6v、6Wがらの市、流指令値工
も、6.I斉は、また、レベル検出器12σ、12v。
Current command generator 6U, 6V, 6W, current command value generator, 6. I also have a level detector 12σ, 12v.

12Wに導かれる。これらのレベル検出器は電流指令値
工♂、工吊、工;が正の時にはレベル111を出力し、
負の時にはレベル101を出力する。
Guided by 12W. These level detectors output level 111 when the current command values ♂, ♂, ♂ are positive,
When it is negative, level 101 is output.

比較器7U、7v、 7Wおよびレベル・検出器12U
、12v。
Comparator 7U, 7v, 7W and level detector 12U
, 12v.

12wの出カフUO+ 12UOt 7vo l 12
vQ t 7WOy 12WOは夫々、論理シーケンス
回路13のアドレス入力Ao〜A5にインプットされる
。この論理シーケンス回路は例えばリードオンリーメモ
リー(ROM)で41゛り成されており、その出力姑子
Do、D2.D4  に生ずる制御信号は増巾&Sυ、
8v、8wで増巾された後、正側電気弁制御信号8UO
+ svQ t 810として電気弁GU、Gv、GW
のベース端子に入力される。また、出力端子D1.D3
.D5に生ずる制御信号は増巾器sx 、 sy 、 
sz で増巾された後、負側電気弁制御信号sxo t
 8YOt 8zOとして電気弁Gx、GY、C2のペ
ース端子に入力され為。
12w output cuff UO+ 12UOt 7vo l 12
vQ t 7WOy 12WO are input to address inputs Ao to A5 of the logic sequence circuit 13, respectively. This logic sequence circuit is made up of, for example, 41 read-only memories (ROM), and its outputs are Do, D2. The control signal generated at D4 is increased in width &Sυ,
After being amplified by 8V and 8W, the positive electric valve control signal 8UO
+ electric valve GU, Gv, GW as svQ t 810
is input to the base terminal of Moreover, the output terminal D1. D3
.. The control signals generated at D5 are transmitted through amplifiers sx, sy,
After being amplified by sz, the negative side electric valve control signal sxo t
8YOt 8zO is input to the pace terminals of electric valves Gx, GY, and C2.

次に、上述のように構成した本発明のインバータ制御装
置の作動を第4図を参照して説明する。
Next, the operation of the inverter control device of the present invention configured as described above will be explained with reference to FIG.

本発明においては、電流指令値、例えばlG の−周期
を第4図のモードNoに示すように■〜■のモードに分
解し、先ず、各モードで電流指令値工3+1÷、工灸 
の軌対値が最大となる相に対応する電気弁(第4図中の
aSに示す)を比較器7U、7W7w の出力に無関係
に開弁させる。
In the present invention, the -period of the current command value, for example lG, is decomposed into modes 1 to 2 as shown by mode numbers in Fig. 4, and first, in each mode, the current command value
The electric valve (indicated by aS in FIG. 4) corresponding to the phase in which the trajectory value of is the maximum is opened regardless of the outputs of the comparators 7U and 7W7w.

即ち、モード■では、電流指令値の絶対値は工※が最大
であり、その極性はマイナスであるので、論理シーケン
ス回路13の出力端子D3には、比較器7■の出力に無
関係に開弁指令が出力され、電気弁制御信号8YOによ
って電気弁GYが開弁する。この場合、他のU相、W相
の電気弁は比較器7U、7wの出力に従って電流瞬時値
制御される。従って、U相、W相の電流の和がV相に泥
土することになる。
In other words, in mode ■, the absolute value of the current command value is maximum *, and its polarity is negative, so the output terminal D3 of the logic sequence circuit 13 has an open valve regardless of the output of the comparator 7■. A command is output, and the electric valve GY is opened by the electric valve control signal 8YO. In this case, the other U-phase and W-phase electric valves are controlled by instantaneous current values according to the outputs of the comparators 7U and 7W. Therefore, the sum of the currents of the U-phase and W-phase flows into the V-phase.

次に、U相、W相の電流検出器用カニU、工Wが増加し
、比較器7U 、 ’ywの出力が両者ともレベル10
1となると、電気弁G[、GWはオフ、Gx、Gzはオ
ンとなる。このように負(illlの電気弁Gx、 G
Y。
Next, the current detectors U and W for the U phase and W phase are increased, and the outputs of the comparators 7U and 'yw are both level 10.
When it becomes 1, the electric valves G[ and GW are turned off, and Gx and Gz are turned on. Thus negative (ill the electric valve Gx, G
Y.

Gzのみがオンしている状憚では、負荷電流を制御でき
なくなるので、比較器7U 、 7Wの出力がレベル1
01となった時点で、それまでオンしていた電気弁GY
をオフにし、負側電気弁GxGzはオンのまま、正側電
気弁Gvをオンさせる。 これによって負荷のU相、W
相電流は減少する。
When only Gz is on, the load current cannot be controlled, so the output of comparators 7U and 7W is level 1.
01, the electric valve GY that had been turned on until then
is turned off, and the positive side electric valve Gv is turned on while the negative side electric valve GxGz remains on. As a result, the load U phase, W phase
Phase current decreases.

このように、モード■の期間では、電気弁G、とGWが
同時にオフしている間はGvを連続的にオンとし、それ
以外ではGYを連続的にオンさせることにより、電流1
瞬時値制御が行なわれる。
In this way, during the mode ■ period, Gv is turned on continuously while electric valves G and GW are turned off at the same time, and GY is turned on continuously at other times, so that the current 1
Instantaneous value control is performed.

モード■においては、第4図の制御信号c8によって、
先ず電気弁GUがオンとなり、■相とw相の負荷電流は
比較器7v、 7Wによって瞬時値制御される。この場
合も、比較b 7y 、 71yの出カフVQ。
In mode ■, the control signal c8 in FIG.
First, the electric valve GU is turned on, and the load currents of the ■ phase and the W phase are instantaneously controlled by the comparators 7V and 7W. Also in this case, the output cuff VQ of comparison b 7y, 71y.

7WOがともにレベル甲になると、電気弁Gv、G。When both 7WO reach level A, electric valves Gv and G.

がオンとなり、開弁しているのは正側電気弁GU。is turned on, and the valve that is open is the positive electric valve GU.

Gy 、 Gwのみとなる。そこで、この時点では論理
シーケンス回路13の出力によって電気弁Gυをオフ、
Gxをオンとする。このようにすれば電気弁GV。
Only Gy and Gw are available. Therefore, at this point, the output of the logic sequence circuit 13 turns off the electric valve Gυ.
Turn on Gx. In this way, the electric valve GV.

軸から負荷に流れ込む電流は負側電気弁GXを通して電
源1に還流するので、負荷電流を増加させる制御が可能
である。
Since the current flowing into the load from the shaft flows back to the power supply 1 through the negative electric valve GX, control to increase the load current is possible.

以上はモード■および■における作動であるが、モード
■〜■においても上記と同様にして各摺電荷電流を電流
指令値に従って瞬時値制御することができる。
The above is the operation in modes (1) and (2), but in modes (2) to (2), each sliding charge current can be instantaneously controlled in accordance with the current command value in the same manner as described above.

上記各モードにおける動作シーケンスはレベル検出器1
2U 、 12v 、 12Wと比較器7U、7y、7
Hの出力によって一義的に決定されるので、それらのデ
ータをROMに書き込んでおくことにより、容易に実行
できる。
The operation sequence in each mode above is for level detector 1.
2U, 12v, 12W and comparator 7U, 7y, 7
Since it is uniquely determined by the output of H, it can be easily executed by writing the data into ROM.

なお、以上の説明では3相交流電動機を負荷とする例に
つき述べたが、本発明はこれに限定されるものではなく
、介ンダクタンス負荷にも適用でき、また相数も3相に
限らず、m相(mは2以上の整数)に広く適用すること
ができる。
In addition, although the above explanation has been given with respect to an example in which a three-phase AC motor is used as the load, the present invention is not limited to this, and can also be applied to an intervening inductance load, and the number of phases is not limited to three phases. It can be widely applied to m-phase (m is an integer of 2 or more).

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明においてはm相正弦波電流を瞬時値
制御するインバータ制御装置において、電流瞬時値制御
される(m−1)相の′電気弁のオン・オフ制御状態に
応じて、残りの1相の電気弁を比較器の出力に無関係に
オン・オフ制御し、出力電流位相の所定角度毎に前記(
m−1)相と残りの1相の電気弁を順次切換えて行(よ
うにしたものであるから、m相全部を瞬時値制御する場
合に生ずる千渉は防止され、負荷中性点を的流眠源に接
続しなくとも良好な制御を行なうことができる。
As described above, in the present invention, in an inverter control device that instantaneously controls the m-phase sine wave current, the remaining The one-phase electric valve of (
Since the electric valves of the m-1) phase and the remaining 1 phase are switched sequentially, it is possible to prevent the interference that occurs when instantaneous value control is applied to all m-phases, and to set the load neutral point to the target. Good control can be achieved without connection to a sleep source.

従って、中性点端子を有しない標準電動機を負荷とする
ことができ、また直流電源も1個でよく、回路を簡略化
することができる。
Therefore, a standard electric motor without a neutral point terminal can be used as a load, and only one DC power supply is required, and the circuit can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のインバータ制御装置を例示する回路図、
第2図はその動作波形図、第3図は本発明装備の実施例
を示す回路図、第4図はその動波説明図である。 1 + Ip * IN ・・・面派電源、3・・・負
荷、5U t 5yt 5y・・・電流検出器、ct、
、 、 6V 、 6W・・・電流指令発生器、7U 
、 7V 、 7W ”’比較器、8U、8v、8W、
8X、8Y、8z・・・増巾器、IOU、 IOV、 
10y、 11t7. Ily、 IIW・・・分圧抵
抗、12U、 12V、 12W・・・レベル検出器、
13・・・論理シーケンス回路。 出願人代理人   猪  股    清も 1 図 2ρ 鱈 2 図 も 4 図
FIG. 1 is a circuit diagram illustrating a conventional inverter control device,
FIG. 2 is an operating waveform diagram, FIG. 3 is a circuit diagram showing an embodiment of the equipment of the present invention, and FIG. 4 is an explanatory diagram of its dynamic waves. 1 + Ip * IN... Surface power supply, 3... Load, 5Ut 5yt 5y... Current detector, ct,
, , 6V, 6W...Current command generator, 7U
, 7V, 7W'' comparator, 8U, 8v, 8W,
8X, 8Y, 8z...amplifier, IOU, IOV,
10y, 11t7. Ily, IIW...Voltage dividing resistor, 12U, 12V, 12W...Level detector,
13...Logic sequence circuit. Applicant's agent Kiyoshi Inomata 1 Figure 2 Rho 2 Figure 4 Figure

Claims (1)

【特許請求の範囲】 1、直流電源にm組(mは2以上の整数)の直列電気弁
を接続し、これらの直列電気弁の各中点なm相負荷端子
に接続したインバータ回路において、各相に対応して設
けられ各相負荷電流に応じた電流検出器出力と各相電流
指令値とを入力して両者を比較し、レベル11″または
レベルl g mの論理出力を生ずる比較器と、各相に
対応して設けられ前記各相電流指令値の正、負に応じて
レベル11″またはレベル“0“の論理出力を生ずるレ
ベル検出器と、これらのm組の比較器とレベル検出器の
出力を入力し、電流瞬時値制御される(m−1)相の電
気弁のオン・オフ状態に応じて残りの1相の正側および
負側の電気弁を前記比較器の出力に無関係にオン・オフ
制御し、゛出力電流位相の所定位相毎に前記(m−1)
相の電気弁と残りの1相の電気弁を順次切換える出力を
生ずる論理シーケンス回路とを備えたことを特徴とする
インバータ制御装置、。 2、論理シーケンス回路がリードオンリーメモリーから
成ることを特徴とする特許請求の範囲第1項記載のイン
バータ制御装置。 3、 m相負荷が中性点端子を有しない3相交流電動機
であることを特徴とする特許請求の範囲第1項または第
2項に記載のインバータ制御装置。
[Claims] 1. In an inverter circuit in which m sets (m is an integer of 2 or more) of series electric valves are connected to a DC power source and connected to an m-phase load terminal at the midpoint of each of these series electric valves, A comparator that is provided corresponding to each phase and inputs the current detector output corresponding to the load current of each phase and the current command value of each phase, compares the two, and generates a logic output of level 11'' or level l g m. , a level detector provided corresponding to each phase and generating a logical output of level 11'' or level ``0'' depending on whether the current command value of each phase is positive or negative, and m sets of comparators and level detectors. The output of the detector is input, and the positive side and negative side electric valves of the remaining one phase are controlled according to the on/off state of the electric valve of the (m-1) phase, which is controlled by the instantaneous current value, and the output of the comparator is The above (m-1) is controlled for each predetermined phase of the output current phase.
1. An inverter control device comprising: a logic sequence circuit that generates an output to sequentially switch one phase electric valve and the remaining one phase electric valve. 2. The inverter control device according to claim 1, wherein the logic sequence circuit comprises a read-only memory. 3. The inverter control device according to claim 1 or 2, wherein the m-phase load is a three-phase AC motor without a neutral point terminal.
JP57111178A 1982-06-28 1982-06-28 Controller for inverter Pending JPS592579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57111178A JPS592579A (en) 1982-06-28 1982-06-28 Controller for inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57111178A JPS592579A (en) 1982-06-28 1982-06-28 Controller for inverter

Publications (1)

Publication Number Publication Date
JPS592579A true JPS592579A (en) 1984-01-09

Family

ID=14554463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57111178A Pending JPS592579A (en) 1982-06-28 1982-06-28 Controller for inverter

Country Status (1)

Country Link
JP (1) JPS592579A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204270A (en) * 1984-03-28 1985-10-15 Origin Electric Co Ltd Inverter device
EP0268046A2 (en) * 1986-11-20 1988-05-25 Villamosipari Kutato Intézet Method and circuit arrangement for the control and regulation of three-phase inverters with sequence regulation
WO2019012915A1 (en) * 2017-07-14 2019-01-17 株式会社デンソー Rotating electric machine drive system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204270A (en) * 1984-03-28 1985-10-15 Origin Electric Co Ltd Inverter device
EP0268046A2 (en) * 1986-11-20 1988-05-25 Villamosipari Kutato Intézet Method and circuit arrangement for the control and regulation of three-phase inverters with sequence regulation
WO2019012915A1 (en) * 2017-07-14 2019-01-17 株式会社デンソー Rotating electric machine drive system
JP2019022299A (en) * 2017-07-14 2019-02-07 株式会社デンソー Drive system of rotary electric machine
US11038453B2 (en) 2017-07-14 2021-06-15 Denso Corporation Rotating electric machine drive system

Similar Documents

Publication Publication Date Title
US4777579A (en) Integrated current sensor configurations for AC motor drives
US4507724A (en) Pulse width modulated inverter for unbalanced and variable power factor loads
JPH01214267A (en) Apparatus and method for feedback current control of multphase load
JPH0799959B2 (en) Inverter with winding switching function
JP3716152B2 (en) Power converter
JPS592579A (en) Controller for inverter
JPH10271823A (en) Power factor improved three-phase converter
JPS61196788A (en) Speed controller of motor
US4961129A (en) Current controlled active flywheel type neutral point clamped inverter
JP3249349B2 (en) Transformer
JP3070314B2 (en) Inverter output voltage compensation circuit
JPS6016179A (en) Current controller of pulse width modulation inverter
JPS61231889A (en) Controlling method for voltage type inverter
JPH06245588A (en) Pwm inverter control method
JPS59127575A (en) Single-phase/3-phase converter circuit
JPS58151879A (en) Control circuit for alternating current/direct current converting circuit
JPH0433574A (en) Inverter
JPH0937552A (en) Pwm converter
JPS6173584A (en) Controlling method of power regenerative circuit
JPH03265486A (en) Inverter control system
SU1575265A1 (en) Filter-symmetring device for three-phase four-wire networks with non-linear unsteady loads
JPH01218302A (en) Controller for electric rolling stock
JPS59149776A (en) Ground protecting device for power converter
JP2019004657A (en) Single-phase three-wire inverter and voltage compensation device
JPH0331778A (en) Semiconductor aging device