JPS5925221A - Manufacture of semiconductor device having low leakage current - Google Patents

Manufacture of semiconductor device having low leakage current

Info

Publication number
JPS5925221A
JPS5925221A JP12591983A JP12591983A JPS5925221A JP S5925221 A JPS5925221 A JP S5925221A JP 12591983 A JP12591983 A JP 12591983A JP 12591983 A JP12591983 A JP 12591983A JP S5925221 A JPS5925221 A JP S5925221A
Authority
JP
Japan
Prior art keywords
region
insulating film
aperture
type region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12591983A
Other languages
Japanese (ja)
Other versions
JPS5951130B2 (en
Inventor
Toshio Wada
和田 俊男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP12591983A priority Critical patent/JPS5951130B2/en
Publication of JPS5925221A publication Critical patent/JPS5925221A/en
Publication of JPS5951130B2 publication Critical patent/JPS5951130B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To increase the degree of integration as well as to perform a high- speed operation without increasing the occupation area of an aperture forming part by a method wherein a contact etching is performed on a part of the upper surface of a buried insulating film including the region wherein reverse conductive type impurities have been introduced. CONSTITUTION:A buried insulating film (silicon oxide film) 103 is formed on a main surface of a one-conductive type semiconductor substrate (P type silicon single crystal substrate) 101. Reverse conductive type impurities (phosphorus) are introduced into the region (N type region) 104 which is located adjoining to the insulting film 103 on a main surface. A contact etching is performed on a part of the insulating film 103 including the region 104. At this time, a part of the aperture is to be positioned on the upper surface of the insulating film 103, and the end part of the upper surface of the region 104 is exposed by the formation of the aperture. Then, reverse conductive impurities are introduced into the exposed region 104. A metal wiring 112 is formed in such a manner that it is extended from the region 104 to the upper surface of the insulating film 103.

Description

【発明の詳細な説明】 この発明t」、市M斜〕’rIルで漏洩電ト+lL’の
少ない半導体AL’ aJIi回路装置frの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor AL'aJIi circuit device fr with low leakage current +lL'.

21′771休止積回1.!H′lの同速化・大集積化
のために半2ノ!・体素子白鉢のδIl・i少と同時に
素子間」、・よひ素子と配線との結合部の面積縮少が必
袈とされている。
21'771 pause accumulation times 1. ! In order to achieve the same speed and large integration of H'l, half 2 no!・It is necessary to reduce the area of the coupling portion between the element and the wiring.

従来の結合部は一導電型半導体領域内に形成した逆導電
型領域の表面に選択的に開孔を設け、この開孔を通して
半導体基体表面に椋着する絶縁被膜上に金属配線を設け
る。こ\で開孔は逆導電型領域と一部1L型領域との境
界のP N接合が基体表面に到るl) N接合端部より
製造工程上の余裕度を含めて内側に設計ネれる。しかし
乍らこの余裕度は集積回路の集積度を著じるしく低下す
る。これを解決する従来唯一の方法は、半弓体層を導電
配線とし7て用い、導電配線形成後に不純物ji)人を
?fっ°C逆導電型領域を形成する方法である。然し乍
らこの方法も半2H体束積回路では市、流供給能力の優
れた金属配線と通;pi、電型領域との1θ′接結合を
N−へないため、高速化・大集積化のだめの半専体集積
1φ寸を付(111造として不十分である。
In a conventional bonding part, an opening is selectively formed on the surface of a region of the opposite conductivity type formed in a semiconductor region of one conductivity type, and a metal wiring is provided on an insulating film that is deposited on the surface of the semiconductor substrate through the opening. In this case, the opening is designed so that the P-N junction at the boundary between the opposite conductivity type region and a part of the 1L-type region reaches the substrate surface l) Inward from the N-junction end, taking into account the manufacturing process margin. . However, this margin significantly reduces the degree of integration of the integrated circuit. The only conventional method to solve this problem is to use the penumbra layer as a conductive wiring 7 and remove impurities after forming the conductive wiring. This is a method of forming a region of opposite conductivity type. However, this method is also difficult to achieve in high-speed and large-scale integration in semi-2H volumetric circuits because it does not connect the 1θ' contact with the metal wiring with excellent current supply ability to the N- type region. Semi-dedicated integration with 1φ dimension (not sufficient for 111 buildings).

従ってこの発]〃]の目的は、高速・犬集粕の半2.r
V一体集わ′i回路装置の製造方法を提供することに辱
)る。
Therefore, the purpose of this issue]〃] is the high speed/inuzhukasu half 2. r
It is a disgrace to provide a method for manufacturing a V integrated circuit device.

この発明によれ附1、−導電型半導体J35体の一表面
に選択的に通導′ffi型領域を形成し、彩領域表面の
開孔を辿し“C前記−表allを被覆する絶縁被膜上に
fiil記逆導正逆導電型領域電極配線を2n出する半
4休装買の製造方法におい−で、前記逆層電型領域形成
後にr)i+紀絶縁被膜上に前記通導’ilY、型領域
と基体との間に形成されるP N接合の端部を通過する
開孔を設け、該開孔形成後に前記半導体基体の4゛而に
通導1b゛、型不純物を接触し、しかるのち全面に一様
に蝕刻を行って表面処理を行い、79[定の金λjli
配線を形成することfc!1.li徴とする半導体装置
の製造方法が得られる。こ\で金川配線とり」−アルミ
ニウム・、モリブデン、シリコン−アルミニウムの二重
層もしくは合金層、チタン−白金又C」、パラジウムの
ニア1j層等の主成分を金耗とする導電配線である。
According to the present invention, an insulating coating is formed by selectively forming a conductive 'ffi type region on one surface of the conductive semiconductor J35 body, tracing the openings on the surface of the colored region, and forming an insulating coating covering all surfaces. In the manufacturing method of half-terminal production in which 2n of reverse conductivity positive and reverse conductivity type region electrode wirings are produced as described above, after the formation of the reverse conductivity type regions, the conductive 'ilY , providing an opening passing through the end of the PN junction formed between the mold region and the substrate, and after forming the opening, contacting the semiconductor substrate with conduction 1b and a mold impurity; After that, the entire surface is uniformly etched to perform surface treatment, resulting in a 79 [metallic
Forming wiring fc! 1. A method for manufacturing a semiconductor device with li characteristics is obtained. Kanagawa wiring is a conductive wiring whose main components are aluminum, molybdenum, silicon-aluminum double layer or alloy layer, titanium-platinum or palladium layer, etc.

この発明の半導体装{直は選1)〈蝕刻法による開孔形
成後に不純物HL人が行なわれる。この不純物導入によ
っC1開札形成時に発生した欠陥近傍のmm1b、型基
体が不純物侵入でス■l瘤重、領域となり、全組配線形
成後に全孔配線の合金化に」:っC生ずるJ’ N r
&合の欠陥部からの漏洩を防止することができる。従っ
゛にの発明による半導体装fI′(d、開孔形成部で占
有面積の増大を生じることなく高集積・高速動作の半導
体集積回路を提供する。
Semiconductor device of this invention {direct selection 1) <Impurity HL treatment is performed after openings are formed by etching. Due to the introduction of this impurity, the mm1b area near the defect that occurred during C1 opening formation becomes a sluggish area due to the impurity intrusion, and after forming all the wiring sets, alloying of all hole wiring occurs. N r
& Leakage from defective parts can be prevented. Accordingly, the semiconductor device fI'(d) according to the present invention provides a highly integrated and high-speed operating semiconductor integrated circuit without increasing the area occupied by the opening forming portion.

次にこの発明の実施1+11につき図を用いC貌、”)
Jする。
Next, using the diagram for implementation 1+11 of this invention,
Do J.

第[図乃至第4図はこの発明のJけも好寸しい実施例の
各製造]二相に′l?ける半導体装置の断面図である。
[Figures 4 through 4 show the manufacture of the most preferred embodiments of this invention] In the two-phase 'l? FIG. 2 is a sectional view of a semiconductor device.

第1図:比抵抗1Ω−cmのP型シリコン単結晶基体1
01の表面に選択的にシリコン窒化膜102を形成し、
このシリコン窒化膜102を選択酸化用マスクとし゛C
1熱酸化して不活性領域となる基体1010表U11に
約1.Q7tmのシリコン酸化膜10:3を形成する。
Figure 1: P-type silicon single crystal substrate 1 with specific resistance of 1Ω-cm
A silicon nitride film 102 is selectively formed on the surface of 01,
This silicon nitride film 102 is used as a mask for selective oxidation.
1. On the substrate 1010 table U11, which becomes an inactive region by thermal oxidation, about 1. A Q7tm silicon oxide film 10:3 is formed.

第2図:次にノリコン窒化膜102に籾われだ部分から
燐を導入して接合深さ0.3 fi IllのN型領域
104を形成する。このN型窃j域1041−′:Iニ
ンリコン酸化11!(103をマスクとして用いて選択
的に導入され、不純物心人後の熱酸化処理で表面に20
00Aのシリコン酸化膜105を有する。
FIG. 2: Next, phosphorus is introduced into the Noricon nitride film 102 from the leftover portion to form an N-type region 104 with a junction depth of 0.3 fi Ill. This N-type stealth region 1041-': I-ninlicon oxidation 11! (Selectively introduced using 103 as a mask, 20
It has a silicon oxide film 105 of 00A.

第3図:次シ(コンタクトエツチング工程でフォトレジ
スト膜106 ”fマスクとしでN型領域]0’4の上
面のシリコン酸化膜105を除去する。この時のコンタ
クl−エツチング工程でのフォトレジスト膜106に写
遺、蝕刻する開孔1.07は、少くとも一部が不活14
1:4(1、域を覆うシリコン酸化膜1.03の上面に
あり、従ってN型領域104の上面の端部108,10
9は開孔形成により露呈する。
Figure 3: Next step (In the contact etching process, the silicon oxide film 105 on the top surface of the photoresist film 106 (using the N-type region as an F mask) 0'4 is removed.The photoresist film in the contact etching process at this time is The aperture 1.07 etched or etched into the membrane 106 is at least partially inert 14.
1:4 (1), which is on the top surface of the silicon oxide film 1.03 covering the region, and therefore the ends 108 and 10 of the top surface of the N-type region 104.
9 is exposed by forming an aperture.

第4N:開化形成によりN型1ift域104の上面を
γh出シ2/こ半導体基体は、フォトレジスト106を
除去し、さらに洗浄工程を通し7て(150℃〜850
℃の比較的低温でのリン拡散処M11もしくはリンのイ
洲ン注入処理を行う。この実7Ai例では一条件として
800℃で40分の燐拡散処↓甲をイJう。このNハリ
不pI;物であるり、Yの開孔形成後のジ、1体への接
触(,11、開孔107が露呈するNハリfi、ft域
104の端部の欠陥を保護するN型領域] ] 0 、
11.1を形成すイ)。又、この接触の後の半導体基体
は弱弗酸液にりAi時間侵rs’jシC表面処即を行い
、開化形成時のNiちす領域]、 04の表i7uを蕗
呈し、ンリコンーアルミニウムニ重層を表面に蒸着する
。この二311層は周知の写真蝕刻技術を用いて、N型
領域104から厚いシリコン酸化膜103の上面に延出
する金札配線112に加工され、400〜500 ℃で
合金処理され°CN型領域104との接触性を良好にす
る。
4th N: γh is exposed on the upper surface of the N-type 1ift region 104 by opening formation.The photoresist 106 is removed from the semiconductor substrate, and the semiconductor substrate is further subjected to a cleaning process (150°C to 850°C).
Phosphorus diffusion treatment M11 or phosphorus injection treatment is performed at a relatively low temperature of .degree. In this actual 7Ai example, one condition is phosphorus diffusion treatment at 800°C for 40 minutes. This N tension is an object, or contact with the body after the aperture formation of Y (,11, protects the defect at the end of the N tension fi, ft region 104 where the aperture 107 is exposed. N-type region] ] 0,
11.1). Further, after this contact, the semiconductor substrate was subjected to Ai time oxidation surface treatment using a weak hydrofluoric acid solution, and the surface treatment was carried out to form the surface area of 04. - Deposit a double layer of aluminum on the surface. These two 311 layers are processed using a well-known photolithographic technique into a gold plate wiring 112 extending from the N-type region 104 to the upper surface of the thick silicon oxide film 103, and alloyed at 400 to 500°C. Improve contact with.

第5図(A)乃至第5図(Q r、J:第1図乃至第4
図に示した実施例によって製造された半導体装置のN型
領域と開孔との関係を示す平alJ図である。第5図(
A)は従来の開孔形状で、N型領域501の表面の内側
に所要の余裕度を見込んで開孔502を設けたものであ
る。第5図(IJ)iJ、この発明によりN型領域50
3に対して縦方向で開孔50・1の端部が外側に設削さ
れた素子パターンを示す。第5図(C)は第5図(13
)のパターンを更に横方向にも適用し、N型領域505
の表面の完全に外側で開孔506を設けたものである。
Figures 5 (A) to 5 (Q r, J: Figures 1 to 4)
FIG. 2 is a planar J diagram showing the relationship between the N-type region and the opening of the semiconductor device manufactured according to the example shown in the figure. Figure 5 (
A) is a conventional aperture shape in which an aperture 502 is provided inside the surface of an N-type region 501 with a required margin. FIG. 5 (IJ) iJ, N-type region 50 according to the present invention
3 shows an element pattern in which the ends of the openings 50 and 1 are cut outward in the vertical direction. Figure 5 (C) is
) pattern is further applied in the horizontal direction to form an N-type region 505.
An aperture 506 is provided completely outside the surface.

N型領域501.503.5041d、全て第1図に示
した如く、活性領域にシリコン窒化膜を違択酸化マスク
として用いた製造工程で得られる。この選択酸化法は通
′帛フラットMO8技術(1’1at−1〜□10S)
、ロコス技術(1,0CO8)、アイソブレーナ技術(
I S OP ]、A、NA、1.t )と呼d′れ、
この発明の効果の最も顕著な製造技術である。又、第5
図(A)乃至第5図(C’)に示したコンタクトの例は
全て金属配線とN型領域とが同一の接触m1私を有し、
この間の接触抵抗は同一である。半導体集積回路におい
てに、活性領域の占有面積が集積度を支配するため、第
5図(A)の従来素子に対して第5図(C)の実が(鄭
11の素子でに、11に積度が4倍に向上する。
The N-type regions 501, 503, and 5041d are all obtained by a manufacturing process using a silicon nitride film as a selective oxidation mask in the active region, as shown in FIG. This selective oxidation method is a standard flat MO8 technology (1'1at-1~□10S)
, LOCOS technology (1,0CO8), isobrener technology (
I S OP], A, NA, 1. t) and d';
This is the manufacturing technology with the most remarkable effect of this invention. Also, the fifth
The contact examples shown in Figures (A) to 5(C') all have the same contact m1 between the metal wiring and the N-type region;
The contact resistance during this period is the same. In a semiconductor integrated circuit, since the area occupied by the active region controls the degree of integration, the conventional device shown in FIG. The accumulation rate is increased by 4 times.

第6図はこの発明によって製造された半2h体装16、
の作用効果を力くず+F雇牛図である。第5図い)乃至
第5図(C) K 7J’: したP N接合ダイメー
トは、金属配線から基体に流れる逆方向電流1Bと炉方
向電、圧VBとの関係で示す逆方向耐JJEがそれぞれ
’Fη性曲線曲線601602,603で観県される。
FIG. 6 shows a half-2h body 16 manufactured according to the present invention,
The action and effect of is a diagram of brute force + F hired cattle. Figures 5(a) to 5(c) K7J': The PN junction dimate has a reverse direction resistance JJE shown by the relationship between the reverse direction current 1B flowing from the metal wiring to the substrate, the furnace direction voltage, and the voltage VB. 'Fη characteristic curves 601, 602 and 603, respectively.

即ち開孔部かN型領域の完全外側に設けられる素子は最
も尚111I川の特性曲線603力える。これに対し従
来θ、−で第5図(A)乃至第5図(Qに示されたよう
々コンタクト形状の素子を形成すると、同一の材′#1
を用いても特性曲線601.604.605に示し、開
孔部がN型領域の外部に到るものでは完全に短絡特性を
示す。
That is, an element provided completely outside the aperture or N-type region will most likely exhibit the characteristic curve 603 of the 111I river. On the other hand, when an element having a contact shape as shown in FIGS. 5(A) to 5(Q) is conventionally formed at θ, -, the same material
Characteristic curves 601, 604, and 605 show that even when using the above, the aperture extending outside the N-type region completely exhibits short-circuit characteristics.

このようにこの発明によればきわめて好ましいl持1(
1ユのN型領域と金属配線との結合が得られる。
As described above, according to the present invention, the extremely preferable l(1)
A bond between the 1U N-type region and the metal wiring is obtained.

開孔形成後の不純物接7IIJiは、イオン注入法を用
いても同様な結果となる。金属配線としてはノリコンー
アルミニウムの二重層が11+も好址しい特性を示す。
The impurity contact 7IIJi after the openings are formed will have similar results even if the ion implantation method is used. As a metal wiring, a double layer of Noricon-aluminum exhibits favorable characteristics in 11+.

この二重層のN型領域に接触するノリコノは無定形で1
0〜500A、多結晶で10〜100Aが良々了な接触
と上層のアルミニウムの合金侵入を防ぐ障壁作用とを力
える。アルミニウムは05〜2μm程度までの膜厚であ
る。このほか用いられる金属配線としCはシリコンを0
.01チ〜1飴程度含有するアルミニウム合金、パラジ
ウト又は白金と金又はアルミニウムの二重層がある。又
、実施例にはP型基体にN型領域を形成した]’NN接
合用1゛オード示したが、導電型の変切、へIO8曳1
トランジスタもしくはバイポーラ素子のような他の半導
体製画にも適用可能である。開孔形成袋の不純物接触は
拡散およびイオン注入のほかにリンカラス層もしくはボ
ロンガラス層からの不純物接触法を用いてもよい。
The Norikono contacting the N-type region of this double layer is amorphous and 1
0 to 500 A, and 10 to 100 A for polycrystalline materials to provide good contact and a barrier effect to prevent the upper layer of aluminum from penetrating the alloy. The thickness of aluminum is about 0.5 to 2 μm. In addition, as for the metal wiring used, C is 0 for silicon.
.. There are aluminum alloys, palladium, or double layers of platinum and gold or aluminum containing about 0.01 to 1.0%. In addition, in the example, an N-type region was formed on a P-type substrate.
It can also be applied to other semiconductor designs such as transistors or bipolar devices. In addition to diffusion and ion implantation, impurity contact with the hole-forming bag may be performed using a method of contacting impurities from a link glass layer or a boron glass layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は各々この発明の一実施例の各製造二
I−fi’、における回面図、第5図(A)乃至第5図
(Qは名/、この発明の作用効果をn発明するための半
青体素子の乎面図、第6図はこの発す]の作用効果を7
Jeす逆方向特性I4図である。 図中、101  ・・・P型7リコンηへ結晶基体、1
04°゛°N型1コ11域、107・・・・・・開孔形
成用のフ1[・レジストの開孔部、11:l:、1、金
属配線、である。 第1回 筋2図 第3図 第4図 A        B          C′fJδ
 図 IBOtA) 竿乙図
FIGS. 1 to 4 are circuit diagrams at each manufacturing stage 2I-fi' of an embodiment of the present invention, and FIGS. Figure 6 shows the operation and effect of this semi-blue body element for inventing n.
It is a reverse direction characteristic I4 diagram. In the figure, 101...Crystal substrate to P-type 7 silicon η, 1
04°゛°N type 1 piece 11 area, 107... Folder 1 for opening formation, opening portion of resist, 11:l:, 1, metal wiring. 1st muscle Figure 2 Figure 3 Figure 4 A B C'fJδ
Figure IBOtA) Rod diagram

Claims (1)

【特許請求の範囲】[Claims] 一4′Tt〒1型半導体基体の一生表σ11に選択的に
埋設絶縁1摸を設けるエイ星と、前記−主表面の前記埋
設?tC2縁膜に回設する領域に逆導電型領域牧1を導
入する工程と、11■記逆2h電型不純物をQ4人した
領域を1んで前記押設絶縁+1>Eの一部上わたってフ
ンタクトエツチングを行う1札1と、該露出した前記領
域にきしに逆2!9電型不純′1勿を2j%人する工程
とを含むことを”S+17:<とする半ツノ・1体装置
の!I1.l!造方法。
14'Tt〒1-type semiconductor substrate's lifetime surface σ11 with a selectively buried insulation layer 1, and the buried insulation on the main surface? A step of introducing a reverse conductivity type region Maki 1 into the region to be circulated in the tC2 edge film, and a step of introducing the reverse conductivity type region Maki 1 into the region where the reverse conductivity type impurity described in 11. A half-horn 1 that is ``S+17:<'' includes a step of carrying out tact etching and a step of removing 2j% of reverse 2!9 electric type impurities in the exposed area. !I1.l! Construction method of body equipment.
JP12591983A 1983-07-11 1983-07-11 Method for manufacturing semiconductor devices with low leakage current Expired JPS5951130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12591983A JPS5951130B2 (en) 1983-07-11 1983-07-11 Method for manufacturing semiconductor devices with low leakage current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12591983A JPS5951130B2 (en) 1983-07-11 1983-07-11 Method for manufacturing semiconductor devices with low leakage current

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13672575A Division JPS5950104B2 (en) 1975-11-13 1975-11-13 Hand tie souchi

Publications (2)

Publication Number Publication Date
JPS5925221A true JPS5925221A (en) 1984-02-09
JPS5951130B2 JPS5951130B2 (en) 1984-12-12

Family

ID=14922182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12591983A Expired JPS5951130B2 (en) 1983-07-11 1983-07-11 Method for manufacturing semiconductor devices with low leakage current

Country Status (1)

Country Link
JP (1) JPS5951130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231697B2 (en) 2002-06-20 2007-06-19 Ykk Corporation End stop for slide fastener and slide fastener having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02200952A (en) * 1989-01-30 1990-08-09 Yoshio Bessho Twisted indoor stairway

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7231697B2 (en) 2002-06-20 2007-06-19 Ykk Corporation End stop for slide fastener and slide fastener having the same

Also Published As

Publication number Publication date
JPS5951130B2 (en) 1984-12-12

Similar Documents

Publication Publication Date Title
KR950000866B1 (en) Semiconductor device and fabricating method thereof
JPS6213819B2 (en)
JPS6364057B2 (en)
JPS5925221A (en) Manufacture of semiconductor device having low leakage current
JP3294001B2 (en) Method for manufacturing insulated gate semiconductor device
JPS5950104B2 (en) Hand tie souchi
JPS59197162A (en) Semiconductor device
JPS59161060A (en) Method of producing semiconductor device
JPS58222574A (en) Semiconductor device and manufacture thereof
JPS6286715A (en) Manufacture of semiconductor device
JPS5816569A (en) Vertical type mosfet
JPS5939046A (en) Manufacture of gate array
JPS60242662A (en) Semiconductor device
JPS6127677A (en) Manufacture of semiconductor device
JPS59121978A (en) Manufacture of semiconductor device
JPS61110462A (en) Semiconductor device and manufacture thereof
JPS60236257A (en) Semiconductor device
JPH04274330A (en) Manufacture of power semiconductor element
JPH0441510B2 (en)
JPS59107540A (en) Semiconductor device with wiring connection part using silicide
JPS59181669A (en) Mos type semiconductor device
JPS5982760A (en) Complementary semiconductor integrated circuit device
JPS5879761A (en) Semiconductor device
JPS60219771A (en) Manufacture of mos type semiconductor device
JPH03145729A (en) Manufacture of semiconductor device