JPS5925168A - Enclosed alkaline battery - Google Patents

Enclosed alkaline battery

Info

Publication number
JPS5925168A
JPS5925168A JP57135191A JP13519182A JPS5925168A JP S5925168 A JPS5925168 A JP S5925168A JP 57135191 A JP57135191 A JP 57135191A JP 13519182 A JP13519182 A JP 13519182A JP S5925168 A JPS5925168 A JP S5925168A
Authority
JP
Japan
Prior art keywords
zinc
hardening
alkaline battery
zinc oxide
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57135191A
Other languages
Japanese (ja)
Inventor
Kenichi Shinoda
健一 篠田
Tomoya Murata
村田 知也
Takashi Fukuhara
福原 敬司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP57135191A priority Critical patent/JPS5925168A/en
Publication of JPS5925168A publication Critical patent/JPS5925168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve high load discharge characteristic under a low temperature by specifying amount of zinc oxide included in the hardening zinc in a hermetically sealed alkaline battery using the hardening zinc as the principal element of negative pole active material. CONSTITUTION:A hermetically sealed alkaline battery using the hardening zinc wherein amount of content of zinc oxide is limited to 0.50wt% or less as the negative pole active material sustains excellent high load discharge characteristic even under a low temperature condition, for example, of minus 20 deg.C. Amount of zinc oxide in the hardening zinc can be reduced to 0.50wt% or less by the following steps that the hardening zinc is obtained by adding hydrochloric acid to a mixture of zinc and mercury, decantation is carried out by washing the hardening zinc with a large amount of water, thereafter decantation is carried using aceton and water content should be removed rapidly during such decantation in order to suppress the progress of oxidation of zinc.

Description

【発明の詳細な説明】 この発明は密閉式アルカリ電池、特に負極活物質どじで
水化亜1()を主成分どして用いるものに関りる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sealed alkaline battery, and particularly to a battery using hydroxide 1(2) as a main component as a negative electrode active material.

この種の密閉式アルカリ電池は正極に二、酸化マン刀ン
あるいは酸化銀等を用いるとともに、その負極にゲル状
の水化亜鉛を用いるのか一般的な構成ど41つている。
This type of sealed alkaline battery has 41 general configurations, such as using dicarboxylic oxide or silver oxide for the positive electrode, and gelled zinc hydride for the negative electrode.

この種の密閉式アルカリ電池は、ぞの放電性能が優れて
いることから、特に小型電池の分野、例えばり、R6、
LP01  、LP01  。
This type of sealed alkaline battery has excellent discharge performance, so it is particularly useful in the field of small batteries, such as R6,
LP01, LP01.

S R/I 4 WといったようなタイプのものC′多
く使用されCいる。ところで、この種の密閉式アルカリ
電池に共通する問題として、低ン品時、特にマイナス2
0℃といったような低温においてその放電性能が著しく
低下するということが従来からあった。
Types such as S R/I 4 W are often used. By the way, a common problem with this type of sealed alkaline battery is that when it is a low-power product, especially negative
It has conventionally been known that the discharge performance deteriorates significantly at low temperatures such as 0°C.

密閉式アルカリ電池は、その放電性能が優れているとい
うものの、それは常温時にJ5いててのことであって、
その使用湿度が低下するにともなつ−C内部抵抗が増大
して特に高負荷放電特性が著しく低下してくるようにな
る。そこで、この低温11.’jにおける高負荷放電特
性を向上さけるために、従来から種々の対策・手段が講
じられてぎた。従来において主に行なわれてきたこと1
よ、ノノルカリ電解液の濃度を低め、また負極活物質の
ゲル化剤を用いること等であった。しかしながら、アル
カリ電解液の濃度を一方的に低めることは、=一般的な
意味での電池の諸性性にとって必づ゛しも石塁なものと
はなり冑ない。また、負極活物質をゲル化りることは一
般的に行なわれているか、しかしイれたけでもって 2
例えばマイナス20℃といったJ、う4I:低温時にお
()る高負荷放電特性の低下を十分に防止Jることはで
きなかった。
Sealed alkaline batteries are said to have excellent discharge performance, but that is only when they are at room temperature.
As the operating humidity decreases, the -C internal resistance increases, and the high-load discharge characteristics in particular deteriorate significantly. Therefore, this low temperature 11. In order to avoid improving the high load discharge characteristics in 'j, various countermeasures and means have been taken in the past. Main things that have been done in the past 1
The solution was to lower the concentration of the nonorkali electrolyte and to use a gelling agent for the negative electrode active material. However, unilaterally lowering the concentration of the alkaline electrolyte does not necessarily have a negative impact on the properties of a battery in a general sense. Also, is it common practice to gel the negative electrode active material?
For example, it was not possible to sufficiently prevent the deterioration of high-load discharge characteristics at low temperatures of -20°C.

ここで、負極活物質として氷化亜1(1を主成分として
用いる従来の密閉式アルカリ電池で(よ、その氷化亜鉛
を第1図に示すような■稈によって1野でいIこ。すな
わら、亜鉛と水銀の混合物を塩酸(こJ、って反応させ
て氷化亜鉛を得、この氷化亜鉛を多量の水で洗浄するこ
とにより中性化しくデカンテーション)、このあと一般
的な乾燥を行なって負極活物質としての氷化亜鉛を得て
いlこ。ところで、このようにして得られる負極活物質
としての氷イヒ亜鉛は、その中に少くとも11%以上の
酸(し亜鉛が含まれるものであった。この酸化亜鉛(よ
、上述した乾燥工程等に伴う酸化によって生じるもので
ある。しかし、従来においては、そのFIff (e亜
側)の串は、それが1重量%程度の開て゛あるなら【J
、アルカリ電池の放電特性にはと/υど影響を及IJさ
ないものとしC無視されCいた。むしろ、その程度の量
の酸化亜鉛が含まれることは、亜鉛′b<イA−ン化さ
れてアルカリtFi ’fK液中に溶(Jるのを’>B
 B *コ抑制しC放雷容量の減少を防止覆るものであ
って、とららかといえば好ましいものであるとさえイ言
じられていた。しかしながら、本発明者ら、Ill′X
111”4 Llだところによると、その氷化亜鉛中に
含まれる八女化亜鉛の量が低温時における放電特性、1
1こ6jji伺放電特性に著しく影響]るものであるこ
とlfi !Ill明したのである。そして、特にその
酸化細針)の含有間を0.50重量%以下に・づること
により、低湿時における高負荷放電特性が従来よりも著
しく改善され、しかもその改善の効果が極めて良好な再
現性を伴うものであることが知(りされlこ。、この発
明は、以上のような知得tこ基づいて5戊されたもので
′、その目的とするところは、電池としての一般的な特
性を犠牲にJ−ることなく、低温l、″Iにおける高負
荷放電特性を極めて再現性良く向上させられるようにし
た密閉式アルカリ電池を提供することにある。
Here, in a conventional sealed alkaline battery that uses zinc oxide as the main component as the negative electrode active material, the zinc oxide is collected in a field using a culm as shown in Figure 1. In other words, a mixture of zinc and mercury is reacted with hydrochloric acid (J) to obtain frozen zinc, which is neutralized by washing with a large amount of water and then decanted. By the way, the frozen zinc as the negative electrode active material obtained in this way has at least 11% or more acid (chloride) in it. This zinc oxide is produced by oxidation during the drying process mentioned above.However, in the past, the FIff (e sub side) skewer was If there is a gap of about % [J
It was assumed that IJ would not have any effect on the discharge characteristics of alkaline batteries and was ignored. Rather, the inclusion of such an amount of zinc oxide means that zinc is ionized and dissolved in the alkaline solution.
It was even said that it was a desirable thing, as it suppressed B* and prevented the decrease in C lightning discharge capacity. However, the inventors, Ill'X
111"4 Ll According to the source, the amount of zinc yameka contained in the frozen zinc affects the discharge characteristics at low temperatures, 1
It must have a significant effect on the discharge characteristics! It was clear. In particular, by reducing the content of the oxidized fine needles to 0.50% by weight or less, the high-load discharge characteristics at low humidity are significantly improved compared to conventional methods, and the effect of this improvement is extremely reproducible. This invention was developed based on the above-mentioned knowledge, and its purpose is to improve the general battery as a battery. It is an object of the present invention to provide a sealed alkaline battery in which high-load discharge characteristics at low temperatures 1 and 2 can be improved with excellent reproducibility without sacrificing the characteristics.

上記の目的を達成するために、この発明は、負極活物質
として氷化亜鉛を主成分として用(Xる密閉式アルカリ
電池を只おいて、上記氷化亜鉛中(こ含まれる酸化亜鉛
量を0.50重量%以下1こし]こことを特徴とJる。
In order to achieve the above object, the present invention uses zinc oxide as a main component as a negative electrode active material (in a sealed alkaline battery), and reduces the amount of zinc oxide contained in the zinc oxide. 0.50% by weight or less 1 strain] Characterized by this.

以下、図面を参照しながらこの発明の好適な実施例を説
明する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

この発明による密閉式アルカリ電池(3L、その形状的
構成についてtよ従来のものと全く同じにすることがで
きる。ただ、前述したように、その負極活物質として用
いられる氷化!lI!鉛中の酸化亜鉛量が0.50重量
%以上どなっていることである。ところで、このように
酸化亜鉛の含有量を少くした氷化亜鉛は、前述した従来
方滅Cは得ることができない。そこ−C1その酸化亜鉛
の宿を0.50屯01%以下に低減させることができる
方法の例を承り。
The sealed alkaline battery (3L) according to the present invention can be exactly the same in shape and configuration as the conventional one. However, as mentioned above, the 3L lead used as the negative electrode active material The zinc oxide content is 0.50% by weight or more.By the way, the zinc oxide with such a reduced zinc oxide content cannot be obtained in the conventional way C as described above. -C1 We have received an example of a method that can reduce the zinc oxide content to 0.50 tons or less.

第2図はその方法の一例を示したものく、まず、りE鉛
と水銀の混合物に塩酸を加えて氷化亜鉛を1q、この氷
化亜鉛を多量の水で洗うことによりデカンデージョンを
行なう。ここまでは従来と同じ工程であるが、この後に
アセトンによるデカンデージ」ンを行なって、その氷化
亜鉛中の水分を急速除去しC負極活物質としての氷化亜
鉛を冑る。このようにして得られた氷化亜鉛ta、多M
の水によるデカンテーション後の乾燥工程が、一般的な
乾燥工程で゛はなく、アセトンによるテ′カンチージョ
ンによって水分を急速に取り去って行なったために、そ
の間に亜鉛の酸化がほと/vど進行せず、従って酸化亜
鉛の含有量を−0,50重量%以下に押えることも簡単
に行なうことができる。第2図Bは他の方法例を示した
もので、ここでは、多量の水によるデカンテーション後
に、真空乾燥を行なつで負極活物質どしての氷化亜鉛を
teている。この場合も、多量の水によるデカンテーシ
ョン後に真空乾燥を行なっているため、その乾燥中に酸
化亜鉛が生じることはほとんどなくなり、従って酸化亜
鉛の含有量が0.50重但%以下の負極活物質どしての
氷化亜鉛を簡単に得ることができる。
Figure 2 shows an example of the method. First, add hydrochloric acid to a mixture of lead and mercury to obtain 1 q of frozen zinc, and then decandage the frozen zinc by washing it with a large amount of water. Let's do it. The steps up to this point are the same as those of the conventional method, but after this, decandation with acetone is performed to rapidly remove water in the frozen zinc and dissolve the frozen zinc as the C negative electrode active material. Thus obtained frozen zinc ta, multi-M
The drying process after decantation with water was not a typical drying process, but rather the water was quickly removed by decanting with acetone, so the oxidation of the zinc hardly progressed during that time. Therefore, it is possible to easily suppress the content of zinc oxide to -0.50% by weight or less. FIG. 2B shows another method example, in which frozen zinc as a negative electrode active material is removed by vacuum drying after decantation with a large amount of water. In this case as well, since vacuum drying is performed after decantation with a large amount of water, almost no zinc oxide is generated during the drying, and therefore the negative electrode active material has a zinc oxide content of 0.50% by weight or less. How can you easily obtain frozen zinc?

さて、以上のようにし゛C酸化亜鉛の含有81が0.5
0重量%以下に制限された氷化亜鉛を負極活物質として
用いた密閉式アルカリ電池は、例えばマイナス20℃と
いった低温条件下でし優れたl!′!lΩ前放電特性を
維持することかできた。またこれとどもに、常温時にあ
【)る一般的な放電特性も、従来のものに比べて何等劣
るところがない優れた特性を1LIられることかfff
 L’?された。このJ、うに、酸化亜1イ)の川を制
限Jることにより低温口)におりる高工1伺敢電持竹が
向上りる理由どしCは、低温時にJjい−U !11!
鉛が酸化亜鉛に妨害されることなくイオン化して電解液
中に円滑に移行し−C起電力を生じさせることかできる
ノこめと考えられる。このことは、あ°る程度のf73
の酸化亜鉛は負(→I活物質としての!111鉛が電解
液中に溶【J込んで放電@′11の減少を阻止づるよう
な作用をなすという従来からの常識に反りる面もあるか
、しかし、不発明石らかその酸化師鉛の量を従来よりも
大幅に少くして実際に密閉式アルカリ電池を侶成し、そ
してその敢電特f’Iの測定を常温11.iJ5よび(
[(温時の両ブノにわたー)b何放電特↑1は向上りる
ものの、常:KA I侍にt; IJる一般的な放電特
性の低下および放電容量の減少は全く認められなかった
。ここ(、第3図(J、負極活物質としての氷化亜鉛中
の酸化亜x+)tsを変えた場、合の放電特性指数の変
化状態を承り。同図に示すように、放電特性指数は、酸
化亜鉛の(4が0.50重量%以下では高い水準を示す
ことかできるか、それ以上になると急速に低Fすること
が確かめられた。この放電特性指数は、L R44タイ
プのものでマイナス20°Cの環境下におい一℃、25
Ωの抵抗負荷に2秒導通1秒休止のザイクルでらって放
電試験を行なったときのものである。
Now, as shown above, the content of 81 in C zinc oxide is 0.5
A sealed alkaline battery using frozen zinc limited to 0% by weight or less as a negative electrode active material has excellent performance under low temperature conditions such as -20°C! ′! It was possible to maintain the 1Ω pre-discharge characteristic. In addition, the general discharge characteristics at room temperature are also excellent, with no inferiority compared to conventional ones.ffff
L'? It was done. The reason why this Jj, sea urchin, oxidized carbon dioxide 1a) river is increased by restricting the river at low temperature, the reason why the high-tech 1 visit to the electric mochitake is improved at low temperature is Jj-U! 11!
It is thought that lead can be ionized without being hindered by zinc oxide and smoothly transferred into the electrolyte to generate a -C electromotive force. This means that some f73
This goes against the conventional wisdom that zinc oxide is a negative (→I!111 lead as an active material dissolves in the electrolyte and acts to prevent the reduction of discharge @'11. However, the amount of oxidized lead sulfur was significantly reduced compared to the conventional one, and a sealed alkaline battery was actually made, and the electric characteristic f'I was measured at room temperature 11.iJ5 and (
Although the discharge characteristics ↑1 were improved, no general decline in discharge characteristics or decrease in discharge capacity was observed at all. Ta. Here, Fig. 3 (J, nitrous oxide x+ in frozen zinc as a negative electrode active material) shows how the discharge characteristic index changes when ts is changed.As shown in the figure, the discharge characteristic index It was confirmed that zinc oxide (4) shows a high level when it is less than 0.50% by weight, and when it becomes more than that, it rapidly decreases.This discharge characteristic index is that of the L R44 type. In an environment of -20°C, the temperature is 1°C, 25°C.
This is when a discharge test was conducted under a resistive load of Ω in a cycle of 2 seconds of conduction and 1 second of rest.

以上のように、この発明による密閉式)フルカリ電池は
、従来からの畜1’JJテ(アルカリ電池に4M造的な
変更をはとんと行なわずども、またi)ルカリ電池どし
ての一般的な特性を全く犠牲に乃ることなく、低温時に
d5りる高負荷放電特性か皆めで出現性良く高められて
いる。
As described above, the sealed fluoralkaline battery according to the present invention can be used as a conventional 1'JJte (4M) alkaline battery without making any significant structural changes, and i) The high-load discharge characteristics, which reach d5 at low temperatures, have been improved in all cases without sacrificing any other characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の密閉式アルカリ電池の負極活物質に用い
られていた氷イし亜鉛の製造上程を示すノローヂャ−1
−、第2図A  、Bはこの発明C用いられる負極活物
質としての氷化亜鉛の製)宵工程を示すフローヂ17−
ト、第3図は酸化!IIi tillのhlと放電特性
の関係を承りグラフである。 第1図 (A) −3( 第2図 (B)
Figure 1 shows the manufacturing process of frozen zinc, which is used as the negative electrode active material in conventional sealed alkaline batteries.
-, Figures 2A and 2B are flow diagrams 17-- and 17--, which show the manufacturing process of frozen zinc as a negative electrode active material used in the present invention.
G, Figure 3 is oxidation! This is a graph showing the relationship between hl and discharge characteristics of IIi till. Figure 1 (A) -3 ( Figure 2 (B)

Claims (1)

【特許請求の範囲】[Claims] (1)負極活物質として水化亜鉛を主成分どして用いる
密閉式アルカリ電池において、上記氷化亜11)中に含
まれる酸化亜鉛量を0.50重01%以下とした、こと
を特徴とする密閉式アルカリ電池。
(1) A sealed alkaline battery using zinc hydride as the main component as the negative electrode active material, characterized in that the amount of zinc oxide contained in the above-mentioned iced zinc 11) is 0.50% by weight or less. A sealed alkaline battery.
JP57135191A 1982-08-04 1982-08-04 Enclosed alkaline battery Pending JPS5925168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135191A JPS5925168A (en) 1982-08-04 1982-08-04 Enclosed alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135191A JPS5925168A (en) 1982-08-04 1982-08-04 Enclosed alkaline battery

Publications (1)

Publication Number Publication Date
JPS5925168A true JPS5925168A (en) 1984-02-09

Family

ID=15145962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135191A Pending JPS5925168A (en) 1982-08-04 1982-08-04 Enclosed alkaline battery

Country Status (1)

Country Link
JP (1) JPS5925168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110859A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline-zinc battery
US5411404A (en) * 1993-10-29 1995-05-02 The Whitaker Corporation Electrical connector having bus bars providing circuit board retention

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336565A (en) * 1977-09-07 1978-04-04 Furukawa Electric Co Ltd Method of producing corrugated plastic pipe
JPS55128553A (en) * 1979-03-28 1980-10-04 Nippon Suigin Yakuhin Kogyo Kk Manufacture of amalgamated zinc powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5336565A (en) * 1977-09-07 1978-04-04 Furukawa Electric Co Ltd Method of producing corrugated plastic pipe
JPS55128553A (en) * 1979-03-28 1980-10-04 Nippon Suigin Yakuhin Kogyo Kk Manufacture of amalgamated zinc powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110859A (en) * 1984-05-25 1986-01-18 Toshiba Battery Co Ltd Alkaline-zinc battery
JPH0348618B2 (en) * 1984-05-25 1991-07-25 Toshiba Battery
US5411404A (en) * 1993-10-29 1995-05-02 The Whitaker Corporation Electrical connector having bus bars providing circuit board retention
US5462444A (en) * 1993-10-29 1995-10-31 The Whitaker Corporation Electrical connector having bus bars providing circuit board retention

Similar Documents

Publication Publication Date Title
JP2001006678A (en) Rechargeable lithium manganese oxide battery and material for lithium manganese oxide battery
JPH11111267A (en) Manufacture of lithium ton secondary battery
JPS5925168A (en) Enclosed alkaline battery
KR102007229B1 (en) Electrolyte for thermal battery
JP2018200874A (en) Phosphonium-based ionic liquid for lithium metal-based battery
JP3487574B2 (en) Lead storage battery and method of manufacturing the same
JPS58194260A (en) Manufacturing method for battery
JP2952680B2 (en) Sealed lead-acid battery
JP3384632B2 (en) Non-aqueous electrolyte battery
KR102142965B1 (en) Solid electrolyte and manufacturing method of the same
JPS6191865A (en) Nonaqueous electrolyte secondary battery
JPS60221957A (en) Alkaline battery with no added mercury
JPS58158856A (en) Nonaqueous electrolytic battery
JPH05195008A (en) Surface treatment of hydrogen storage alloy for alkaline secondary battery and the same battery provided with the treated alloy as electrode
KR20220148732A (en) Electrolyte-solution composition and secondary battery using same
JP2006120573A (en) Negative electrode plate for control valve type lead-acid battery, and control valve type lead-acid battery using the above negative electrode plate
EP3462520A1 (en) Electrode and device employing the same
JPS6216506B2 (en)
JP2762889B2 (en) Method of forming negative electrode plate for lead-acid battery using copper grid
JP4251488B2 (en) Alkaline electrolyte, negative electrode for alkaline primary battery, and alkaline primary battery
JPS6151749A (en) Nonaqueous electrolyte battery
JPH01187773A (en) Manufacture of nonaqueous electrolyte battery
JP2553858B2 (en) Lead acid battery
JPS62126551A (en) Manufacture of cathode plate for lead-acid battery
JPH0620693A (en) Alkaline battery