JPS5924745B2 - Synthesis method of particulate glass - Google Patents

Synthesis method of particulate glass

Info

Publication number
JPS5924745B2
JPS5924745B2 JP13801076A JP13801076A JPS5924745B2 JP S5924745 B2 JPS5924745 B2 JP S5924745B2 JP 13801076 A JP13801076 A JP 13801076A JP 13801076 A JP13801076 A JP 13801076A JP S5924745 B2 JPS5924745 B2 JP S5924745B2
Authority
JP
Japan
Prior art keywords
gas
nozzle
temperature
reaction
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13801076A
Other languages
Japanese (ja)
Other versions
JPS5363418A (en
Inventor
武信 東本
豪太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13801076A priority Critical patent/JPS5924745B2/en
Publication of JPS5363418A publication Critical patent/JPS5363418A/en
Publication of JPS5924745B2 publication Critical patent/JPS5924745B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ガラス形成気相原料と気相酸化剤とを高温雰
囲気で加熱し、反応を起し、微粒子状ガラスを合成する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for synthesizing particulate glass by heating a glass-forming gas-phase raw material and a gas-phase oxidizing agent in a high-temperature atmosphere to cause a reaction.

従来、ガラス形成気相原料と気相酸化剤とを高温に加熱
し、反応を起し、微粒子状ガラスを合成する方法として
は、高温壁のマツフル或いは高温の反応管を利用し伝導
伝熱による反応エネルギーを得ていた。
Conventionally, the method of heating glass-forming gas-phase raw materials and gas-phase oxidizing agent to a high temperature to cause a reaction and synthesize fine particulate glass is to use a high-temperature walled Matsufuru or a high-temperature reaction tube and conduction heat transfer. Reaction energy was obtained.

例えば、SiO2ガラス微粒子を合成する方法としては
Sicl2をArガス、N2ガス等の不活性ガスで輸送
し、高温ノズルの壁でこれらのガスを伝導伝熱により加
熱し、ノズル先端より吹き出させ、一方、酸素ガスを別
の系路で輸送し、同様にして別のノズル内壁で加熱し吹
き出させ、これらのガスを混合し反応させ、スズ伏Si
O2ガラスを得ていた。所が、Sicl4及びO2を十
分に反応させる為には流れるガス自体を1200℃前後
まで加熱する必要があり、この為には、さらに高温の過
酷な温度条件をノズルに与える必要があつた。この為、
ノズルの材料劣下、発熱体の材料選択、装置の大型化等
大きな問題としてあつた。又、加熱源を原料ガスと接触
させて反応を行う装置では高温の加熱源から生じる不純
物の揮散があり、高純度の生成物を得るには困難があつ
た。本発明は、これらの欠点を除去する為、反応ガス自
体に比較的輻射熱を吸収するガスを添加する事を特徴と
し、その目的は、反応原料ガスの加熱効率を高める事で
、加熱源及びノズルの温度上昇を軽減し、装置の大型化
を防ぎ、ノズル及び発熱体の材料劣下を防止し、より効
果的かつ経済的に反応物を合成する事にある。又、別の
目的として高温による加熱源物質の揮散を反応ガス系の
中へ入れない事、及び輻射熱を吸収するガスで反応に影
響を与えないガスを選ぶ事により、高純度の生成物を得
る事にある。例えば、OH基を含有しない超高純度の微
粒子状5102を合成するには輻射熱を吸収するガスと
して高純度のCO2、Co、或いはNo、NO2等の窒
素酸化物を用いる事が出来る。OH基を含有してもよい
場合は比較的輻射を吸収するガスとしてH2Oを用いる
ことができる。
For example, a method for synthesizing SiO2 glass particles is to transport SiCl2 with an inert gas such as Ar gas or N2 gas, heat these gases by conduction heat transfer on the wall of a high-temperature nozzle, and blow them out from the tip of the nozzle. , oxygen gas is transported through another system, heated and blown out from the inner wall of another nozzle in the same way, and these gases are mixed and reacted to produce tin-based Si.
O2 glass was obtained. However, in order to sufficiently react SiCl4 and O2, it was necessary to heat the flowing gas itself to around 1200°C, and for this purpose, it was necessary to subject the nozzle to even higher and harsher temperature conditions. For this reason,
Major problems included the deterioration of the material for the nozzle, the selection of materials for the heating element, and the increasing size of the equipment. In addition, in an apparatus in which a reaction is carried out by bringing a heating source into contact with a raw material gas, impurities generated from the high-temperature heating source volatilize, making it difficult to obtain a highly pure product. In order to eliminate these drawbacks, the present invention is characterized by adding a gas that relatively absorbs radiant heat to the reaction gas itself.The purpose of this invention is to increase the heating efficiency of the reaction raw material gas, so that the heating source and nozzle The purpose of this method is to reduce the temperature rise of the reactor, prevent the equipment from increasing in size, prevent material deterioration of the nozzle and heating element, and synthesize reactants more effectively and economically. Another purpose is to prevent the volatilization of heating source substances caused by high temperatures from entering the reaction gas system, and to obtain high-purity products by selecting a gas that absorbs radiant heat and does not affect the reaction. It's true. For example, to synthesize ultra-high purity particulate 5102 that does not contain OH groups, high-purity CO2, Co, or nitrogen oxides such as No and NO2 can be used as the radiant heat absorbing gas. If it may contain OH groups, H2O can be used as a gas that relatively absorbs radiation.

以下に、本発明の方法をOH基を含有しない超高純度の
SiO2微粒子合成に応用した実施例をあげて本発明を
詳細に説明する。第1図はSiO2微粒子の合成装置の
構造を説明する断面図である。
The present invention will be explained in detail below with reference to examples in which the method of the present invention is applied to the synthesis of ultra-high purity SiO2 fine particles containing no OH groups. FIG. 1 is a sectional view illustrating the structure of an apparatus for synthesizing SiO2 fine particles.

1は原料供給口でありキャリアガスで輸送されるSic
l4がコネクター3によりノズル内管4に流される。
1 is a raw material supply port, and Sic is transported by carrier gas.
l4 is flowed into the nozzle inner tube 4 by the connector 3.

2は02供給口であり、コネクター3によりノズル外管
5とノズル内管4との中間に流される。
Reference numeral 2 denotes an 02 supply port, through which the fluid is supplied to the middle between the nozzle outer tube 5 and the nozzle inner tube 4 through the connector 3 .

6は管状発熱体であり、ノズルを加熱する。6 is a tubular heating element that heats the nozzle.

原料ガス及び02ガスはノズルの壁面により加熱されノ
ズル先端より出射し、この付近で原料ガスと02ガスは
混合し、次の反応式により反応する。SiCl4+02
−SiO2+2c123ここで、Sicl4ガスと02
ガスとを別個に流し、先端で混合する理由はノズルの途
中で反応を開始させない為である。
The raw material gas and the 02 gas are heated by the wall surface of the nozzle and emitted from the tip of the nozzle, and in this vicinity, the raw material gas and the 02 gas are mixed and react according to the following reaction formula. SiCl4+02
-SiO2+2c123 where SiCl4 gas and 02
The reason for flowing the gas separately and mixing it at the tip is to prevent the reaction from starting in the middle of the nozzle.

もし、ノズルの途中で反応を開始させると、反応して生
成した微粒子状のSiO2は、ノズル内壁に付着を起し
、ノズルをつまらせ、定常的なSiO2の合成を停止さ
せる事になる。こういう訳でノズル先端から出射させる
ガスの温度は、反応開始温度以上に保持しておく必要が
ある。第2図に反応系温度に対する8式の反応の転化度
を示す。第2図から分るように収率よく反応させる為に
はノズル出口付近でのガス温度を1100℃以上に保持
する必要がある。
If the reaction is started in the middle of the nozzle, the fine particles of SiO2 generated by the reaction will adhere to the inner wall of the nozzle, clogging the nozzle and stopping the steady synthesis of SiO2. For this reason, it is necessary to maintain the temperature of the gas emitted from the nozzle tip above the reaction initiation temperature. FIG. 2 shows the degree of conversion of the reaction of formula 8 with respect to the reaction system temperature. As can be seen from FIG. 2, in order to carry out the reaction with good yield, it is necessary to maintain the gas temperature near the nozzle outlet at 1100° C. or higher.

さらに1100℃近辺においては50℃程度の温度差が
大きく転化率を左右することを銘記されたい。第3図に
、発熱体中央部の最高温度箇所の温度TMに対するノズ
ル部先端のガス温度Tgを示す。
Furthermore, it should be noted that in the vicinity of 1100°C, a temperature difference of about 50°C greatly influences the conversion rate. FIG. 3 shows the gas temperature Tg at the tip of the nozzle with respect to the temperature TM at the highest temperature point in the center of the heating element.

但し発熱体は発熱部有効長20CTIL.内径30mm
の片端給電発熱体である。又キヤリアガス量としては5
00sccm1ノズル外管の内径は15關である。第3
図に示すように反応開始に必要な温度である1100℃
を得るにはArlキヤリアの場合には発熱体温度が15
10℃前後必要であるのに対し、CO2キヤリアの場合
には1450℃前後でよい事が判つた。即ちArガス等
を使用する従来の方法に比べて、本発明による比較的熱
ふく射熱を吸収するガスを使用する方法においてはノズ
ル内壁よりの熱伝達に加えてふく射による加熱効果が加
わり、効率的に気相原料ガスの加熱を行うことができる
ものである。
However, the effective length of the heating element is 20 CTIL. Inner diameter 30mm
This is a single-end powered heating element. Also, the carrier gas amount is 5
00sccm1 The inner diameter of the nozzle outer tube is 15 mm. Third
As shown in the figure, 1100°C is the temperature required to start the reaction.
In the case of Arl carrier, the heating element temperature is 15 to obtain
It was found that a temperature of around 1450°C is sufficient for CO2 carriers, whereas a temperature of around 10°C is required. That is, compared to the conventional method using Ar gas or the like, the method of the present invention using a gas that relatively absorbs thermal radiation heat has the effect of heating by radiation in addition to the heat transfer from the inner wall of the nozzle, making it more efficient. It is capable of heating gas phase raw material gas.

1500℃前後の高温における発熱体温度を50℃程度
より低温に保持できるという効果は発熱体の寿命を飛躍
的に長くし、保温構造も大がかりにする必?がなくなり
、ノズル材料の劣下を少なくする。
The effect of being able to maintain the temperature of the heating element at a high temperature of around 1500 degrees Celsius at a temperature lower than about 50 degrees Celsius dramatically extends the life of the heating element, and does it require a large-scale insulation structure? This reduces deterioration of the nozzle material.

発熱体の2種類の使用温度における使用時間に対する抵
抗値の増加の違いを示す一例を第4図に示す。これは、
高温雰囲気を得る為に通常使用される炭化珪素発熱体に
ついて窒素雰囲気で使用した時における使用時間に対す
る抵抗増加率で示している。一方、高純度のCO2ガス
を用いる事で生成物であるSlO2中には遷移金属、0
H基等の不純物が通常の分析法(湿式分析及び赤外分光
分析)では検知されない量であつた。CO2のかわりに
他の輻射熱を比較的よく吸収するCO、窒素酸化物、S
O2等についても同様の効果が期待されよう。又、生成
物中に0H基の混入があつてもよい場合には、炭化水素
、アルコール類、H2O,NH3等を輻射熱を比較的よ
く吸収するガスとして用いる事が出来る。特に、CO2
ガス、H2Oガス、COガスの輻射率は、表1に示され
る様に比較的大きなものであり、また廃ガス処理の容易
なことから、本発明には好ましいものである。
FIG. 4 shows an example showing the difference in the increase in resistance value with respect to the usage time at two types of usage temperatures of the heating element. this is,
It shows the rate of increase in resistance with respect to usage time when a silicon carbide heating element, which is commonly used to obtain a high-temperature atmosphere, is used in a nitrogen atmosphere. On the other hand, by using high-purity CO2 gas, the product SLO2 contains transition metals, 0
Impurities such as H groups were present in amounts that could not be detected by conventional analysis methods (wet analysis and infrared spectroscopy). CO, nitrogen oxide, and S which absorb other radiant heat relatively well instead of CO2
A similar effect can be expected for O2 and the like. In addition, when it is acceptable for OH groups to be mixed into the product, hydrocarbons, alcohols, H2O, NH3, etc. can be used as gases that absorb radiant heat relatively well. In particular, CO2
The emissivity of gas, H2O gas, and CO gas is relatively high as shown in Table 1, and waste gas treatment is easy, so they are preferable for the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSiO2微粒子の合成装置の構造を示す説明図
であり、6、は発熱体、7は生成スート、8、はSlC
l4+キヤリアガス、9、は02ガスである。 第2図は、SlCl4の気相酸化反応によるSiO2へ
の転化率に対する反応温度の依存性を示す。第3図は、
発熱体最高温度箇所に対するノズル部出口付近のガス温
度を示す。1・・・・・・原料供給口、2・・・・・酸
素供給口、3・・・・・・コネクター、4・・・・・・
ノズル内管、5・・・・・・ノズル外管、6・・・・・
・管伏発熱体、7生成物(SiO2スート)、8・・・
・・・Sicl4及びキヤリアガスの流れ、9・・・・
・・酸素ガスの流れ。 第4図は発熱体の2種類の使用温度の場合における使用
時間に対する抵抗値の増加の違いを示す一例を示す。
FIG. 1 is an explanatory diagram showing the structure of a SiO2 fine particle synthesis apparatus, where 6 is a heating element, 7 is a production soot, and 8 is an SlC
l4+carrier gas, 9, is 02 gas. FIG. 2 shows the dependence of reaction temperature on the conversion rate of SlCl4 to SiO2 by gas phase oxidation reaction. Figure 3 shows
The gas temperature near the nozzle outlet is shown relative to the highest temperature point of the heating element. 1... Raw material supply port, 2... Oxygen supply port, 3... Connector, 4...
Nozzle inner tube, 5... Nozzle outer tube, 6...
・Tube heating element, 7 products (SiO2 soot), 8...
...Flow of SiCl4 and carrier gas, 9...
...Flow of oxygen gas. FIG. 4 shows an example showing the difference in increase in resistance value with respect to usage time in the case of two types of usage temperatures of the heating element.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス形成気相原料と気相酸化剤とを高温ノズル内
に別箇に導き加熱し、ノズル外で混合し、反応させ微粒
子状ガラスを合成する方法においてCO_2、Co、窒
素酸化物、H_2Oのうちから選ばれた少なくとも1つ
の比較的ふく射熱を吸収するガスをガラス形成気相原料
と気相酸化剤とに或いはその片方のガスに添加する事を
特徴とする微粒子状ガラスの合成方法。
1 In a method in which a glass-forming gas-phase raw material and a gas-phase oxidizing agent are separately introduced into a high-temperature nozzle, heated, mixed outside the nozzle, and reacted to synthesize particulate glass, CO_2, Co, nitrogen oxides, and H_2O are synthesized. A method for synthesizing particulate glass, which comprises adding at least one gas selected from among gases that relatively absorbs radiant heat to a glass-forming gas-phase raw material and a gas-phase oxidizing agent, or to one of the gases.
JP13801076A 1976-11-16 1976-11-16 Synthesis method of particulate glass Expired JPS5924745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13801076A JPS5924745B2 (en) 1976-11-16 1976-11-16 Synthesis method of particulate glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13801076A JPS5924745B2 (en) 1976-11-16 1976-11-16 Synthesis method of particulate glass

Publications (2)

Publication Number Publication Date
JPS5363418A JPS5363418A (en) 1978-06-06
JPS5924745B2 true JPS5924745B2 (en) 1984-06-12

Family

ID=15211940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13801076A Expired JPS5924745B2 (en) 1976-11-16 1976-11-16 Synthesis method of particulate glass

Country Status (1)

Country Link
JP (1) JPS5924745B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3335126A1 (en) * 1983-09-28 1985-04-11 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen METHOD FOR CHEMICAL GAS PHASE DEPOSITION OF OXIDIC PARTICLES

Also Published As

Publication number Publication date
JPS5363418A (en) 1978-06-06

Similar Documents

Publication Publication Date Title
GB1092883A (en) Improvements in and relating to the manufacture of oxides
JPS58194712A (en) Regeneration of oxygen from carbon oxide exhaust gas
CA1310472C (en) Process for the production of ultra high purity polycrystalline silicon
JP2644620B2 (en) Method and apparatus for producing nitride compound
GB1093443A (en) Silicon carbine
EP0070440B1 (en) Method for synthesizing amorphous silicon nitride
RU2377065C2 (en) Device and method for thermal decomposition of volatile compounds of element selected from group comprising silicon, germanium, carbon, titanium, zirconium and mixture thereof
AU765840B2 (en) Highly white zinc oxide fine particles and method for preparation thereof
JPS5924745B2 (en) Synthesis method of particulate glass
JPS6221706A (en) Recycling production of silicon or silicon compound via trichlorosilane
JPS5939708A (en) Manufacture of fine silicon carbide powder
KR102549706B1 (en) Method for producing boron trichloride
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPH10152302A (en) Chemical reaction apparatus and recovery of main formed gas
JPH03126611A (en) Preparation of carbide compound
JPS5895606A (en) Production of silicon nitride powder
WO1992014576A1 (en) Plama production of ultra-fine ceramic carbides
JPS5924098B2 (en) Method for producing particulate glass
JPH0435215B2 (en)
US3307904A (en) Preparation of nitrosylsulfuric acid of high purity
JPH01167215A (en) Method and apparatus for manufacturing highly dispersed aluminium oxide particles
JPS60246212A (en) Ultrafine particles of amorphous silicon nitride and its production
Jang et al. Preparation of Ultrafine Silica Particle by Pyrolysis in the Gas Phase
JPS6057507B2 (en) Manufacturing equipment and method for manufacturing ultra-hard high-purity silicon nitride
JPS616113A (en) Manufacture of metallic silicon