JPS5924121A - Combustion in combustor for gas turbine - Google Patents

Combustion in combustor for gas turbine

Info

Publication number
JPS5924121A
JPS5924121A JP13203282A JP13203282A JPS5924121A JP S5924121 A JPS5924121 A JP S5924121A JP 13203282 A JP13203282 A JP 13203282A JP 13203282 A JP13203282 A JP 13203282A JP S5924121 A JPS5924121 A JP S5924121A
Authority
JP
Japan
Prior art keywords
air
combustion
fuel
combustor
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13203282A
Other languages
Japanese (ja)
Other versions
JPH0419449B2 (en
Inventor
Tomiaki Furuya
富明 古屋
Chikau Yamanaka
矢 山中
Terunobu Hayata
早田 輝信
Junji Hizuka
肥塚 淳次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13203282A priority Critical patent/JPS5924121A/en
Publication of JPS5924121A publication Critical patent/JPS5924121A/en
Publication of JPH0419449B2 publication Critical patent/JPH0419449B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means

Abstract

PURPOSE:To reduce the amount of NOx and improve combustion efficiency by a method wherein a part of fuel is burnt previously by a burner with a specified air rate while the remaining fuel is injected to the flame of the precombustion or the vicinity thereof and, further, is mixed with air, thereafter, is introduced to a part filled with catalyst. CONSTITUTION:A part of the fuel 1 and air 3 are mixed previously in the upstream side of the combustor so as to obtain the air rate of 60-90% while the mixed gas is burnt by the burner. The remaining fuel 1' is injected to the flame under combustion or the vicinity thereof to effect the precombustion of the fuel itself as well as the quenching of the flame simultaneously. The mixture is further mixed with the remaining air 3'. When the air is mixed after the quenching of the flame, the temperature of the mixture is risen sufficiently to a temperature necessary for the catalytic combustion when it arrives at the part 7 filled with the catalyst while the mixture contains no NOx substantially. Accordingly, the characteristics of the catalytic combustion system is utilized effectively and the efficient combustion may be effected as the whole of the combustor.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガスタービン発電システムに使用するガスタ
ービン燃焼器の燃焼方法に関し、更に詳しくは、燃焼時
に発生する窒素酸化物(以下、NOxと称す)の量が少
なく、且つ、燃焼効率が良好な触媒燃焼方式のガスター
ビン燃焼器の燃焼方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a combustion method for a gas turbine combustor used in a gas turbine power generation system, and more specifically, to a method for burning nitrogen oxides (hereinafter referred to as NOx) generated during combustion. ) The present invention relates to a combustion method for a catalytic combustion type gas turbine combustor that has a small amount of carbon dioxide and has good combustion efficiency.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、石油資源等の枯渇化に伴ない、種々の代替エネル
ギーが希求されておシ、一方では、エネルギー資源の効
率的使用が要求されている。これらの要求に答えるもの
の中には、例えば、燃料として天然ガスを使用するガス
タービン・スチームタービン複合サイクル発電システム
等が拳げられ、検討−されつつある。これらのガスター
ビン・スチームタービン複合サイクル発電システムは、
化石−燃料を使用した従来のスチームタービンによる発
電システムに比較して、発電効率が高いために、将来、
その生産量の増加が予想される天然ガス等の燃料を、有
効に電力に変換できる発電システムとして期待されてい
る。
In recent years, with the depletion of petroleum resources and the like, various alternative energies have been sought, and on the other hand, efficient use of energy resources has been required. Among the systems that can meet these demands, for example, gas turbine/steam turbine combined cycle power generation systems that use natural gas as fuel are being developed and are being studied. These gas turbine/steam turbine combined cycle power generation systems are
Compared to conventional power generation systems using fossil fuels, steam turbines have higher power generation efficiency, so in the future,
It is expected to be a power generation system that can effectively convert fuels such as natural gas, whose production is expected to increase, into electricity.

ガスタービン発電システムにおいて使用されているガス
タービン燃焼器は、従来よシ、燃料と空気の混合物を、
スパークプラグ等を用いて着火して均−系の燃焼を行な
っている。このような燃焼器の一例を第1図に示す。第
1図の燃焼器は、燃料ノズル1から+I+!!i射され
た燃料が、燃ヅ、を用空気3と混合され、スパーフッ0
ラグ2によシ着火されて燃’)M:するものである。そ
して、燃焼した気体は、冷却空気4及びる釈空気5を加
えられて、所定のタービン入口温度まで冷却・イ11釈
された後、タービンノズル6からガスタービン内に噴射
される。
Gas turbine combustors used in gas turbine power generation systems traditionally burn a mixture of fuel and air.
It is ignited using a spark plug or the like to achieve homogeneous combustion. An example of such a combustor is shown in FIG. The combustor in Figure 1 has fuel nozzle 1 to +I+! ! The injected fuel is mixed with the fuel air 3, and the spar air is
It is ignited by lug 2 and burns. Then, the combusted gas is cooled and diluted to a predetermined turbine inlet temperature by adding cooling air 4 and dilution air 5, and then injected into the gas turbine from a turbine nozzle 6.

このような従来の燃焼器における重大な問題点の一つは
、燃料の燃焼時において、NOxガスの生成量が多いこ
とで4うる。
One of the serious problems with such conventional combustors is that a large amount of NOx gas is produced during fuel combustion.

上記したNOxが生成する理由は、燃料の燃焼時におい
て、高温部が存在することによるものである。NOx 
id:、  通常、燃料中に窒素成分々(存在していな
い場合には、燃焼用空気中の窒素と酸素が以下に示す式
によシ反応して生成する。
The reason why the above-mentioned NOx is generated is due to the existence of a high temperature section during combustion of fuel. NOx
id:, Normally, nitrogen components are present in the fuel (if they are not present, nitrogen and oxygen in the combustion air react with each other according to the formula shown below to produce nitrogen components.

N2 + Ot ′;12NO 上記反応は、高温になる程、右側に1移行して一酸化窒
素(NO)の生成量が増加する。Noの一部は更に酸化
されて二酸化窒素(N02)を生成する。
N2 + Ot'; 12NO In the above reaction, the higher the temperature, the more the reaction shifts to the right side and the amount of nitrogen monoxide (NO) produced increases. A portion of No is further oxidized to produce nitrogen dioxide (N02).

第2図は、従来のガスタービン燃焼器における流体の流
れ方向の温度分布を示すものである。図に示した如く、
燃焼器内の温度分布は極大値を有しており、最高温度に
達した後は、冷却及び希釈空気によシ所定のタービン入
口温度まで冷却されている。燃焼器内の最高温度は、2
000 ’Cにも達する場合があるために、この近辺に
おいてはNOxの生成量が急激に増加する。このように
1.従来のガスタービン燃焼器には、部芥的に高温部が
存在するために、NOxの生成量が多いという問題点が
ある。従って、排煙脱硝装置等を設けねばならず、装置
が複雑になる等の問題点をも有している0 このようなガスタービン燃焼器の問題点を解決するため
に、種々の燃焼方式が検討されている。
FIG. 2 shows the temperature distribution in the fluid flow direction in a conventional gas turbine combustor. As shown in the figure,
The temperature distribution within the combustor has a maximum value, and after reaching the maximum temperature, it is cooled down to a predetermined turbine inlet temperature by cooling and dilution air. The maximum temperature inside the combustor is 2
Since the temperature may reach as high as 000'C, the amount of NOx produced increases rapidly in this vicinity. In this way 1. Conventional gas turbine combustors have a problem in that they produce a large amount of NOx because of the presence of high-temperature parts. Therefore, it is necessary to install a flue gas denitrification device, etc., which poses problems such as the device becoming complicated. In order to solve these problems with gas turbine combustors, various combustion methods have been proposed. It is being considered.

その中の一つとして、最近、気相における均一系反応に
対し、固相触媒を用いた不均一系燃焼方式(以下、触媒
燃焼方式と称す)が提案されている。触媒燃焼方式は、
触媒を用いて燃料と空気の混合気体を燃焼せしめるもの
である。この方式によれば、比較的低温で燃焼を開始さ
せることができ、冷却用空気を必要とせず、燃焼用空気
が増加するだめに、最高温度が低くなり、従って、発生
するNOx4i1を極めて少なくすることが可能である
As one of these, a heterogeneous combustion method (hereinafter referred to as catalytic combustion method) using a solid phase catalyst has recently been proposed for homogeneous reactions in the gas phase. The catalytic combustion method is
It uses a catalyst to combust a mixture of fuel and air. According to this method, combustion can be started at a relatively low temperature, no cooling air is required, and as the amount of combustion air increases, the maximum temperature becomes lower, and therefore, the generated NOx4i1 is extremely reduced. Is possible.

又、タービン入口温度も従来のものと変わシなく、燃料
を完全燃焼させることができる。第3図は、このような
触媒燃焼方式の燃焼器の概念図であり、触媒充填部7に
はハニカム構造の触媒体が充填されたものである。尚、
第1図と同じ装置又は物質である場合には、同じ符号を
伺しである。
Furthermore, the turbine inlet temperature remains the same as in the conventional case, and the fuel can be completely combusted. FIG. 3 is a conceptual diagram of such a catalytic combustion type combustor, in which the catalyst filling portion 7 is filled with a catalyst body having a honeycomb structure. still,
If it is the same device or material as in Figure 1, the same reference numeral will be used.

上記した触媒燃焼方式においては、゛しかしながら、燃
料と空気の混合気体を触媒を用いて燃焼反応を開始させ
るために、混合気体を予熱して触媒燃焼反応に必要な温
度まで上昇させなければならないという問題点を有して
いる。特に、燃料としてメタンを使用した場合には、他
の燃料を使用した場合と比較して着火温度が高いために
、予熱温度を高くしなければならないことが知られてい
る。
In the above-mentioned catalytic combustion method, however, in order to use a catalyst to start the combustion reaction of the mixture of fuel and air, the mixture must be preheated to the temperature required for the catalytic combustion reaction. There are problems. In particular, it is known that when methane is used as a fuel, the ignition temperature is higher than when other fuels are used, so the preheating temperature must be increased.

そのため、上記問題点を解決するためには、燃焼器にお
ける触媒充填部の前段で燃料の一部を通常燃焼させ、混
合気体の温度を上昇せしめることが考えられる。しかし
、通常燃焼を行なうと、前述の如く燃焼ガスの温度が高
くな1)NOxが発生ずる。このNOxは触媒充填部に
おいては分解されず、そのま−ま排出されるという問題
点を有している。
Therefore, in order to solve the above-mentioned problems, it is conceivable to normally combust a part of the fuel before the catalyst filling part in the combustor to increase the temperature of the mixed gas. However, when normal combustion is performed, the temperature of the combustion gas becomes high as described above, and 1) NOx is generated. This NOx has a problem in that it is not decomposed in the catalyst filling section and is emitted as it is.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記した問題点を解消し、燃焼時に生
成するNOxの量が極めて少なく、且つ、燃焼効率が良
好なガスタービン燃焼器の改良された燃焼方法を提供す
ることにある。
An object of the present invention is to solve the above-mentioned problems and provide an improved combustion method for a gas turbine combustor in which the amount of NOx generated during combustion is extremely small and the combustion efficiency is good.

〔発明の概要〕[Summary of the invention]

本発明のガスタービン燃焼器の燃焼方法は、燃料と空気
の混合気体を触媒燃焼方式により燃焼させるガスタービ
ン燃焼器において、 燃焼触媒充填部の前段において、少なくとも一部の燃料
を含有し、空気率が60〜90 %の燃料と堕気の混合
気体をバーナーで予備燃焼せしめ、次いで、残りの燃料
を予備燃焼の火炎又はその近傍に噴射せしめ、更に、残
シの空気を混合せしめた後、該混合気体を触媒充填部に
導入せしめることを特徴とするものである。
The combustion method of a gas turbine combustor of the present invention is a gas turbine combustor that burns a mixed gas of fuel and air using a catalytic combustion method, in which at least a part of the fuel is contained in a stage upstream of a combustion catalyst filling part, and an air ratio is A mixture of 60 to 90% fuel and fallen air is pre-combusted in a burner, then the remaining fuel is injected into or near the pre-combustion flame, and the remaining air is mixed. This is characterized in that a mixed gas is introduced into the catalyst filling section.

以下において、本発明を更に詳しく説明する。In the following, the invention will be explained in more detail.

本発明者らは鋭意研究を重ねた結果、例えば、メタンの
ような触媒燃焼反応を開始させるために比較的高温度に
予熱する必要がある燃料を使用する場合に、次の様な(
1ヤ成の燃焼方法を採用することにより、う9生するN
Oxの量が少なく、燃焼効率が良好な触媒燃焼が可能で
あることを見出した。
As a result of extensive research, the present inventors have found that, for example, when using a fuel such as methane that needs to be preheated to a relatively high temperature in order to start a catalytic combustion reaction, the following (
By adopting a one-year combustion method, the N
It has been found that catalytic combustion with a small amount of Ox and good combustion efficiency is possible.

即ち、先ず、燃焼器の最上流側において燃料の一部と空
気を空気率が60〜90tj6となるように予備混合し
、この混合気体をバーナーを用いて燃焼せしめる。この
際に発生する燃焼熱を残りの燃料の予熱に1史用する。
That is, first, part of the fuel and air are premixed at the most upstream side of the combustor so that the air ratio becomes 60 to 90tj6, and this mixed gas is combusted using a burner. The combustion heat generated at this time is used for preheating the remaining fuel.

空気率が60チ未満であると予熱温度がそれ程−高くな
らないと同時に未燃焼のカーフIfン(すす)を生じる
こともあり、一方、90チを超えると予備燃焼時にNO
xの発生量が増加する。
If the air fraction is less than 60 inches, the preheating temperature will not be that high and unburned kerf (soot) may be produced, while if it exceeds 90 degrees, NO
The amount of x generated increases.

上記燃焼反応において汁する燃焼ガス中には、未燃焼の
炭化水素と燃焼により生成した一酸化炭素が含有される
The combustion gas released in the above combustion reaction contains unburned hydrocarbons and carbon monoxide produced by combustion.

次いで、上記燃焼中の火炎又はその通数に残りの燃料を
噴射せしめ、燃料自体を予熱すると同時に火炎のクエン
チを行なう。この際に、燃料の噴射によシ火炎のクエン
チが行なわれないと、次に残シの空気が混合された際に
燃料がすべて燃焼してしまい、温度が上昇してNOx生
成量が増加することになる。ここでクエンチが行なわれ
ると、次に空気を導入しても、火炎は生成ぜずに、触媒
充填部に温度が上昇した燃料と空気の混合気体が送られ
る。
Next, the remaining fuel is injected into the burning flame or its passages, thereby preheating the fuel itself and simultaneously quenching the flame. At this time, if the flame is not quenched by fuel injection, the next time the remaining air is mixed, all the fuel will be burned, resulting in a rise in temperature and an increase in the amount of NOx produced. It turns out. If quenching is performed here, even if air is introduced next time, a flame will not be generated, but a heated mixture of fuel and air will be sent to the catalyst filling section.

この火炎に残υの燃料を噴射してクエンチした混合気に
、更に、残りの空気を混合する0火炎がクエンチされた
後に空気が混合されると、触媒充填部に前記混合気が一
到達する時にはこの混合気は触媒燃焼に必要な温度まで
充分昇温されており、且つ、NOxを殆んど含有してい
ないものである。
The remaining air is mixed with the quenched air-fuel mixture by injecting the remaining υ of fuel into this flame. When air is mixed after the 0 flame is quenched, the air-fuel mixture reaches the catalyst filling part. Sometimes, this air-fuel mixture is sufficiently heated to the temperature required for catalytic combustion and contains almost no NOx.

従って、触媒充填部においては乃虫媒燃焼方式の特性が
充分に生かされて、燃焼器全体として効率の良い燃焼が
可能となる。
Therefore, the characteristics of the insect medium combustion system are fully utilized in the catalyst filling section, and efficient combustion is possible in the combustor as a whole.

本発明において使用される燃焼触媒としては、通常、燃
焼触媒として使用されているものであればいかなるもの
でもよく、例えば、白金、ノぐラジウム、ロジウム、ル
テニウム及びイリジウム等の貴金属系触媒或いld M
n0z 、CO2O3、Co3Q4 、 CuO等の卑
金属系触媒が誉げられ、これらから成る群より選ばれた
1種もしくは2種以上のものが使用されるO 又、本発明において使用される触媒体は、上記燃焼触媒
をセラミックス或いは側熱合金等をハニカム状等に成形
したものに担持ぜしめ、例えば、4?願昭56−187
760号明&llIア1−又は特願昭57−66275
号明細書等に記載されているような構成で形成されるこ
とが好ましい。
The combustion catalyst used in the present invention may be any catalyst that is normally used as a combustion catalyst, such as noble metal catalysts such as platinum, noradium, rhodium, ruthenium, and iridium; M
Base metal catalysts such as n0z, CO2O3, Co3Q4, CuO, etc. are praised, and one or more types selected from the group consisting of these are used.In addition, the catalyst body used in the present invention is The above-mentioned combustion catalyst is supported on a ceramic or a side-heating alloy formed into a honeycomb shape or the like. Gansho 56-187
No. 760 Mei&llIA1- or Patent Application No. 57-66275
It is preferable to form the structure as described in the specification of the above patent.

以、下において実施例を掲げ、本発明を更に詳しく説明
する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples.

〔発明の実施例〕[Embodiments of the invention]

内径100朋φ、畏さ50 CJmmを有するニッケル
合金製円筒を使用して、力゛スタービン燃焼器の模擬装
置を製作した。この燃焼器の流体流通方向の最下流にセ
ラミックスをハニカム構造に成形し、パラジウム触媒を
担持ぜしめた長さlO’o1+mの触媒体を充填した。
A simulating device for a power turbine combustor was fabricated using a nickel alloy cylinder with an inner diameter of 100 mm and a height of 50 CJmm. Ceramic was formed into a honeycomb structure at the most downstream part of the combustor in the fluid flow direction, and a catalyst body having a length of lO'o1+m and supporting a palladium catalyst was filled therein.

燃料としてメタンを使用し、燃焼器全体への空気の供給
量は160ONl/mI7+、メタンの供給量は48 
Nl 7mmとした。
Methane is used as fuel, the amount of air supplied to the entire combustor is 160ONl/mI7+, and the amount of methane supplied is 48
Nl was set to 7 mm.

燃焼器の最上流にバーナーを設置し、そこから150韻
下流側に第一の気体の流入孔を設け、更に100朋下流
側に第二の気体の流入孔を数個設けた。実験に際し、空
気及びメタンはそれぞれ300℃に予熱して燃焼器に導
入した。
A burner was installed at the most upstream side of the combustor, a first gas inflow hole was provided 150 mm downstream from the burner, and several second gas inflow holes were further provided 100 mm downstream. During the experiment, air and methane were each preheated to 300°C and introduced into the combustor.

上記条件のもとに、最上流でのバーナーの空気率を、7
0 q6とし、メタンと空気の混合ガスをイグナイター
で着火した後、第一の気体の流入口より残りのメタンを
導入し、更に、第二の気体の導入口よシ残シの空気を導
入して触媒燃焼せしめた。
Under the above conditions, the air ratio of the burner at the most upstream is set to 7.
0q6, and after igniting the mixed gas of methane and air with an igniter, the remaining methane was introduced from the first gas inlet, and the remaining air was introduced from the second gas inlet. catalytic combustion.

そして、燃焼器出口での未燃焼物の濃度を測定し、それ
をメタンに換算した量及び出口でのNOx濃度を測定し
た。その結果を第4図にaとして示した。
Then, the concentration of unburned matter at the combustor outlet was measured, and the amount converted to methane and the NOx concentration at the outlet were measured. The results are shown as a in FIG. 4.

同時に、比較例として、 b:空気及びメタンの全量を分割することなくそのまま
燃焼器に導入し、外部からの着火は行なわずに燃焼せし
めたもの、 C:最上流でのバーナーの空気重金130φとし、イグ
ナイターで着火した他はaと同様の方法で燃焼せしめた
もの、及び d:最上流でのバーナーの空気率を70チとし、イグナ
イターで着火した後、第−及び第二の気体の流入孔から
メタンと空気の混合Jfスをそれぞれ導入し燃焼せしめ
たもの についてそれぞれaと同様に燃焼器出口での未燃焼ガス
濃度及びNOx濃度を測定した。それらの結果を第4図
に同時に示した。
At the same time, as comparative examples, B: The entire amount of air and methane was introduced into the combustor as it was without being divided and was burned without ignition from the outside, C: The air heavy metal of the burner at the most upstream was set to 130φ. , ignited with an igniter, but burned in the same manner as in a, and d: The air rate of the burner at the most upstream was 70 degrees, and after ignited with an igniter, the first and second gas inflow holes were ignited. The unburned gas concentration and NOx concentration at the combustor outlet were measured in the same manner as in a for each case in which a Jf gas mixture of methane and air was introduced and combusted. The results are simultaneously shown in FIG.

第4−図から明らかなように、本発明の燃焼方法によれ
ば、未燃焼メタンは殆んど残存しておらず、は−は完全
燃焼していることが確認された。又、NOxの生成も殆
んどなく、低NOx燃焼が可能であることが確認された
As is clear from FIG. 4, it was confirmed that, according to the combustion method of the present invention, almost no unburned methane remained, and complete combustion was achieved. Furthermore, it was confirmed that there was almost no generation of NOx, and low NOx combustion was possible.

これに対し、bの燃焼方法ではメタンが殆んど燃焼して
おらず、300°C程度の予熱温度では前記触媒による
触媒燃焼反応が開始されないものである。
On the other hand, in the combustion method b, almost no methane is burned, and the catalytic combustion reaction by the catalyst does not start at a preheating temperature of about 300°C.

又、Cの燃焼方法では未燃焼メタンは殆んどないが、 
NOxの生成量が多いことが確認された。これは、バー
ナーでの空気率が高いために、予備燃焼時にNOxが多
量生成し、それがそのまま排出されるためであると考え
られる。
Also, with the combustion method of C, there is almost no unburned methane,
It was confirmed that a large amount of NOx was produced. This is considered to be because the air ratio in the burner is high, so a large amount of NOx is generated during preliminary combustion, and this is emitted as is.

更に、dの燃焼方法においてもCと同様の結果が得られ
ている。これは、バーナーにおいて燃焼した火炎のクエ
ンチが不充分であるために、第−及び第二の気体の流入
孔から導入されたメタンが触媒充填部の前で燃焼して温
度が上昇するためであると考えられる。
Furthermore, the same results as C were obtained with the combustion method d. This is because the flame combusted in the burner is not sufficiently quenched, and the methane introduced from the first and second gas inflow holes burns before the catalyst filling section, causing the temperature to rise. it is conceivable that.

〔発明の効果〕〔Effect of the invention〕

本発明の燃焼方法によれば、−燃料を極めて効率良く燃
焼せしめることが可能であり、又、燃焼時にNOxの生
成量が少ないため環境汚染等の問題を生じないものであ
る。更に、燃料の一部を燃焼させて燃料と空気の混合ガ
スの温度を上昇させるために、予熱温度を低くすること
が可能であり、省エネルギーの面での利点を有する。
According to the combustion method of the present invention, it is possible to burn fuel extremely efficiently, and since the amount of NOx produced during combustion is small, problems such as environmental pollution do not occur. Furthermore, since part of the fuel is combusted to raise the temperature of the fuel/air mixture, the preheating temperature can be lowered, which is advantageous in terms of energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は通常のガスタービン燃焼器の概念図、第2図は
通常のガスタービン燃焼器内の温度分布を示す図、第3
図は触媒燃焼方式のガスタービン燃焼器の概念図並びに
第4図は実施例における触媒燃焼方式の燃焼器の燃焼方
法の違いによる、発生したNOxの濃度と未燃焼メタン
濃度の変化を経時的に示す図である。 1・・・燃料ノズル、2・・・スノンークプラグ、3・
・・燃焼用空気、4・・・冷却用空気、5・・・希釈用
空気、6・・・タービンノズル、7・・・ハニヵムオI
Ii造触媒体。
Fig. 1 is a conceptual diagram of a normal gas turbine combustor, Fig. 2 is a diagram showing the temperature distribution inside a normal gas turbine combustor, and Fig. 3 is a diagram showing the temperature distribution inside a normal gas turbine combustor.
The figure is a conceptual diagram of a catalytic combustion type gas turbine combustor, and Figure 4 shows changes over time in the concentration of generated NOx and unburned methane concentration due to differences in the combustion method of the catalytic combustion type combustor in the example. FIG. 1... Fuel nozzle, 2... Snoke plug, 3...
... Combustion air, 4... Cooling air, 5... Dilution air, 6... Turbine nozzle, 7... Honeycomb I
Ii formed catalyst.

Claims (1)

【特許請求の範囲】[Claims] 燃料と空気の混合気体を触媒燃焼方式によシ燃焼させる
ガスタービン燃焼器において、燃焼触媒光j(ii、部
の前段において、少なくとも一部の燃料を含有し、空気
率が60〜90チの燃料と空気の混合気体をバーナーで
予備燃焼せしめ、次いで、残りの燃料を予備燃焼の火炎
又はその近傍に噴射ぜしめ、更に、残りの鋭気を混合ぜ
しめた後、該混合気体を触媒充填部に導入せしめること
を特徴とするガスタービン燃焼器の燃焼方法。
In a gas turbine combustor that burns a gaseous mixture of fuel and air using a catalytic combustion method, the combustion catalyst light (ii) contains at least a part of the fuel and has an air ratio of 60 to 90 cm. The mixed gas of fuel and air is pre-combusted in a burner, the remaining fuel is injected into the pre-combustion flame or its vicinity, the remaining sharp air is mixed, and the mixed gas is sent to the catalyst filling section. A combustion method for a gas turbine combustor, characterized in that the combustion method is introduced into a gas turbine combustor.
JP13203282A 1982-07-30 1982-07-30 Combustion in combustor for gas turbine Granted JPS5924121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13203282A JPS5924121A (en) 1982-07-30 1982-07-30 Combustion in combustor for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13203282A JPS5924121A (en) 1982-07-30 1982-07-30 Combustion in combustor for gas turbine

Publications (2)

Publication Number Publication Date
JPS5924121A true JPS5924121A (en) 1984-02-07
JPH0419449B2 JPH0419449B2 (en) 1992-03-30

Family

ID=15071899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13203282A Granted JPS5924121A (en) 1982-07-30 1982-07-30 Combustion in combustor for gas turbine

Country Status (1)

Country Link
JP (1) JPS5924121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257822A (en) * 1987-10-12 1990-02-27 Hitachi Ltd Low nox combustion process and low nox combustor
JP2007247928A (en) * 2006-03-14 2007-09-27 Osaka Gas Co Ltd Method of manufacturing heat exchange-type reactor, and heat exchange-type reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0257822A (en) * 1987-10-12 1990-02-27 Hitachi Ltd Low nox combustion process and low nox combustor
JP2007247928A (en) * 2006-03-14 2007-09-27 Osaka Gas Co Ltd Method of manufacturing heat exchange-type reactor, and heat exchange-type reactor

Also Published As

Publication number Publication date
JPH0419449B2 (en) 1992-03-30

Similar Documents

Publication Publication Date Title
US5161366A (en) Gas turbine catalytic combustor with preburner and low nox emissions
JP2713627B2 (en) Gas turbine combustor, gas turbine equipment including the same, and combustion method
EP0677707B1 (en) Catalytic gas turbine combustor
Davis et al. Development of a dry low NOx combustor
JP2843035B2 (en) Gas turbine combustor
JPS59107119A (en) Combustion of gas turbine
JPH076630B2 (en) Gas turbine combustor
Hilt et al. Evolution of NOx abatement techniques through combustor design for heavy-duty gas turbines
JPS5924121A (en) Combustion in combustor for gas turbine
JPH0245772B2 (en)
JPH0128843B2 (en)
JPS59180220A (en) Gas turbine combustor
JPH0472984B2 (en)
JP2634279B2 (en) Method for burning NOx-containing gas
JP2590216B2 (en) Low NOx combustion method and low NOx combustor
JPS62141425A (en) Gas turbine combustor
JP2672510B2 (en) Catalytic combustion type gas turbine combustor
JPS58184427A (en) Combustor for gas turbine
JPS60186622A (en) Catalytic burner
JPS62218730A (en) Gas turbine combustor
JPS60162108A (en) Low nox high efficiency combustion chamber
JPH0463964B2 (en)
JPS60205128A (en) Combustor for gas-turbine
JPH0826992B2 (en) Gas turbine combustor
JPS6179917A (en) Catalyst combustor