JPS5924104A - Combustion of pulverized coal with low nitrogen oxide - Google Patents

Combustion of pulverized coal with low nitrogen oxide

Info

Publication number
JPS5924104A
JPS5924104A JP57131248A JP13124882A JPS5924104A JP S5924104 A JPS5924104 A JP S5924104A JP 57131248 A JP57131248 A JP 57131248A JP 13124882 A JP13124882 A JP 13124882A JP S5924104 A JPS5924104 A JP S5924104A
Authority
JP
Japan
Prior art keywords
exhaust gas
primary air
pulverized coal
amount
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57131248A
Other languages
Japanese (ja)
Inventor
Noriyuki Oyatsu
紀之 大谷津
Kunio Okiura
沖浦 邦夫
Iwao Akiyama
秋山 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57131248A priority Critical patent/JPS5924104A/en
Publication of JPS5924104A publication Critical patent/JPS5924104A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/12Recycling exhaust gases

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To enable easy and reliable reduction of NOX, not depending on the type of coal used or property of the fuel, but merely through improvement of a combustion control method in which concentration of each of O2 and CO2 is measured through sampling of an exhaust gas at the outlet of a furnace to regulate a primary air amount and a mixed exhaust gas amount. CONSTITUTION:A sampling device 11 and an analizing device 12 for O2 and CO2 are installed on an exhaust gas passage 1A at the outlet of a furnace, and according to concentration, the openings of dampers 13 and 14 of a primary air line 5 and an exhaust gas re-circulating line 8, respectively, are regulated. If a linear relation between CO2 concentration and the fuel is previously found with each oxygen concentration serving as parameter, and when the fuel ratio of pulverized coal is found through measurement of O2 and CO2 at an outlet 1A of a furnace, from a relation between the primary air amount and the NOX concentration of each fuel ratio, the proper amount of a primary air for reducing NOX to a given value or less may be found. Meanwhile, velocity of flow of gas, at which pulverzied coal is conveyed from a mill 3 to a burner 2 without being accumulated on a burner 10, is required to be 15-20m/sec, and a gas amount is regulated by mixing the proper amount of the primary air with an exhaust gas.

Description

【発明の詳細な説明】 本発明は、微粉炭低窒素酸化物燃焼法に関し、さらに詳
しくは、ボイラ等の燃焼装置からの排ガス中の窒素酸化
物を低減させるために、燃料搬送用空気(1次空気)に
燃焼排ガスを混入して微粉炭を燃焼させる低窒素酸化物
燃焼法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pulverized coal low nitrogen oxide combustion method, and more specifically, to reduce nitrogen oxides in exhaust gas from a combustion device such as a boiler. This relates to a low nitrogen oxide combustion method in which pulverized coal is combusted by mixing combustion exhaust gas into (air).

近年、事業用ボイラなどの火炉に使用する燃料は、液体
燃料から再び石炭へと移行しつつあるが、石炭を燃料と
する場合、石炭中に含まれる窒素分が重原油に比べて非
常に多く、この窒素分が燃焼によって有害な窒素酸化物
(以下、NOxと略記することがある)となり、排ガス
中にいわゆるツユエル(FtLel)  No、が増加
するという問題を生じる。そこで、燃焼面からNOxを
低減させる手段として、燃焼用空気を火炉のバーナに分
割供給するデュアル型バーナ、さらに燃焼排ガスをこれ
ら分割された燃焼用空気の間に供給するPGデュアル型
バーナなどの各種のバーナ構造に関する検討がなされて
いる。それと共に、特に微粉炭を燃焼させる場合、燃焼
過程で生成する揮発分と残炭外とのそれぞれ異なる相で
起きる反応を考慮して対処する必要があるため、上記揮
発分中の窒素分から生成するNO工を低減させることを
主目的として、石炭と1次空気との比(すなわち石炭/
1次空気、以下、C/Aと略記することがある)を増加
、換言すれば1次空気の量を減少したり、または、1次
空気中の02濃度を下げるために燃焼排ガスを混入する
という対策が提案されている。しかしながら、C/Aを
あまり増加させると、減少した1次空気では微粉炭はバ
ーナまで搬送されずに配管内に堆積して管詰りを起こし
、燃料が供給されないというトラブルが発生する。一方
、1次空気に燃焼排ガスを混入する方法は、微粉炭を搬
送する気体喰を増加させるので、上記トラブルは解消さ
れるが、石炭そのもの化学的および物理的特性が産地や
鉱区によって大きく異なるため、微粉炭の着火性や燃焼
性に支障をきたさないように、1次空気に混入する燃焼
排ガス量を、使用石炭に応じて適切に制御する必要があ
る。しかしながら、従来、どのような基準で1次空気h
1と混入燃焼排ガス量とを制御するか、その制御方法は
未だ確立されておらず、従ってしばしば失火などのトラ
ブルを起こす欠点があった。
In recent years, the fuel used in furnaces such as commercial boilers has been shifting from liquid fuel to coal again, but when coal is used as fuel, the nitrogen content in coal is much higher than that in heavy crude oil. This nitrogen content becomes harmful nitrogen oxides (hereinafter sometimes abbreviated as NOx) through combustion, resulting in the problem that so-called FtLel No. increases in the exhaust gas. Therefore, as a means to reduce NOx from the combustion side, various types of burners such as dual-type burners that divide combustion air into the burners of the furnace and PG dual-type burners that supply combustion exhaust gas between these divided combustion airs are used. The burner structure has been studied. At the same time, especially when combusting pulverized coal, it is necessary to take into consideration the reactions that occur in different phases between the volatile matter produced during the combustion process and the outside of the residual coal. The main purpose of reducing NO emissions is to increase the ratio of coal to primary air (i.e. coal/primary air).
In other words, increase the amount of primary air (hereinafter sometimes abbreviated as C/A), or in other words, reduce the amount of primary air, or mix combustion exhaust gas to lower the 02 concentration in the primary air. A countermeasure has been proposed. However, if C/A is increased too much, the pulverized coal will not be transported to the burner with the reduced primary air, and will accumulate in the pipes, causing pipe clogging, causing problems such as fuel not being supplied. On the other hand, the method of mixing combustion exhaust gas into the primary air increases the amount of gas that transports the pulverized coal, which eliminates the above problems, but the chemical and physical characteristics of the coal itself vary greatly depending on the production area and mining area. It is necessary to appropriately control the amount of combustion exhaust gas mixed into the primary air depending on the coal used so as not to impede the ignitability and combustibility of the pulverized coal. However, in the past, what standards were used to determine the primary air h?
1 and the amount of mixed combustion exhaust gas have not yet been established, and therefore there has been a drawback that troubles such as misfires often occur.

本発明の目的は、上記従来技術の欠点を解消し、微粉炭
を配管内に堆積させることなく火炉に搬送−し、失火な
どの燃焼時のトラブルを発生させない微粉炭低窒素酸化
物燃焼制御法を提供することばある。
The purpose of the present invention is to provide a low nitrogen oxide combustion control method for pulverized coal that eliminates the drawbacks of the prior art described above, transports pulverized coal to a furnace without accumulating it in piping, and prevents troubles during combustion such as misfires. There are words that provide.

本発明者は、火炉出口における燃焼排ガス中00□およ
びCO2の各濃度と燃料石炭の燃料比の3者が密接な関
係にあり、前2者から後者を推定することができること
、および該推定値から1次空気に混入する排ガス量を調
整することによってNOxを所定値以下に低減させるこ
とが可能なことを見出し、本発明に到達したものである
The present inventor discovered that the concentrations of 00□ and CO2 in the combustion exhaust gas at the furnace outlet and the fuel ratio of fuel coal are closely related, and that the latter can be estimated from the former two, and that the estimated value The inventors have discovered that it is possible to reduce NOx to a predetermined value or less by adjusting the amount of exhaust gas mixed into the primary air, and have arrived at the present invention.

本発明は、火炉出口での燃焼排ガス中の02およびCO
2の各濃度を測定して燃料石炭の燃料比、つまり炭種を
知り、それによってNO,を低減させるだめの1次空気
量の適量を知ると共に、バーナまでの搬送配管途中に微
粉炭が堆積しないようなガス計になるように、前記1次
空気鼠に排ガスを混入するようにしたものである。
The present invention aims to reduce CO2 and CO in the combustion exhaust gas at the furnace outlet.
By measuring each concentration of 2, we know the fuel ratio of the fuel coal, that is, the type of coal, and from this we know the appropriate amount of primary air to reduce NO, and we also know that pulverized coal will accumulate on the conveyance pipe to the burner. The exhaust gas is mixed into the primary air gas so that the gas meter can be used in a manner that prevents gas from burning.

すなわち、本発明は、火炉内に微粉炭を搬送する1次空
気中に燃焼排ガスを混入して排ガス中の窒素酸化物を低
減させる燃焼法において、火炉出口の排ガス中の二酸化
炭素および酸素の量を検出し、予め求められた二酸化炭
素量と微粉炭の燃料比との関係から前記微粉炭の燃料比
を推定する一方、微粉炭の各燃料比について排ガス中の
窒素酸化物が所定値以下になるような1次空気縫を予め
求めておき、前記推定された燃料比から上記関係に従っ
て必要な1次空気量を求め、この1次空気に、微粉炭の
堆積を防止するに必要なガス流速を得るような量の排ガ
スを混入することを特徴とする。
That is, the present invention is a combustion method in which combustion exhaust gas is mixed into the primary air that conveys pulverized coal into the furnace to reduce nitrogen oxides in the exhaust gas, and the amount of carbon dioxide and oxygen in the exhaust gas at the furnace outlet is is detected, and the fuel ratio of the pulverized coal is estimated from the relationship between the amount of carbon dioxide determined in advance and the fuel ratio of pulverized coal, and the nitrogen oxides in the exhaust gas are determined to be below a predetermined value for each fuel ratio of pulverized coal. Determine in advance the primary air flow such that It is characterized by mixing exhaust gas in such an amount as to obtain .

以下、本発明を図面によってさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は、本発明方法が適用されるボイラ火炉の装置系
統図である。火炉本体1内で生成した排ガスの1部は、
装置出口IAからファン9により排ガス管8を通って1
次空気配管5中の1次空気に混入され、ミル3に導入さ
れる。ミル3には石炭投入部6から石炭が投入され、粉
砕されて微粉炭となる。ミル3に導入された混合気体は
、上記微粉炭を含んでミル3から送出され、配管10を
通ってバーナ2に達し、火炉本体1内に噴出すると同時
に燃焼する。微粉炭の燃焼に使用される全空気数のうち
の1次空気を除いた残部は、後天空気配管7からウィン
ドボックス4に導入され、各バーナの周辺から火炉本体
1内に供給される。この後火空気の供給により、1次空
気では不充分であった燃焼を完全にし、未燃焼分が燃焼
された後、燃焼排ガスは炉出口IAから後段の集じん装
置等に送られる。
FIG. 1 is a system diagram of a boiler furnace to which the method of the present invention is applied. A part of the exhaust gas generated in the furnace body 1 is
1 from the device outlet IA through the exhaust gas pipe 8 by the fan 9.
It is mixed with the primary air in the secondary air pipe 5 and introduced into the mill 3. Coal is charged into the mill 3 from a coal input section 6 and is crushed into pulverized coal. The mixed gas introduced into the mill 3 contains the pulverized coal and is sent out from the mill 3, passes through the pipe 10, reaches the burner 2, is ejected into the furnace body 1, and is simultaneously combusted. The remainder of the total number of air used for combustion of pulverized coal, excluding primary air, is introduced into the wind box 4 from the after air piping 7, and is supplied into the furnace body 1 from around each burner. By supplying the post-fired air, the combustion, which was insufficient with the primary air, is completed, and after the unburned matter is combusted, the combustion exhaust gas is sent from the furnace outlet IA to a downstream dust collector, etc.

上記炉出口IAの排ガス流路LAにはOxおよびCO2
のサンプリング装置11およびガス分析装置12が設け
られ、該分析装置で計測された02およびCO2濃度に
応じて1次空気配管5および排ガス再循環配管8の各ダ
ンパ13および14の開度が調節される。すなわら、排
ガスサンプリング装置11により排ガスを採取し、分析
装置12によりその02およびCO’2の各濃度が測定
される。この各濃度から次のようにして燃焼中の微粉炭
の燃料比が推ボすることができる。すなわち、第2図は
、火炉出口IAの02濃度が一定(2係)の場合の、C
Ox濃度と微粉炭の燃料比との関係を示すグラフである
。第2図から分るように、燃料比が増加すると火炉出口
IへのCO2もほぼ直線的に増加している。第2図のよ
うなCO2濃度と燃料との直線関係を各酸素濃度をパラ
メーターとして求めておけば、火炉出口IAの02およ
びCO2の各濃度を測定することによって、例えば02
濃度が2チのときは、第2図によりその時点で燃焼中の
微粉炭の燃料比を知ることができる。
Ox and CO2 are present in the exhaust gas flow path LA at the furnace outlet IA.
A sampling device 11 and a gas analyzer 12 are provided, and the opening degree of each damper 13 and 14 of the primary air pipe 5 and exhaust gas recirculation pipe 8 is adjusted according to the 02 and CO2 concentrations measured by the analyzer. Ru. That is, the exhaust gas is sampled by the exhaust gas sampling device 11, and the concentrations of 02 and CO'2 are measured by the analyzer 12. From these concentrations, the fuel ratio of pulverized coal during combustion can be determined as follows. In other words, Fig. 2 shows C when the 02 concentration at the furnace outlet IA is constant (2nd factor)
It is a graph showing the relationship between Ox concentration and fuel ratio of pulverized coal. As can be seen from FIG. 2, as the fuel ratio increases, the CO2 flowing to the furnace outlet I also increases almost linearly. If a linear relationship between CO2 concentration and fuel as shown in Fig. 2 is obtained using each oxygen concentration as a parameter, for example, by measuring each concentration of 02 and CO2 at the furnace outlet IA,
When the concentration is 2 g, the fuel ratio of the pulverized coal being combusted at that time can be known from FIG.

このようKして微粉炭の燃料比が分ると、第3図に示さ
れる各燃料比毎の1次空気量とNO工濃度との関係から
、NO,を所定値以下に低減させるための1次空気の適
量を知ることができる。第3図は火炉出口IAの02濃
度を2%として得たものであるが、他の02濃度につい
ても同様な関係の検睦線を得ることができる。第3図か
ら、一般に1次空気量を少なくすることがNO工低域に
有効であること、およびNO,低減のためには、高燃料
比炭はど1次空気量を少なくする必要があることが分る
Once the fuel ratio of pulverized coal is determined in this manner, from the relationship between the primary air amount and NO concentration for each fuel ratio shown in Figure 3, it is possible to determine the You can know the appropriate amount of primary air. Although FIG. 3 was obtained when the 02 concentration at the furnace outlet IA was 2%, test lines with similar relationships can be obtained for other 02 concentrations. From Figure 3, it can be seen that reducing the amount of primary air is generally effective in reducing NO emissions, and in order to reduce NO, it is necessary to reduce the amount of primary air for high fuel ratio coal. I understand.

このように、予め種々の燃料比の微粉炭について1次空
気量とNo工生成量との関係を求めておけば、その時点
の燃料の燃料比から所定のNOx値以下にするための1
次空気量を容易に推定することができる。
In this way, if the relationship between the primary air amount and the NOx production amount is determined in advance for pulverized coal with various fuel ratios, it is possible to calculate the
The amount of air can be easily estimated.

一方、第1図において、混合気体が微粉炭をミル3から
バーナ2までのバーナ配管10に堆積させることなく搬
送するには、ガス流速として例えば15rn/秒以上、
好′ましくは15〜20m/秒が必要であり、15m/
秒未満では管内に微粉炭堆積のトラブルを生じる。そこ
で上記適量の1次空気に排ガスを混入して上記必要な流
量になるようにガス量が調整される。例えば、第3図に
おいて、燃料比4.0以上の高燃料比炭を使用する場合
、NOxを100p−以下に低減させるためには、1次
空気敬/理論空気険を0.05以下にする必要があるが
、この場合、配管内の流速を15〜20 m7秒とする
ために混入する排ガス量は、通常、排ガス混入量/1次
空気−殴(以下、排ガス混入比という)でほぼ4以上に
なる。しかし排ガス混入比が大き過ぎると、着火性およ
び燃焼性に問題が生じるので、この場合、排ガス混入比
は4.0〜5,0.が好適である。また例えば燃料比が
1.0以下の低燃料化炭では、NO,を1oopp以下
に低減させるためには、第3図から1次空気量/理論空
気量を0゜15以下にすればよいが、これに対応する排
ガス混入比は前記した基準からほぼ0.7以上となる。
On the other hand, in FIG. 1, in order for the mixed gas to transport the pulverized coal without depositing it in the burner pipe 10 from the mill 3 to the burner 2, the gas flow rate must be, for example, 15 rn/sec or more.
Preferably 15 to 20 m/sec is required;
If it is less than 1 second, trouble will occur due to pulverized coal depositing inside the pipe. Therefore, the amount of gas is adjusted by mixing exhaust gas into the appropriate amount of primary air so as to achieve the required flow rate. For example, in Figure 3, when using high fuel ratio coal with a fuel ratio of 4.0 or more, in order to reduce NOx to 100 p- or less, the primary air ratio/theoretical air ratio should be 0.05 or less. However, in this case, the amount of exhaust gas mixed in to make the flow velocity in the pipe 15 to 20 m7 seconds is usually approximately 4 (exhaust gas mixed amount/primary air blowdown) (hereinafter referred to as exhaust gas mixing ratio). That's all. However, if the exhaust gas mixture ratio is too large, problems will occur with ignitability and combustibility, so in this case, the exhaust gas mixture ratio is 4.0 to 5.0. is suitable. For example, in the case of low-fuel coal with a fuel ratio of 1.0 or less, in order to reduce NO to 1oopp or less, the primary air amount/theoretical air amount should be set to 0°15 or less, as shown in Figure 3. , the corresponding exhaust gas mixing ratio is approximately 0.7 or more based on the above-mentioned criteria.

この場合も着火性および燃焼性を考慮すれば、排ガス混
入比は約0.5〜1.5が好適である。燃料比が上記2
種の中間にある炭種については、例えば上記2例に準じ
て排ガス混入比の最適範囲を上記2例の中間に求めるこ
とができる。このようにして求められた1次空気量およ
び最適排ガス混入比に従って、1次空気および排ガス配
管5および8のダンパ13および14の開度を調節し、
原料炭の炭種等の変化によって排ガス中のNoxffl
l度が許容値を越えることなく、常に許容値以下になる
ようにリアルタイムで制御することができる。
In this case as well, considering ignitability and combustibility, the exhaust gas mixing ratio is preferably about 0.5 to 1.5. Fuel ratio is 2 above
For coal types that are between the two types, the optimum range of the exhaust gas mixing ratio can be found between the two examples, for example, according to the two examples above. The opening degrees of the dampers 13 and 14 of the primary air and exhaust gas pipes 5 and 8 are adjusted according to the primary air amount and the optimal exhaust gas mixing ratio determined in this way,
Noxffl in exhaust gas due to changes in the type of coking coal, etc.
It is possible to control in real time so that the temperature does not exceed the permissible value and always stays below the permissible value.

以上、本発明方法によれば、微粉炭を使用する火炉にお
いて、排煙脱硝設備等を設備するととなく、火炉出口の
排ガスをサンブリ、ングして02およびCO2の各濃度
を測定し、1次空気量と混入排ガス量とを調整するとい
う燃焼制御法の改善のみによって、使用炭種または燃料
の性状によらずに、容易に、かつ確実にNOx低減化を
実施することができる。
As described above, according to the method of the present invention, in a furnace using pulverized coal, the concentrations of O2 and CO2 are measured by sampling the exhaust gas at the furnace outlet, without installing flue gas denitrification equipment, etc. Only by improving the combustion control method of adjusting the amount of air and the amount of mixed exhaust gas, NOx reduction can be easily and reliably implemented, regardless of the type of coal used or the properties of the fuel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法に用いるボイラ火炉の1例を示す
装置系統図、第2図は、火炉出口の02濃度一定(2チ
)の場合のCO2濃度と微粉炭の燃料比との関係を示す
グラフ、第3図は、各燃料比毎の1次空気量とNO!濃
度との関係を示すグラフである。 1・・・火炉本体、IA・・・火炉出口、2・・・バー
ナ、3・・・ミル、4・・・ウィンドボックス、5・・
・1次空気配管、6・・・石炭投入部、7・・・後火空
気配管、8・・・排ガス管、9・・・ファン、10−・
・バーナ配管、11・・・排ガスサンプリング装置、1
2・・・ガス分析装置、13.14・・・ダンパ。 代理人 弁理士  川 北 武 長
Figure 1 is an equipment system diagram showing an example of a boiler furnace used in the method of the present invention, and Figure 2 is the relationship between CO2 concentration and pulverized coal fuel ratio when the 02 concentration at the furnace outlet is constant (2CH). The graph shown in Figure 3 shows the primary air amount and NO! for each fuel ratio. It is a graph showing the relationship with concentration. 1...Furnace body, IA...Furnace outlet, 2...Burner, 3...Mil, 4...Wind box, 5...
・Primary air piping, 6...Coal input section, 7...Afterfire air piping, 8...Exhaust gas pipe, 9...Fan, 10-・
・Burner piping, 11...Exhaust gas sampling device, 1
2... Gas analyzer, 13.14... Damper. Agent Patent Attorney Takenaga Kawakita

Claims (1)

【特許請求の範囲】[Claims] (1)火炉内に微粉炭を搬送する1次空気中に燃焼排ガ
スを混入して排ガス中の窒素酸化物を低減させる燃焼法
において、火炉出口の排ガス中の二酸化炭素および酸素
の量を検出し、予め求められた二酸化炭素数と微粉炭の
燃料比との関係から前記微粉炭の燃料比を推定する一方
、微粉炭の各燃料比について排ガス中の窒素酸化物が所
定値以下になるような1次空気量を予め求めておき、前
記推定された燃料比から上記関係に従って必要な1次空
気量を求め、この1次空気に、微粉炭の堆積を防止する
必要なガス流速を得るような量の排ガスを混入すること
を特徴とする微粉炭低窒素酸化物燃焼法。 (2、特許請求の範囲第1項において、前記微粉炭の堆
積を防止するに必要なガス流速は15m/秒以上である
ことを特徴とする微粉炭低窒素酸化物燃焼法。
(1) In a combustion method that mixes combustion exhaust gas into the primary air that transports pulverized coal into the furnace to reduce nitrogen oxides in the exhaust gas, the amount of carbon dioxide and oxygen in the exhaust gas at the furnace outlet is detected. The fuel ratio of the pulverized coal is estimated from the relationship between the carbon dioxide number determined in advance and the fuel ratio of the pulverized coal. The amount of primary air is determined in advance, the necessary amount of primary air is determined from the estimated fuel ratio according to the above relationship, and the primary air is given a gas flow rate necessary to prevent the accumulation of pulverized coal. A pulverized coal low nitrogen oxide combustion method characterized by mixing a large amount of exhaust gas. (2. The pulverized coal low nitrogen oxide combustion method according to claim 1, wherein the gas flow velocity required to prevent the pulverized coal from accumulating is 15 m/sec or more.
JP57131248A 1982-07-29 1982-07-29 Combustion of pulverized coal with low nitrogen oxide Pending JPS5924104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57131248A JPS5924104A (en) 1982-07-29 1982-07-29 Combustion of pulverized coal with low nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57131248A JPS5924104A (en) 1982-07-29 1982-07-29 Combustion of pulverized coal with low nitrogen oxide

Publications (1)

Publication Number Publication Date
JPS5924104A true JPS5924104A (en) 1984-02-07

Family

ID=15053463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57131248A Pending JPS5924104A (en) 1982-07-29 1982-07-29 Combustion of pulverized coal with low nitrogen oxide

Country Status (1)

Country Link
JP (1) JPS5924104A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143074A1 (en) * 2007-05-14 2008-11-27 Babcock-Hitachi K.K. Dust coal boiler, dust coal combustion method, dust coal fuel thermal power generation system, and waste gas purification system for dust coal boiler
WO2009110036A1 (en) * 2008-03-06 2009-09-11 株式会社Ihi Method of controlling oxygen supply in oxygen combustion burner and apparatus therefor
JP2010230209A (en) * 2009-03-26 2010-10-14 Kobe Steel Ltd Pulverized coal combustion device and pulverized coal combustion method using the same
CN109340738A (en) * 2018-08-31 2019-02-15 上海锅炉厂有限公司 A kind of micro- oxygen-enriched combustion boiler system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143074A1 (en) * 2007-05-14 2008-11-27 Babcock-Hitachi K.K. Dust coal boiler, dust coal combustion method, dust coal fuel thermal power generation system, and waste gas purification system for dust coal boiler
JPWO2008143074A1 (en) * 2007-05-14 2010-08-05 バブコック日立株式会社 Pulverized coal boiler, pulverized coal combustion method, pulverized coal fired thermal power generation system, and exhaust gas purification system of pulverized coal boiler
US8961170B2 (en) 2007-05-14 2015-02-24 Babcock-Hitachi K.K. Dust coal boiler, dust coal combustion method, dust coal fuel thermal power generation system, and waste gas purification system for dust coal boiler
WO2009110036A1 (en) * 2008-03-06 2009-09-11 株式会社Ihi Method of controlling oxygen supply in oxygen combustion burner and apparatus therefor
US20110083594A1 (en) * 2008-03-06 2011-04-14 Ihi Corporation Method and apparatus of controlling oxygen supply in oxyfuel combustion boiler
AU2008352212B2 (en) * 2008-03-06 2012-08-30 Electric Power Development Co., Ltd. Method and apparatus of controlling oxygen supply in oxyfuel combustion boiler
JP5138028B2 (en) * 2008-03-06 2013-02-06 株式会社Ihi Oxygen supply control method and apparatus for oxyfuel boiler
US9429315B2 (en) 2008-03-06 2016-08-30 Ihi Corporation Method and apparatus of controlling oxygen supply in oxyfuel combustion boiler
JP2010230209A (en) * 2009-03-26 2010-10-14 Kobe Steel Ltd Pulverized coal combustion device and pulverized coal combustion method using the same
CN109340738A (en) * 2018-08-31 2019-02-15 上海锅炉厂有限公司 A kind of micro- oxygen-enriched combustion boiler system

Similar Documents

Publication Publication Date Title
CN106247368B (en) A kind of industrial coal powder boiler flue gas recirculation low nitrogen burning method and system
US4329932A (en) Method of burning fuel with lowered nitrogen-oxides emission
JP2001132905A (en) Method and apparatus for diluting fuel for reducing nox
EP2623861A1 (en) Combustion system and method for operating same
US20110107944A1 (en) Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
CN102084184B (en) Method of controlling combustion in oxygen combustion boiler and apparatus therefor
CN113091050A (en) Optimization system combining tail denitration and in-furnace combustion and control method thereof
Teng et al. Control of NOx emissions through combustion modifications for reheating furnaces in steel plants
JPS5924104A (en) Combustion of pulverized coal with low nitrogen oxide
Rees et al. Nitrogen oxide formation inside a laboratory pulverized coal combustor
CN206113681U (en) Low NOx combustion system of gas mixing flue gas
Straitz III et al. Combat NOx with better burner design
US7537743B2 (en) Method for in-furnace regulation of SO3 in catalytic NOx reducing systems
CN109239258B (en) Combustion system and method for researching pollutant generation change in combustion process
Cuffe et al. Emissions from coal-fired power plants: a comprehensive summary
CN216245610U (en) Low-emission steel rolling heating furnace system
CN220524108U (en) Direct-fired boiler system capable of reducing emission of nitrogen oxides
JPH0434048B2 (en)
US8251694B2 (en) Method for in-furnace reduction flue gas acidity
CN212157129U (en) System for widening coal type adaptability of W flame boiler burner
CN208952074U (en) A kind of low nitrogen burning gas boiler
US20160195264A1 (en) Process utilizing synergistic mixture of fuels to produce energy and reduce emissions in boilers
JP4141350B2 (en) Combustion device
Crawford et al. NO EMISSION CONTROL FOR X COAL-FIRED UTILITY BOILERS
JPS63207894A (en) Control of nox in high efficiency