JPS5923315B2 - Method for producing cephalosporin compounds - Google Patents

Method for producing cephalosporin compounds

Info

Publication number
JPS5923315B2
JPS5923315B2 JP3000879A JP3000879A JPS5923315B2 JP S5923315 B2 JPS5923315 B2 JP S5923315B2 JP 3000879 A JP3000879 A JP 3000879A JP 3000879 A JP3000879 A JP 3000879A JP S5923315 B2 JPS5923315 B2 JP S5923315B2
Authority
JP
Japan
Prior art keywords
reaction
acid
compound
general formula
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3000879A
Other languages
Japanese (ja)
Other versions
JPS55122788A (en
Inventor
雅弘 村上
正輝 小林
孝範 曾根
千征 渋屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3000879A priority Critical patent/JPS5923315B2/en
Publication of JPS55122788A publication Critical patent/JPS55122788A/en
Publication of JPS5923315B2 publication Critical patent/JPS5923315B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Cephalosporin Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、セフアロスポリン化合物の製造方法に関する
もので、さらに詳しくは、酸安定性を有し、また広範囲
の微生物(グラム陽性およびグラム陰性病原体を含む)
に対して強力な殺菌作用を有し、優れた抗生物質として
既に市販されている一般式(JIO(式中、Rは水素ま
たはメチル基を表わす)で示される化合物またはその医
薬上許容しうる塩を極めて安全に効率良く製造する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing cephalosporin compounds, and more particularly, to a method for producing cephalosporin compounds, which are acid-stable and compatible with a wide range of microorganisms, including gram-positive and gram-negative pathogens.
A compound represented by the general formula (JIO (in the formula, R represents hydrogen or a methyl group) or a pharmaceutically acceptable salt thereof, which has a strong bactericidal effect against humans and is already commercially available as an excellent antibiotic. It relates to a method for manufacturing extremely safely and efficiently.

これまで、一般式(nで示される化合物は、7ーアミノ
セフアロスポラン酸を原料として2工程で製造されてい
た。
Until now, compounds represented by the general formula (n) have been produced in two steps using 7-aminocephalosporanic acid as a raw material.

本発明の目的化合物(11)を得る方法として、たとえ
ば、7ーアミノセフアロスポラン酸と1H−テトラゾー
ル−1一酢酸から、一旦7一(1H−テトラゾール−1
−イルーアセトアミド)セフアロスポラン酸を得た(特
公昭46−5150)後、1,3,4−チアジアゾール
一5−チオール類を反応させる(特公昭46−1473
6)ことによつて、目的の一般式(の化合物を得るか、
7ーアミノセフアロスポラン酸と1,3,4−チ ニア
ジアゾール一5−チオール類を反応させて、7ーアミノ
一3−(1,3,4−チアジアゾール一5−イル)チオ
メチル−3−セフエム一4−カルボン酸を合成(特公昭
39−17936)した後、1H−テトラゾール−1一
酢酸を反応させて、目 j的の一般式(助の化合物を得
る(特公昭46一35751)方法等がある。これらの
方法は、全く独立した2つの反応の組合わせである。
As a method for obtaining the object compound (11) of the present invention, for example, once 7-(1H-tetrazole-1
After obtaining cephalosporanic acid (Japanese Patent Publication No. 46-5150), 1,3,4-thiadiazole-5-thiols are reacted (Japanese Patent Publication No. 46-1473).
6) by obtaining the desired compound of general formula (
7-aminocephalosporanic acid and 1,3,4-thiadiazole-5-thiols are reacted to form 7-amino-3-(1,3,4-thiadiazole-5-yl)thiomethyl-3-cepheme-1. After synthesizing 4-carboxylic acid (Japanese Patent Publication No. 39-17936), it is reacted with 1H-tetrazole-1-monoacetic acid to obtain the target general formula (auxiliary compound) (Japanese Patent Publication No. 46-135751). Yes, these methods are a combination of two completely independent reactions.

すなわち、7ーアミノセフアロスポラ7酸の7位アミノ
基へのアシル化反応と、あと1つは、3位アセトキシメ
チル基におけるアセトキシ基とチアゾールチオ基の置換
反応である。この2つの反応は反応条件が異なり、仮り
に連続して反応を行なう場合でも、条件の変更に係る反
応の中断を避けられない。また、PH6,5で60℃
4というセフアロスポリン化合物の安定性に関して過酷
な条件下で、前記した2段反応の前工程に3〜6時間、
後工程に4〜8時間もさらすことになる。反応収率の低
下は、経済性の観点から大きな問題であつた。また、連
続反応した目的物を精製する場合、未反応原料化合物と
、分解により生じた化合物等の夾雑物の影響が無視でき
ず、結果的に製品の純度に問題を残すことが考えられる
。さらに従来法で通常、7位一アシル化反応に用いられ
る酸クロリド法、混酸無水物法、DCC縮合法での7位
一アシル化反応は、それらのアシル化剤が本来有してい
る混気に対する分解、人体の皮膚刺激性等、作業性、安
全面で著しい欠点を有している。一方、3位アセトキシ
基の置換反応において、脱離反応性を高めるためには、
アルカリ条件下での反応が望ましい。
That is, there is an acylation reaction to the amino group at the 7-position of 7-aminocephalospora heptaic acid, and the other reaction is a substitution reaction between the acetoxy group and the thiazolethio group at the acetoxymethyl group at the 3-position. The reaction conditions for these two reactions are different, and even if the reactions are performed continuously, interruption of the reaction due to a change in conditions cannot be avoided. Also, 60℃ at PH6.5
4, under harsh conditions regarding the stability of the cephalosporin compound, for 3 to 6 hours in the pre-step of the two-step reaction described above.
It will be exposed to post-processing for 4 to 8 hours. The decrease in reaction yield has been a major problem from an economic standpoint. Furthermore, when purifying a target product that has been continuously reacted, the influence of unreacted raw material compounds and impurities such as compounds generated by decomposition cannot be ignored, which may result in problems with the purity of the product. Furthermore, the 7-position monoacylation reaction in the acid chloride method, mixed acid anhydride method, and DCC condensation method, which are usually used for the 7-position monoacylation reaction in conventional methods, is difficult to achieve due to the mixed gas originally possessed by these acylating agents. It has significant drawbacks in terms of workability and safety, such as decomposition and irritation to human skin. On the other hand, in order to increase the elimination reactivity in the substitution reaction of the 3-position acetoxy group,
Reaction under alkaline conditions is preferred.

しかしながら、セフアロ系化合物はアルカリ条件下です
みやかに骨格分解が起こるため、あえて反応性の低い中
性付近で反応を実施しなければならない。この結果、6
0℃で長時間反応しなければならないという経済性の観
点から重大な欠点を有している。これらの欠点から、工
業的製法としては到底満足しうるものではなかつた。本
発明者らは、これら従来法のもつ欠点を克服し、安全か
つ効率良く、一般式(11で示される化合物またはその
医薬上許容しうる塩を製造する方法について鋭意検討を
重ねた結果、7ーアミノ一3−(ベンズイミダゾール一
2−イル)チオメチル−3−セフエム一4−カルボン酸
またはその塩の3位メチル基に結合するベンズイミダゾ
ールチオ基が、セフアロ骨格の安定な酸性条件下で極め
て反応性の高い脱離基であることを見出した。
However, since skeletal decomposition of cephalic compounds occurs quickly under alkaline conditions, the reaction must be carried out at around neutrality where reactivity is low. As a result, 6
This method has a serious disadvantage from an economic point of view in that the reaction must be carried out at 0° C. for a long period of time. Due to these drawbacks, this method was not completely satisfactory as an industrial production method. The present inventors have conducted extensive studies on a method for safely and efficiently producing the compound represented by the general formula (11) or a pharmaceutically acceptable salt thereof, by overcoming the drawbacks of these conventional methods. -The benzimidazole thio group bonded to the 3-methyl group of amino-3-(benzimidazol-2-yl)thiomethyl-3-cephem-4-carboxylic acid or its salt is extremely reactive under acidic conditions, where the cephaloskeleton is stable. It was discovered that this is a highly reactive leaving group.

また、一般式()(式中、Rは水素またはメチル基を表
わす)で示される化合物が、一般式(IOで示される目
的化合物の2種の置換基を、途中で反応を停止すること
なく単一の条件下で極めて効率良く導入できる極めて反
応性に富む新規化合物であることを見出した。
In addition, the compound represented by the general formula () (in which R represents hydrogen or a methyl group) can react with two substituents of the target compound represented by the general formula (IO) without stopping the reaction midway. We have discovered that this is a new highly reactive compound that can be introduced extremely efficiently under a single condition.

この両化合物を原料として組合わせることにより、その
目的を完全に達成しうることを見出し、本発明をなすに
至つた。すなわち、本発明は、7ーアミノ一3−(ベン
ズイミダゾール一2−イル)チオメチル−3−セフエム
一4−カルボン酸またはその塩と、一般式(H) (式中、Rは前記と同じ) で示される化合物を反応させることを特徴とする一般式
(110(式中、Rは前記と同じ) で示されるセフアロスポリン化合物またはその塩の製造
方法を提供するものである。
It was discovered that the object could be completely achieved by combining these two compounds as raw materials, and the present invention was completed. That is, the present invention provides 7-amino-3-(benzimidazol-2-yl)thiomethyl-3-cephem-4-carboxylic acid or a salt thereof, and the general formula (H) (wherein R is the same as above). The present invention provides a method for producing a cephalosporin compound represented by the general formula (110 (in the formula, R is the same as above) or a salt thereof, which is characterized by reacting the shown compound.

本発明において、原料として用いる化合物(1)は、そ
の3位メチル基に結合するベンズイミダゾールチオ基が
プロトン存在下で極めて反応性の高い脱離基であること
が特徴である。
In the present invention, compound (1) used as a raw material is characterized in that the benzimidazole thio group bonded to the 3-position methyl group is a leaving group that is extremely reactive in the presence of protons.

脱離反応にはプロトンが触媒すると考えられ、反応系中
に存在するチオール類のプロトンが活用されるため、特
に新たに酸触媒として加える必要はない。3位メチル基
に結合する同系統の置換基として、ベンズチアゾールチ
オ基、ベンズオキサゾールチオ基等があり、事実、これ
ら置換基でも反応は進行するが、安定性、反応性の点で
特にベンズイミダゾールチオ基が優れた効果を発揮する
The elimination reaction is thought to be catalyzed by protons, and the protons of thiols present in the reaction system are utilized, so there is no need to add a new acid catalyst. Similar substituents that bind to the 3-position methyl group include benzthiazole thio group and benzoxazole thio group, and in fact, the reaction proceeds even with these substituents, but benzimidazole is particularly effective in terms of stability and reactivity. Thio group exhibits excellent effects.

この置換基は、セフアロ化合物の安定な酸性領域におい
て極めて置換反応が早いために、従来法のアセトキシ基
と比較すると、収率の点で約2倍以上の効果を発揮する
。化合物(1)は、それ自身公知の方法によつて容易に
入手できる。
Since this substituent undergoes an extremely fast substitution reaction in the stable acidic region of the cephalocompound, it exhibits about twice the yield in terms of yield compared to the acetoxy group of the conventional method. Compound (1) can be easily obtained by a method known per se.

たとえば、市販の7ーアミノセフアロスポラン酸と、高
分子老化防止剤としてすでに用いられ安価に市販されて
いる2−メルカプトベンズイミダゾールを、公知方法に
より反応させることによつて得られる。または7一(グ
ルタルアミド)−セフアロスポラン酸と2−メルカプト
ベンズイミダゾールを反応させ、次いで、たとえば特開
昭50−101584に開示されているコマモナスアシ
ラーゼによつて、7位側鎖のアミド結合を切断すること
により得られる。もう一方の原料である一般式()で示
される文献上未知の新規化合物は、単なるアシル化剤で
はない。
For example, it can be obtained by reacting commercially available 7-aminocephalosporanic acid with 2-mercaptobenzimidazole, which is already used as a polymer anti-aging agent and is commercially available at low cost, by a known method. Alternatively, 7-(glutaramide)-cephalosporanic acid and 2-mercaptobenzimidazole are reacted, and then the amide bond at the 7-position side chain is cleaved by, for example, Comamonas acylase disclosed in JP-A-50-101584. It can be obtained by The other raw material, a novel compound represented by the general formula () and unknown in the literature, is not just an acylating agent.

単一化合物でセフアロスポラン酸の7位アシル化反応と
3位置換反応の両反応基を有し、かつ極めて高い活性を
有するため、効率良く反応を進行させ、目的とする化合
物(11)を好収率で取得できるという大きな利点を有
している。さらに詳しく述べると、化合物()は従来最
もアシル化反応性が高い方法と言われている。
A single compound has reactive groups for both the 7-position acylation reaction and the 3-position substitution reaction of cephalosporanic acid, and has extremely high activity, allowing the reaction to proceed efficiently and yielding the target compound (11) with good yield. It has the great advantage that it can be obtained at a low rate. More specifically, compound () is said to be the method with the highest acylation reactivity to date.

酸クロリド法や混酸無水物法の反応性にはマ等しい。従
来法での欠点つまり厳しく温度コントロールをしないと
副反応が起き、効率が低下することが知られているが、
化合物()では通常容易に実施できる温度範囲、たとえ
ば室温から80℃までの範囲において、重合反応、分解
反応等を含む何らの副反応も生じない。また、従来から
知られている活性チオエステル法、たとえばカルボン酸
のフエニルチオエステル法があるが、この方法では反応
条件が強アルカリの存在下、高温、数時間という過酷な
条件であり、実際上セフアロ化合物には適用できない、
また一方、反応を緩和な条件で行なうと、アシル化反応
は進行しない(比較例1を参照)。化合物()は1種の
チオエステルであるが、緩和な条件下で最も反応性の高
い反応試薬であるという事実は、全く従来予想し得なか
つた正に驚くべきことである。化合物(H)は黄色柱状
結晶であり、吸湿性、刺激性および腐蝕性がないため、
製造上の取扱いが極めて容易で、作業環境および作業者
の安全、装置の保安性が極めて高い。
The reactivity of the acid chloride method and mixed acid anhydride method is comparable. It is known that the disadvantage of conventional methods is that if the temperature is not strictly controlled, side reactions occur and efficiency decreases.
Compound () does not cause any side reactions, including polymerization reactions, decomposition reactions, etc., within a temperature range that can be easily carried out, for example, from room temperature to 80°C. In addition, there is a conventionally known active thioester method, for example, the phenyl thioester method of carboxylic acid, but this method requires harsh reaction conditions of several hours at high temperature in the presence of a strong alkali, and in practice Not applicable to compounds,
On the other hand, if the reaction is carried out under mild conditions, the acylation reaction does not proceed (see Comparative Example 1). The fact that compound (), which is a type of thioester, is the most reactive reagent under mild conditions is completely unexpected and truly surprising. Compound (H) is a yellow columnar crystal and is not hygroscopic, irritating, or corrosive.
It is extremely easy to handle during manufacturing, and provides extremely high safety for the work environment, workers, and equipment.

このため実用上、本発明の化合物のみが真に優れた反応
原料である。化合物(4)に関してさらに述べれば、単
一化合物でありながら同時に2反応を開始し、かつ高活
性で、化合物(1)の高脱離反応性との組合わせで反応
効率の上昇と反応時間を短縮させ、結果的に極めて大き
く経済性がまさることである。化合物(4)の7位と3
位を修飾する優れた点を定量的に述べると、従来法でた
とえば特公昭46一5150と特公昭46−14736
を組合わせた場合、化合物(11を単離するまでの収率
は10.4%であり、特公昭39−17936と特公昭
46−35751を組合わせた場合、同様に収率は34
.5%である。
Therefore, in practice, only the compound of the present invention is a truly excellent reaction raw material. Regarding compound (4), although it is a single compound, it can initiate two reactions at the same time, has high activity, and in combination with the high elimination reactivity of compound (1), increases reaction efficiency and reduces reaction time. As a result, it is extremely economical. 7-position and 3 of compound (4)
Quantitatively speaking, the advantages of modifying the position are as follows:
When combining JP-B No. 39-17936 and JP-B No. 46-35751, the yield until compound 11 is isolated is 10.4%.
.. It is 5%.

しかしながら、本発明方法によれば、収率は95%と飛
躍的に優れてそる。化合物(1)は、一般式(IV) (式中、Rは水素またはメチル基を表わす)で示される
1,3,4−チアジアゾール一5−チオール類またはそ
の誘導体を、1H−テトラゾール−1一酢酸またはその
誘導体と、溶液中で−50〜100℃で反応させること
によつて、高収率で製造することができる。
However, according to the method of the present invention, the yield is dramatically superior to 95%. Compound (1) is obtained by converting 1,3,4-thiadiazole-5-thiols or derivatives thereof represented by general formula (IV) (wherein R represents hydrogen or methyl group) into 1H-tetrazole-1-5-thiols or derivatives thereof. It can be produced in high yield by reacting it with acetic acid or a derivative thereof in a solution at -50 to 100°C.

このようにして得た一般式(1)で示される化合物また
はその塩と、一般式(H)で示される化合物を溶媒中で
反応させ、容易にかつ効率良く、目的化合物である一般
式(11)で示されるセフアロスポリン化合物またはそ
の医薬上許容しうる塩に導くことができる。
The thus obtained compound represented by the general formula (1) or its salt is reacted with the compound represented by the general formula (H) in a solvent to easily and efficiently produce the target compound, the general formula (11 ) or a pharmaceutically acceptable salt thereof.

化合物(H)の量は、化合物(1)に対して等モル以上
であればよく、経済性の点から1.0モルから2.0モ
ルが好ましい。
The amount of compound (H) may be at least equimolar to compound (1), and is preferably from 1.0 mol to 2.0 mol from the economic point of view.

溶媒としては、N,N−ジメチルホルムアミド、N,N
−ジエチルホルムアミド、N,N−ジメチルアセトアミ
ド、N,N−ジエチルアセトアミド等のアミド類、また
はその含水溶媒が好ましい。この他の溶媒としては、た
とえばメチルセロンルブ等のエーテル類、アセトン、メ
チルエチルケトン等の脂肪酸ケトン類、ジクロルメタン
、クロロホルム等のハロゲン化炭化水素類、アセトニト
リル、プロピオニトリル等のニトリル類、ジメチルスル
ホキシド、ジエチルスルホキシド等のスルホキシド類が
あり、これらは単独で、あるいは混合溶媒または含水溶
媒として用いることにより、反応を進行させることがで
きるがこれらの溶媒のなかで、特にN,N−ジメチルホ
ルムアミドとN,N−ジメチルアセトアミド等のアミド
類またはそれらの含水溶媒の使用が、溶解性、反応率、
経済性の点で特に好ましい。本発明の特徴として、反応
系中には化合物()から生ずるチオール化合物と、置換
反応によつて生じたチオール化合物が存在するため、特
に新たな酸触媒の添加は必ずしも必要ではないが、反応
時間の短縮、反応収率の向上の点から、酸触媒を加えた
方がよい。
As a solvent, N,N-dimethylformamide, N,N
Amides such as -diethylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, or their aqueous solvents are preferred. Examples of other solvents include ethers such as methyl selon rub, fatty acid ketones such as acetone and methyl ethyl ketone, halogenated hydrocarbons such as dichloromethane and chloroform, nitrites such as acetonitrile and propionitrile, dimethyl sulfoxide, diethyl There are sulfoxides such as sulfoxide, and these can be used alone or as a mixed solvent or a water-containing solvent to advance the reaction. Among these solvents, N,N-dimethylformamide and N,N - Use of amides such as dimethylacetamide or their water-containing solvents improves solubility, reaction rate,
This is particularly preferred from the economic point of view. A feature of the present invention is that since the reaction system contains a thiol compound generated from the compound () and a thiol compound generated by the substitution reaction, it is not necessarily necessary to add a new acid catalyst, but the reaction time It is better to add an acid catalyst from the viewpoint of shortening the reaction time and improving the reaction yield.

たとえば、塩酸、硫酸等の鉱酸類、パラトルエンスルホ
7酸、メタンスルホン酸等のスルホン酸類、プロピオン
酸等の脂肪酸類、2−メルカプトチアジアゾール等のチ
オール類等の有機酸を挙げることができるが、特に収率
と反応時間の短縮の点で鉱酸類とチオール類が好ましい
。この酸触媒の量は、化合物(1)の量に対して実質的
に0.05モル以上あれば充分である。反応温度は触媒
の存否、溶媒の種類等によつて異なるが、通常、10℃
から100℃の範囲で十分であり、反応率、セフアロス
ポリン骨格の安定性などから考えて、特に好ましいのは
30℃から80℃の範囲である。
Examples include mineral acids such as hydrochloric acid and sulfuric acid, sulfonic acids such as para-toluenesulfoheptacic acid and methanesulfonic acid, fatty acids such as propionic acid, and organic acids such as thiols such as 2-mercaptothiadiazole. Mineral acids and thiols are particularly preferred in terms of yield and shortening of reaction time. It is sufficient that the amount of the acid catalyst is substantially 0.05 mol or more relative to the amount of compound (1). The reaction temperature varies depending on the presence or absence of a catalyst, the type of solvent, etc., but is usually 10°C.
A range of from 30°C to 100°C is sufficient, and a range of from 30°C to 80°C is particularly preferable in view of reaction rate, stability of the cephalosporin skeleton, etc.

反応時間は酸触媒の存否、溶媒の種類等によつて異なる
が、通常、30分から10時間の範囲で充分である。
Although the reaction time varies depending on the presence or absence of an acid catalyst, the type of solvent, etc., a range of 30 minutes to 10 hours is usually sufficient.

たとえば、含水N,N−ジメチルホルムアミド中、酸触
媒の存在下、60℃の反応では30分から4時間で充分
である。従来、7位アシル化反応と3位置換反応を連続
した場合、8時間から18時間を必要とし、反応試薬と
の副反応と、生成物の分解の点を考えると、本発明方法
はは極めて簡便で経済性に優れている。本発明の目的化
合物は、常法によつて反応終了液から抽出するか、無水
溶媒の場合には常法により、ナトリウム塩、カリウム塩
にすることにより結晶として単離できる。
For example, 30 minutes to 4 hours is sufficient for reaction at 60° C. in aqueous N,N-dimethylformamide in the presence of an acid catalyst. Conventionally, when the 7-position acylation reaction and the 3-position substitution reaction were performed consecutively, it required 8 to 18 hours. Considering the side reactions with the reaction reagent and the decomposition of the product, the method of the present invention is extremely time-consuming. It is simple and economical. The target compound of the present invention can be isolated as a crystal by extracting it from the reaction-completed solution by a conventional method, or by converting it into a sodium salt or potassium salt by a conventional method in the case of an anhydrous solvent.

本発明においては、このようにして得られた一般式(1
1で示されるセフアロスポリン化合物を、所望に応じ医
薬上許容しうる塩に変換することができる。
In the present invention, the general formula (1
The cephalosporin compound represented by 1 can be converted into a pharmaceutically acceptable salt as desired.

この塩への変換は、常法によつて、アルカリ金属塩、ア
ンモニウム塩、アルカリ土類金属塩類に導くことができ
る。これらの塩類は、たとえば水への溶解性の点で製剤
上すぐれた性質を示す。本発明方法によれば、強力な抗
菌活性を有する優れた抗性物質である一般式(11で示
されるセフアロスポリン化合物およびその医薬上許容で
きる塩を、高収率で安全によく製造することができる。
次に、実施例により本発明をさらに詳細に説明するが、
本発明は、これらの実施例によつて限定されるものでは
ない。実施例 1 温度計を付した31の3径フラスコに7ーアミノ一3−
(ベンズイミダゾール一2−イル)チオメチル−3−セ
フエム一4−カルボン酸369、1H−テトラゾール酢
酸の2−メチル−1,3,4−チアジアゾール一5−イ
ルチオールエステル299、N,N−ジメチルホルムア
ミド1.11と水0.91を投入し、60℃に加熱する
This conversion into salts can be conducted into alkali metal salts, ammonium salts, and alkaline earth metal salts using conventional methods. These salts exhibit excellent pharmaceutical properties, for example in terms of solubility in water. According to the method of the present invention, the cephalosporin compound represented by the general formula (11) and its pharmaceutically acceptable salts, which are excellent antibacterial substances with strong antibacterial activity, can be produced safely and well in high yield. .
Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these examples. Example 1 7-amino-3- was added to a 31 3-diameter flask equipped with a thermometer.
(benzimidazol-2-yl)thiomethyl-3-cephem-4-carboxylic acid 369, 2-methyl-1,3,4-thiadiazole-5-ylthiol ester of 1H-tetrazoleacetic acid 299, N,N-dimethylformamide 1.11 and water 0.91 and heated to 60°C.

さらに反応触媒として0.5N塩酸水100m1を加え
、60℃のま\2時間攪拌し、反応を完結させた。反応
液を高速液体クロマトグラフイ一にて定量すると、反応
率95%であつた。この反応液を冷却し、常法によりエ
ーテルで夾雑物を除去した後、1N塩酸水にてPHl.
5に下げ、21の酢酸エチルエステルで3回抽出した。
無水硫酸マグネシウムにて乾燥し、減圧下に溶媒を濃縮
すると、7一(1Hーテトラゾール−1−イルアセトア
ミド)−3−(2−メチル−1,3,4−チアジアゾー
ル一5−イルチオメチル)−3−セフエム一4−カルボ
ン酸40.79の白色粉末を得た(純度97%)。λM
ax−272nm(3%重曹水)Mpl97〜200℃
(分解)。
Furthermore, 100 ml of 0.5N hydrochloric acid water was added as a reaction catalyst, and the mixture was stirred at 60°C for 2 hours to complete the reaction. When the reaction solution was quantified using high performance liquid chromatography, the reaction rate was 95%. The reaction solution was cooled, impurities were removed with ether in a conventional manner, and then PHL.
5 and extracted three times with ethyl acetate of 21.
After drying over anhydrous magnesium sulfate and concentrating the solvent under reduced pressure, 7-(1H-tetrazol-1-ylacetamido)-3-(2-methyl-1,3,4-thiadiazol-5-ylthiomethyl)-3- A white powder of 40.79% of Cefem-4-carboxylic acid was obtained (purity 97%). λM
ax-272nm (3% sodium bicarbonate water) Mpl97-200℃
(Disassembly).

NMRスペクトル(DMSO−D6)δPPl;2.6
8(S,3H)、3,71(Dd,2H)、4.39(
Dd,2H)、5.12(D,lH)、5.37(S,
2H)、5.73(Q,lH)、9.33(S,lH)
、9.49(D,2H)比較例 1 温度計を付した507!11の3径フラスコに7ーアミ
ノーセフアロスポリン酸272η、N,N−ジメチルホ
ルムアミド11m1と水9m1を投入し溶解して、1H
−テトラゾール酢酸のフエニルチオエステル220ηを
投入した後、30℃に加熱する。
NMR spectrum (DMSO-D6) δPPl; 2.6
8 (S, 3H), 3,71 (Dd, 2H), 4.39 (
Dd, 2H), 5.12 (D, lH), 5.37 (S,
2H), 5.73 (Q, lH), 9.33 (S, lH)
, 9.49 (D, 2H) Comparative Example 1 In a 507!11 3-diameter flask equipped with a thermometer, 272 η of 7-aminocephalosporic acid, 11 ml of N,N-dimethylformamide and 9 ml of water were charged and dissolved. 1H
- After adding 220 η of phenylthioester of tetrazole acetic acid, the mixture is heated to 30°C.

2時間後に反応液を高速液体クロマトグラフイ一にて定
量すると、原料のみであり、生成物は認められなかつた
o実施例 2 温度計を付した500m1の3径フラスコに7ーアミノ
一3−(ベンズイミダゾール一2−イル)チオメチル−
3−セフエム一4−カルボン酸1。
After 2 hours, the reaction solution was quantified using high-performance liquid chromatography, and only the raw material was found, with no product observed.Example 2 7-Amino-3-( Benzimidazol-2-yl)thiomethyl-
3-Cefem-4-carboxylic acid 1.

59、1H−テトラゾール酢酸の1,3,4−チアジア
ゾール一5−イルチオールエステル2.89、N,N−
ジメチルホルムアミド110mjと水90m1を投入し
、60℃に加熱する。
1,3,4-thiadiazol-5-ylthiol ester of 59,1H-tetrazoleacetic acid 2.89,N,N-
110 mj of dimethylformamide and 90 ml of water were added and heated to 60°C.

15分後に0.5N塩酸水10m1を添加し、60℃の
ま\さらに30分攪拌し、反応を完結させた。
After 15 minutes, 10 ml of 0.5N hydrochloric acid was added, and the mixture was stirred at 60°C for an additional 30 minutes to complete the reaction.

反応液を高速液体クロマトグラフイ一にて定量すると、
反応率は88%であつた。この反応液を冷却し、常法に
よりエーテルで夾雑物を除去した後、1N塩酸水にてP
Hl.5に下げ、200m1の酢酸エチルエステルで3
回抽出した。無水硫酸マグネシウムにて乾燥し、減圧下
に溶媒を濃縮すると、7一(1Hテトラゾール−1−イ
ルアセトアミド)−3−(1,3,4−チアジアゾール
一5−イルチオメチル)−3−セフエム一4−カルボン
酸3。79の白色粉末を得た(純度95%)。
When the reaction solution was quantified using high performance liquid chromatography,
The reaction rate was 88%. The reaction solution was cooled, impurities were removed with ether in a conventional manner, and then purified with 1N hydrochloric acid water.
Hl. 5 and diluted with 200 ml of acetic acid ethyl ester.
Extracted twice. After drying over anhydrous magnesium sulfate and concentrating the solvent under reduced pressure, 7-(1Htetrazol-1-ylacetamido)-3-(1,3,4-thiadiazol-5-ylthiomethyl)-3-cephem-4- A white powder of carboxylic acid 3.79 was obtained (purity 95%).

λMax=273nm(3%重曹水) 実施例 3 温度計を付した100m1の3径フラスコに7ーアミノ
一3−(ベンズイミダゾール一2−イル)チオメチル−
3−セフエム一4−カルボン酸720η、1H−テトラ
ゾール酢酸の1,3,4−チアジアゾール一5−イルチ
オールエステル560η、N,N−ジメチルアセトアミ
ド22m1と水18m1を投入し、90℃に加熱する。
λMax=273 nm (3% sodium bicarbonate solution) Example 3 7-amino-3-(benzimidazol-2-yl)thiomethyl- was placed in a 100 ml 3-diameter flask equipped with a thermometer.
720 η of 3-cephem-4-carboxylic acid, 560 η of 1,3,4-thiadiazole-5-ylthiol ester of 1H-tetrazole acetic acid, 22 ml of N,N-dimethylacetamide and 18 ml of water were charged and heated to 90°C.

90℃のま\30分間攪拌し、反応を完結させた。The reaction was completed by stirring at 90°C for 30 minutes.

反応液を高速液体クロマトグラフイ一にて定量すると、
反応率93%であつた。この反応液を冷却し、常法によ
りエーテルで夾雑物を除去した後、1N塩酸水にでPI
Il.5に下げ、40m1の酢酸エチルエステルにて3
回抽出した。無水硫酸マグネシウムにて乾燥し、減圧下
に溶媒を濃縮すると、7一(1H−テトラゾール−1−
イルアセトアミド)−3−(1,3,4−チアジアゾー
ル一5−イルチオメチル)一3−セフエム一4−カルボ
ン酸775.3mgの白色粉末を得た(純度95%)。
実施例 4 温度計を付した50111の3径フラスコに7ーアミノ
一3−(ベンズイミダゾール一2−イル)チオメチル−
3−セフエム一4−カルボン酸362〜、1H−テトラ
ゾール酢酸の2−メチル−1,3,4−チアジアゾール
一5−イルチオールエステル290η、N,N−ジメチ
ルホルムアミド20m1投入し溶解し、30℃に加熱す
る。
When the reaction solution was quantified using high performance liquid chromatography,
The reaction rate was 93%. The reaction solution was cooled, impurities were removed with ether using a conventional method, and PI was added to 1N hydrochloric acid.
Il. 5 and diluted with 40 ml of acetic acid ethyl ester.
Extracted twice. After drying over anhydrous magnesium sulfate and concentrating the solvent under reduced pressure, 7-(1H-tetrazole-1-
775.3 mg of white powder (purity 95%) was obtained.
Example 4 7-amino-3-(benzimidazol-2-yl)thiomethyl- was placed in a 50111 3-diameter flask equipped with a thermometer.
3-cephem-4-carboxylic acid 362~, 290η of 2-methyl-1,3,4-thiadiazole-5-ylthiol ester of 1H-tetrazole acetic acid, 20ml of N,N-dimethylformamide were added, dissolved, and heated to 30°C. Heat.

反応液に無水塩酸ガスを吹込み、流量から10ミリモル
吹込んだ時点で塩酸ガスをとめ、そのま\6時間攪拌し
た。反応率を高速液体クロマトグラフイ一にて定量する
と、反応率は68%であった。この反応液を冷却し、減
圧下にN,N−ジメチルホルムアミドを除去し、重曹水
で再び溶解した後、常法により合成吸着剤カラムにて分
離、精製すると、7一(1H−テトラゾール−1−イル
アセトアミド)−3−(2−メチル−1,3,4−チア
ジアゾール一5−イルチオメチル)−3−セフエム一4
−カルボン酸254.3ηの白色粉末を得た(純度97
%)。実施例 5 温度計を付した511の3径フラスコに7ーアミノ一3
−(ベンズイミダゾール一2−イル)チオメチル−3−
セフエム一4−カルボン酸362mg、アセトン900
WIIと水11を投入し溶解させる。
Anhydrous hydrochloric acid gas was blown into the reaction solution, and when 10 mmol of the hydrochloric acid gas was blown into the reaction solution, the gas was stopped and the mixture was stirred for 6 hours. The reaction rate was determined to be 68% by high performance liquid chromatography. This reaction solution was cooled, N,N-dimethylformamide was removed under reduced pressure, and it was redissolved in aqueous sodium bicarbonate, and then separated and purified using a synthetic adsorbent column in a conventional manner. -ylacetamido)-3-(2-methyl-1,3,4-thiadiazol-5-ylthiomethyl)-3-cepheme-4
- A white powder of carboxylic acid 254.3η was obtained (purity 97
%). Example 5 Add 7-amino-3 to a 511 3-diameter flask equipped with a thermometer.
-(benzimidazol-2-yl)thiomethyl-3-
Cefem-4-carboxylic acid 362 mg, acetone 900
Add WII and water 11 and dissolve.

この液に1H−テトラゾール酢酸の2−メチル−1,3
,4−チアジアゾール一5−イルチオールエステル29
0T11fをアセトン100m1に溶解した液を投入し
、60℃に加温する。さらに反応触媒として0.5N塩
酸水2m1を添加し、反応を4時間行なつた。反応液を
高速液体クロマトグラフイ一にて定量すると、反応率は
66%であつた。この反応液を冷却し、1NHCIにて
PHを下げ、常法により合成吸着剤カラムにて分離、精
製すると、7一(1H−テトラゾール−1−イルアセト
アミド)−3−(2−メチル−1,3,4−チアジアゾ
ール一5−イルチオメチル)−3−セフエム一4−カル
ボン酸273.6ワの白色粉末を得た(純度93%)。
実施例 6 アセトンの替わりにメチルセロソルブを用いる以外は、
実施例5と同様に反応を行なつたところ、反応率59%
、生成物258〜の白色粉末を得た(純度88%)。
Add 2-methyl-1,3 of 1H-tetrazole acetic acid to this solution.
,4-thiadiazole-5-ylthiol ester 29
A solution obtained by dissolving 0T11f in 100 ml of acetone is added and heated to 60°C. Furthermore, 2 ml of 0.5N hydrochloric acid water was added as a reaction catalyst, and the reaction was carried out for 4 hours. When the reaction solution was quantified using high performance liquid chromatography, the reaction rate was 66%. This reaction solution was cooled, the pH was lowered with 1N HCl, and the mixture was separated and purified using a synthetic adsorbent column using a conventional method. A white powder of 273.6 watts of 3,4-thiadiazol-5-ylthiomethyl)-3-cephem-4-carboxylic acid was obtained (purity 93%).
Example 6 Except using methyl cellosolve instead of acetone,
When the reaction was carried out in the same manner as in Example 5, the reaction rate was 59%.
, a white powder of product 258~ was obtained (purity 88%).

実施例 7 N,N−ジメチルホルムアミドの替わりに下記の溶媒を
用いる以外は、実施例1と同様に反応を行なつたところ
、下記の表のごとくになつた。
Example 7 The reaction was carried out in the same manner as in Example 1, except that the following solvent was used instead of N,N-dimethylformamide, and the results were as shown in the table below.

実施例 8塩酸ガスの替わりに下記の触媒を用いる以外
は、実施例5と同様に反応を行なつたところ、下記の表
のごとくになつた。
Example 8 A reaction was carried out in the same manner as in Example 5, except that the following catalyst was used instead of hydrochloric acid gas, and the results were as shown in the table below.

実施例 9 塩酸の替わりに硫酸を用いる以外は、実施例1と同様に
反応を行なつたところ、反応率95%、生成物40.8
9の白色粉末を得た(純度95%)。
Example 9 The reaction was carried out in the same manner as in Example 1 except that sulfuric acid was used instead of hydrochloric acid. The reaction rate was 95% and the product was 40.8%.
A white powder of No. 9 was obtained (purity 95%).

実施例 10温度計を付した50m′の3径フラスコに
7ーアミノ一3−(ベンズイミダゾール一2−イル)チ
オメチル−3−セフエム一4−カルボン酸362即、1
H−テトラゾール酢酸の2−メチル−1,3,4−チア
ジアゾール一5−イルチオールエステル290W9、N
,N−ジメチルホルムアミド15meと水5m1を投入
し、60℃に加熱する。
Example 10 7-amino-3-(benzimidazol-2-yl)thiomethyl-3-cephem-4-carboxylic acid 362, 1
2-Methyl-1,3,4-thiadiazol-5-ylthiol ester of H-tetrazoleacetic acid 290W9,N
, N-dimethylformamide (15 me) and water (5 ml) were added and heated to 60°C.

この後にp−トルエンスルホン酸95〜を投入し、攪拌
を4時間続けて反応を完結させた。反応液を高速液体ク
ロマトグラフイ一にて定量すると、反応率は89%であ
つた。この反応液を冷却し、常法によりエーテルで夾雑
物を除去した後、1N塩酸水にてPHl.5に下げ、4
0m1の酢酸エチルエステルにて3回抽出した。無水硫
酸マグネシウムにて乾燥し、減圧下に溶媒を濃縮すると
、7一(1H−テトラゾール−1−イルアセトアミド)
−3−(2−メチル−1,3,4−チアジアゾール一5
ーイルチオメチル)−3−セフエム一4−カルボン酸4
12.8mgを白色または微黄色粉末として得た(純度
88%)。実施例 11 実施例1で得た生成物9.2gと重炭酸ナトリウム1.
79を水20m1に溶解し、済過した淵液に、99%エ
タノール90m1を加えて、7一(1H一テトラゾール
一1−イルアセトアミド)−3−(2−メチル−1,3
,4−チアジアゾール一5−イルチオメチル)−3−セ
フエム一4−カルボン酸ナトリウムの結晶を済別して得
た。
After that, 95~ of p-toluenesulfonic acid was added, and stirring was continued for 4 hours to complete the reaction. When the reaction solution was quantified using high performance liquid chromatography, the reaction rate was 89%. The reaction solution was cooled, impurities were removed with ether in a conventional manner, and then PHL. lower to 5, 4
Extraction was performed three times with 0 ml of ethyl acetate. After drying over anhydrous magnesium sulfate and concentrating the solvent under reduced pressure, 7-(1H-tetrazol-1-ylacetamide) was obtained.
-3-(2-methyl-1,3,4-thiadiazole-5
-ylthiomethyl)-3-cephem-4-carboxylic acid 4
12.8 mg was obtained as a white or slightly yellow powder (purity 88%). Example 11 9.2 g of the product obtained in Example 1 and 1.2 g of sodium bicarbonate were added.
79 was dissolved in 20 ml of water, and 90 ml of 99% ethanol was added to the filtered bottom liquid to prepare 7-(1H-tetrazol-1-ylacetamide)-3-(2-methyl-1,3
, 4-thiadiazol-5-ylthiomethyl)-3-cephem-4-carboxylic acid sodium crystals were obtained by separation.

λMax=272nm(3%重曹水) NMR(DMSO−D6)δ卿:2.70(S,3H)
、3.67(Dd,2H)、4.57(Dd,2H)、
5.08(D,lH)、5.47(S,2H)、5.6
5(Q,lH)、9.50(S,lH)、9.72(D
,2H)。
λMax=272nm (3% sodium bicarbonate water) NMR (DMSO-D6) δ ratio: 2.70 (S, 3H)
, 3.67 (Dd, 2H), 4.57 (Dd, 2H),
5.08 (D, 1H), 5.47 (S, 2H), 5.6
5 (Q, lH), 9.50 (S, lH), 9.72 (D
, 2H).

Claims (1)

【特許請求の範囲】 1 7−アミノ−3−(ベンズイミダゾール−2−イル
)チオメチル−3−セフエム−4−カルボン酸ン酸また
はその塩(1)と、( I )▲数式、化学式、表等があ
ります▼一般式(II) (II)▲数式、化学式、表等があります▼(式中、Rは
水素またはメチル基を表わす)で示される化合物を反応
させることを特徴とする一般式(III)▲数式、化学式
、表等があります▼(III)(式中、Rは水素またはメ
チル基を表わす)で示されるセフアロスポリン化合物ま
たはその医薬上許容しうる塩の製造方法。 2 反応を無機酸あるいは有機酸からなる酸性触媒下で
行なう特許請求の範囲第1項記載の方法。 3 無機酸が塩酸または硫酸である特許請求の範囲第2
項記載の方法。 4 反応を溶媒中で行なう特許請求の範囲第1項記載の
方法。 5 溶媒が非プロトン性極性溶媒あるいは含水の非プロ
トン性極性溶媒である特許請求の範囲第4項記載の方法
。 6 非プロトン性極性溶媒がN,N−ジメチルホルムア
ミドならびにN,N−ジメチルアセトアミドである特許
請求の範囲第5項記載の方法。
[Scope of Claims] 1 7-Amino-3-(benzimidazol-2-yl)thiomethyl-3-cephem-4-carboxylic acid or its salt (1), and (I) ▲ Numerical formula, chemical formula, table ▼ General formula (II) (II) ▲ Numerical formulas, chemical formulas, tables, etc. ▼ General formula (II) characterized by reacting a compound represented by III) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ A method for producing a cephalosporin compound or a pharmaceutically acceptable salt thereof represented by (III) (in the formula, R represents hydrogen or a methyl group). 2. The method according to claim 1, wherein the reaction is carried out under an acidic catalyst consisting of an inorganic acid or an organic acid. 3 Claim 2 in which the inorganic acid is hydrochloric acid or sulfuric acid
The method described in section. 4. The method according to claim 1, wherein the reaction is carried out in a solvent. 5. The method according to claim 4, wherein the solvent is an aprotic polar solvent or a water-containing aprotic polar solvent. 6. The method according to claim 5, wherein the aprotic polar solvent is N,N-dimethylformamide and N,N-dimethylacetamide.
JP3000879A 1979-03-16 1979-03-16 Method for producing cephalosporin compounds Expired JPS5923315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3000879A JPS5923315B2 (en) 1979-03-16 1979-03-16 Method for producing cephalosporin compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3000879A JPS5923315B2 (en) 1979-03-16 1979-03-16 Method for producing cephalosporin compounds

Publications (2)

Publication Number Publication Date
JPS55122788A JPS55122788A (en) 1980-09-20
JPS5923315B2 true JPS5923315B2 (en) 1984-06-01

Family

ID=12291842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3000879A Expired JPS5923315B2 (en) 1979-03-16 1979-03-16 Method for producing cephalosporin compounds

Country Status (1)

Country Link
JP (1) JPS5923315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242088U (en) * 1988-09-08 1990-03-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0242088U (en) * 1988-09-08 1990-03-23

Also Published As

Publication number Publication date
JPS55122788A (en) 1980-09-20

Similar Documents

Publication Publication Date Title
NO157933B (en) ANALOGUE PROCEDURE FOR THE PREPARATION OF THERAPEUTICALLY EFFECTIVE CEFEM COMPOUNDS.
JPH0567632B2 (en)
JP2004520336A (en) New thiazolylacetic acid thioester derivatives and their use for the preparation of cephalosporin compounds
JP4856795B2 (en) Novel salts in the production of cephalosporin antibiotics.
CA2430840A1 (en) Process for producing anhydride of aminothiazole derivative
JPS597717B2 (en) Cephalosporin derivatives and their production method
JP3751880B2 (en) Method for producing high-purity cefpodoxime proxetil
US3775408A (en) Process for producing cephalosporin derivatives
HU184882B (en) Process for producing cepheme-carboxylic acid derivatives
KR100342600B1 (en) New Thiazole compounds and their preparations
JPS5923315B2 (en) Method for producing cephalosporin compounds
JP2006507290A (en) Method for producing ceftiofur
US4327211A (en) Method for preparation of cephalosporin compounds
HU213267B (en) Process for producing stereospecific cefepime-dihydrochloride-hydrate at ph 5-7,5
US4297279A (en) Imidazoledicarboxylic acid derivative
EP0060301B1 (en) Process for preparing cephalosporin compounds
DK164060B (en) PROCEDURE FOR THE PREPARATION OF 7-AMINO-3-ALCOXYMETHYL-3-CEPHEM-4-CARBOXYL ACID AND PROCEDURE FOR THE PREPARATION OF A 7-ACYLED CEPHALOSPORINE ANTIBIOTE OF ENZYLINE ANTIBIOTIC BY ACYLES CARBOXYLIC
EP0023045B1 (en) Imidazolecarboxylic acid derivatives of penicillins and cephalosporins
JPH03255066A (en) Production of beta-lactam derivative
JPS6310707B2 (en)
JPS5923316B2 (en) Method for producing cephalosporin derivatives
JPS5810586A (en) Preparation of cephalosporanic acid compound
JPS6210514B2 (en)
US5831085A (en) Process for manufacture of cephalosporin such as ceftazidime and intermediate thereof
JP2661810B2 (en) Method for producing 7-amino-3-chloromethyl-3-cephem derivative