JPS59232292A - Electrodeposition method of cylindrical body - Google Patents

Electrodeposition method of cylindrical body

Info

Publication number
JPS59232292A
JPS59232292A JP10533583A JP10533583A JPS59232292A JP S59232292 A JPS59232292 A JP S59232292A JP 10533583 A JP10533583 A JP 10533583A JP 10533583 A JP10533583 A JP 10533583A JP S59232292 A JPS59232292 A JP S59232292A
Authority
JP
Japan
Prior art keywords
cylindrical bodies
bodies
power source
cylindrical
sea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10533583A
Other languages
Japanese (ja)
Inventor
Minoru Fujioka
稔 藤岡
Makoto Kumada
誠 熊田
Yoshiaki Miyazaki
宮崎 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP10533583A priority Critical patent/JPS59232292A/en
Publication of JPS59232292A publication Critical patent/JPS59232292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To electrodeposit the inorg. compd. in the sea water on plural cylindrical bodies consisting of conductive wire screens disposed in the sea water and to produce a cylindrical structure by conducting successively electricity from a single DC power source via a selector to said cylindrical bodies thereby electrolyzing the sea water. CONSTITUTION:Four cylindrical bodies 1A-D consisting of conductive wire screens are connected via PVC joints 2 and are disposed in the sea water 3. The cylindrical bodies 1A-D are connected via the 1st selecting part 6 consisting of a movable contact point 8 and stationary contact points 9a-d to one pole of a DC power source. On the other hand, anode members 4 consisting of a mild steel plate, etc. are disposed in proximity to the bodies 1 so as to face said bodies and the respective anode members 4A-D are connected to the 2nd seecting part 7 consisting of a movable contact point 10 and stationary contact points 11a-d to the positive pole of the DC power source. The selector 5 consisting of the above-mentioned two selecting parts 6, 7 is changed over at a prescribed interval to conduct electricity to the cylindrical bodies, so that the inorg. compd. is successively uniformly electrodeposited and formed on each of the individual bodies of the cylindrical bodies 1 by using the single small DC power source.

Description

【発明の詳細な説明】 この出願の発明は、海中で使用する円筒体の電着方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The invention of this application relates to a method of electrodeposition of a cylindrical body for underwater use.

従来、特開昭55−161097号公報に開示されてい
るように、大型構造材を海水中の無機物で製造すること
が知られている。即ち、海水中に陰極となる円筒状の導
電性部材と陽極となる部材とを対向配置し、両部材を直
流電源1(接続して通電すると、陰極である導電性部材
には、海水中で化学反応が起きて炭酸カルシウムCaC
0,、水酸化マグネシウムtag(oH)2、などの無
機化合物が析出する。この操作を一定期間行なうことに
よって、導電性部材に無機化合物の層を形成せしめて円
筒状構造物を製造するものである。
Conventionally, as disclosed in Japanese Patent Application Laid-open No. 55-161097, it has been known to manufacture large structural members from inorganic substances in seawater. In other words, a cylindrical conductive member serving as a cathode and a member serving as an anode are placed facing each other in seawater, and when both members are connected to a DC power source 1 (and energized), the conductive member serving as a cathode receives electricity in seawater. A chemical reaction takes place to produce calcium carbonate (CaC)
Inorganic compounds such as 0, magnesium hydroxide tag(oH)2, etc. are precipitated. By performing this operation for a certain period of time, a layer of an inorganic compound is formed on the conductive member, thereby producing a cylindrical structure.

まだ海水中の無機物を電着技術によってif/i造物と
する場合、電着した無機質の強度(又は硬度)は、電着
の速度に関係している。すなわち印加する電流の単位面
flりの大きさく電流密度)を高くすると、電着は急速
に行なわれるが、強度的には弱い無機化合物が多く析出
する。一方、電流密度を低くすると、電着はゆっくりし
た速度で行なわれるが、強度的には高い無機化合物が多
く析出するととが知られている。これはiIL流密度の
増減によって電着速度が変化し、析出する無機化合物の
種類および析出割合が異なるだめである。
When inorganic materials still in seawater are made into if/i structures by electrodeposition techniques, the strength (or hardness) of the electrodeposited minerals is related to the rate of electrodeposition. In other words, when the applied current (current density per unit area fl) is increased, electrodeposition occurs rapidly, but many inorganic compounds with weak strength are precipitated. On the other hand, it is known that when the current density is lowered, electrodeposition occurs at a slower rate, but more inorganic compounds with higher strength are deposited. This is because the electrodeposition rate changes depending on the increase or decrease in iIL flow density, and the type and ratio of deposited inorganic compounds vary.

無機化合物の物理的性質として、水酸化マグネシウムは
軟かく、炭酸カルシウムは硬い性質をしている。
As for the physical properties of inorganic compounds, magnesium hydroxide is soft and calcium carbonate is hard.

しだがって、海水中の無機物を構造材として利用するに
は、構造材の利用目的によって無機化合物の種類を決め
なければならない。例えば、強い構造物を得だい場合、
炭酸カルシウムの含有量が多い無機質層を形成しなけれ
ばなら庁いため、電流密度を小さくし、長時間の通電が
8較となる1゜一般に、電着技術を利用してパイシライ
ンなどのように非常に長い円筒体を製造する方法は色々
と考えられるが、これらの方法は一長一短があって、工
業的に採用し離い面があった。例えば、円筒体を一個づ
つ生産する方法は直流′心理の容量が小さくてよい反面
、製造時間が長くかかり過ぎてしまい生産性が悪い。ま
た各円筒体ごとに直流電源を設ける方法は多数の円筒体
を同時に生産できるが、直流電源も生産する円筒体の数
だけ用意しなければならないだめ、設備費がかかり、そ
れだけコスト高となる。一方、非常に長い円筒体を製造
するのに一台の直流Mχ源で行なうには大容量のものが
必要であり、それは電源自体の価格が高くなるばかりで
なく、維持管理が難かしくなるなど、この種の製造設備
としては好ましくない。
Therefore, in order to utilize inorganic substances in seawater as a structural material, the type of inorganic compound must be determined depending on the purpose of use of the structural material. For example, if you obtain a strong structure,
Since it is necessary to form an inorganic layer with a high content of calcium carbonate, the current density is reduced and the long-time energization is 1°. There are various methods of manufacturing long cylindrical bodies, but these methods have advantages and disadvantages, and have been difficult to adopt industrially. For example, the method of producing cylindrical bodies one by one requires a small DC psychological capacity, but it takes too long to produce and is poor in productivity. In addition, the method of providing a DC power source for each cylindrical body allows the production of a large number of cylindrical bodies at the same time, but since the DC power source must be prepared for the number of cylindrical bodies to be produced, equipment costs are required, which increases the cost accordingly. On the other hand, in order to manufacture a very long cylindrical body, a single DC Mχ source requires a large capacity, which not only increases the price of the power source itself, but also makes maintenance difficult. , which is not preferable for this type of manufacturing equipment.

この発明は、上記の事情に鑑みてなされたもので、一つ
の直流電源と多数の円筒体との間に切換器を介在させ、
直流電流を切換器の切換によって順々に円筒体に供給す
ることにより、小容量の直流電源でもって多数の円筒体
に海水中の無機物を同時に付着形成せしめる方法に関す
る。
This invention was made in view of the above circumstances, and includes a switching device interposed between one DC power source and a large number of cylindrical bodies,
The present invention relates to a method for simultaneously attaching and forming inorganic substances in seawater to a large number of cylindrical bodies using a small-capacity DC power supply by sequentially supplying DC current to the cylindrical bodies by switching a switch.

この発明の円筒体の電着方法は、海水中に導電性金網か
らなる一定長の円筒体を複数個配置し、各円筒体に対向
して陽極部材を近接配置し、前記円筒体と陽極部材とを
一つの直流電源に切換器を介し”C接続し、切換器を順
次切換えることによって各円筒体に直流電流を順次供給
しながら円筒体に無機化合物を付着させ無機質層を形成
するものである。
The electrodeposition method of a cylindrical body of the present invention includes arranging a plurality of cylindrical bodies of a certain length made of conductive wire mesh in seawater, arranging an anode member in close proximity to each cylindrical body and facing the cylindrical body, and disposing the anode member and the cylindrical body. is connected to one DC power supply via a switch, and by sequentially switching the switch, direct current is sequentially supplied to each cylinder, and an inorganic compound is attached to the cylinder to form an inorganic layer. .

本発明によれば、複数個の円筒体を同時に製作すること
ができ、しかも各円筒体へ直流電流を供給する電源は一
台で済むため、設備の維持管理がしやすい。また各円筒
体への直流11L流の供給は、各円筒体へ同時に行なう
のでなく、切換器によって順次行なうようにしたので、
電流の供給休止時に円筒体周辺へ無機物の補給が行なわ
れる結果、全ての円筒体に無機化合物を均一に電着形成
することができると共に、電源自体の小形、小容量化が
可能であるなど優れた効果を奏する。
According to the present invention, a plurality of cylindrical bodies can be manufactured at the same time, and only one power source is required to supply direct current to each cylindrical body, making it easy to maintain and manage the equipment. In addition, the 11L DC flow is not supplied to each cylinder simultaneously, but sequentially using a switching device.
As the inorganic material is replenished around the cylinder when the current supply is stopped, the inorganic compound can be uniformly electrodeposited on all the cylinders, and the power supply itself can be made smaller and smaller in capacity. It has a great effect.

以下、本発明の一実施例について図面を参照しながら説
明する。
An embodiment of the present invention will be described below with reference to the drawings.

一定長の円筒体1を導電性の金網で作り、その両端開口
部に非導電性材料、例えば塩化ビニールで形成された継
手2を固着する。前記円筒体1を海水3の中に複数個沈
めて継手2によって円筒体相互を連結する。前記円筒体
lには相対向して陽極部材4、例えば秋祭板、黒鉛、鉛
合金、磁性酸化鉄、を近接配置する。そして前記各円筒
体(IA〜ID)と各陽極部材(4A〜4D)は切換器
5を介して直流電源り、Cに接続する。前記切換器5は
第1切換部6と第2切換郡7とからなり、第1切換部の
可動接点8は直流電源の陰極eに接続され、固定接点9
a〜9dは各円筒体(IA−LD)に接続されており、
一方第2切換部の可動接点1゜は直流電源の陽極■に接
続され、固定接点(11a〜11d)は各陽極部材(4
A〜4D)に接続されている。前記可動接点8.10は
円筒体と陽極M11材が対応して直流電源に接続される
ように駆動装置(図示せず)によって順次切換えられる
。可動接点の切換速度は円筒体の数、電源容量、円筒体
周辺の無機物濃度低下の回復時間などの諸要件を考慮し
て最も電着効率の良い速度が選ばれる。
A cylindrical body 1 of a certain length is made of conductive wire mesh, and joints 2 made of a non-conductive material such as vinyl chloride are fixed to the openings at both ends. A plurality of the cylindrical bodies 1 are submerged in seawater 3, and the cylindrical bodies are connected to each other by joints 2. An anode member 4, such as an autumn festival board, graphite, lead alloy, or magnetic iron oxide, is disposed close to and opposite to the cylindrical body l. Each of the cylindrical bodies (IA to ID) and each of the anode members (4A to 4D) are connected to a DC power supply C via a switch 5. The switching device 5 consists of a first switching section 6 and a second switching group 7, the movable contact 8 of the first switching section is connected to the cathode e of the DC power supply, and the fixed contact 9
a to 9d are connected to each cylinder (IA-LD),
On the other hand, the movable contact 1° of the second switching section is connected to the anode ■ of the DC power supply, and the fixed contacts (11a to 11d) are connected to each anode member (4
A to 4D). The movable contacts 8.10 are sequentially switched by a drive device (not shown) so that the cylindrical body and the anode M11 material are correspondingly connected to a DC power source. The switching speed of the movable contact is selected to be the speed that provides the most efficient electrodeposition, taking into account various requirements such as the number of cylinders, power capacity, and recovery time from a drop in inorganic substance concentration around the cylinders.

つぎに、上述の実施例の電着作用を説明する。Next, the electrodeposition effect of the above embodiment will be explained.

直流電源り、CをON l、、切換器5の可動接点8.
10を動作さぜると、直流電流は切換器5の接点を介し
て各円筒体(IA−LD)に供給される。すると海水中
のCaイオンとMgイオンが陰極である円筒体表面にC
aCo3、Mg(OH)!の無機化合物として析出し、
無機質層が形成される。
Turn on the DC power source C, move the switch 5's movable contact 8.
When 10 is operated, direct current is supplied to each cylinder (IA-LD) through the contacts of the switch 5. Then, Ca ions and Mg ions in the seawater form carbon atoms on the surface of the cylindrical body, which is the cathode.
aCo3, Mg(OH)! precipitates as an inorganic compound,
An inorganic layer is formed.

なお、切換器は実施例に限定されるものでなく、無接点
式のものに置換することができる。また円筒体を連結し
ないで、直列あるいは並列に配置してもよく、更にパイ
プラインとして予め設置された多数の円筒体を一定区画
ごとに電着作業を進めることも可能である。
Note that the switching device is not limited to the one in the embodiment, and can be replaced with a non-contact type switching device. Further, the cylindrical bodies may be arranged in series or in parallel without being connected, and furthermore, it is also possible to proceed with the electrodeposition work in each predetermined section of a large number of cylindrical bodies installed in advance as a pipeline.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の一例を示す概略
図である。 1・・・円筒体、     4・・・陽極部材、5・・
・切換器。 代理人   鵜  沼  辰  之 (ほか1名)
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention. 1... Cylindrical body, 4... Anode member, 5...
・Switcher. Agent Tatsuyuki Unuma (and 1 other person)

Claims (1)

【特許請求の範囲】[Claims] 海水中に導電性金網からなる一定長の円筒体を複数個配
置し、前記円筒体に対向して陽極部材を近接して設け、
各円筒体と陽極部材を一つの直流電源に切換器を介して
接続し、切換器を順次切換えることによって各円筒体に
直流電流を順次供給し力から円筒体に無機化合物を付着
形成せしめることを特徴とする円筒体の電着方法。
A plurality of cylindrical bodies of a certain length made of conductive wire mesh are arranged in seawater, and an anode member is provided adjacently to the cylindrical bodies, facing the cylindrical bodies,
Each cylindrical body and anode member are connected to one DC power source via a switching device, and by sequentially switching the switching device, DC current is sequentially supplied to each cylindrical body, and the inorganic compound is deposited and formed on the cylindrical body from the force. Features: Electrodeposition method for cylindrical bodies.
JP10533583A 1983-06-13 1983-06-13 Electrodeposition method of cylindrical body Pending JPS59232292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10533583A JPS59232292A (en) 1983-06-13 1983-06-13 Electrodeposition method of cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10533583A JPS59232292A (en) 1983-06-13 1983-06-13 Electrodeposition method of cylindrical body

Publications (1)

Publication Number Publication Date
JPS59232292A true JPS59232292A (en) 1984-12-27

Family

ID=14404850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10533583A Pending JPS59232292A (en) 1983-06-13 1983-06-13 Electrodeposition method of cylindrical body

Country Status (1)

Country Link
JP (1) JPS59232292A (en)

Similar Documents

Publication Publication Date Title
US3262868A (en) Electrochemical conversion of electrolyte solutions
CA1159008A (en) Reactor with working and secondary electrodes and polarity reversal means for treating waste water
US5674365A (en) Electrode composition for electrolysis of water
DE69306775T2 (en) ANODE-CATHODE ARRANGEMENT FOR ALUMINUM PRODUCTION CELLS
KR960004225A (en) Ionized water, its manufacturing method and manufacturing apparatus
DE1252643B (en) Diaphragm cell for generating chlorine and caustic potash by electrolysis of an alkali metal chloride solution
US3214362A (en) Electrolysis of aqueous electrolyte solutions and apparatus therefor
DE69033828T2 (en) electrolysis cell
KR970043311A (en) Copper foil for printed wiring boards, manufacturing method and electrolytic apparatus
US2643222A (en) Method of cathodically descalling and electrode therefor
JPS59232292A (en) Electrodeposition method of cylindrical body
US4564432A (en) Apparatus for recovering metals dissolved in a solution
JPS57134586A (en) Production of joined body for electrolysis
JPS6013097A (en) Production of structure by electrodeposition
CN207047354U (en) A kind of electroplanting device for board production
DE2737086A1 (en) ELECTROLYZING METHOD AND ELECTROLYZING APPARATUS
US3398069A (en) Electrolysis of aqueous electrolyte solutions
CN2151155Y (en) Ion electrolytically coating on tantalum products
JPH08276184A (en) Electrode for electrolyzing water
CN1603245A (en) Electroplating wastewater on-line retracting device for realizing clean production
RU2005130634A (en) METHOD FOR ELECTROCHEMICAL DISTRIBUTION OF COPPER IN A CHLORIDE SOLUTION
JPS58130292A (en) Recovering device of dissolved metal in solution
JPH01135584A (en) Electrolytic ionic water generator
JPS57181385A (en) Production of quaternary ammonium hydroxide by electrolysis
US20240200217A1 (en) Electrochemical cell and process for producing metal and a co-product from metal oxide and an aqueous halide salt