JPS59231359A - Light and heat collecting device for sun light - Google Patents

Light and heat collecting device for sun light

Info

Publication number
JPS59231359A
JPS59231359A JP58106457A JP10645783A JPS59231359A JP S59231359 A JPS59231359 A JP S59231359A JP 58106457 A JP58106457 A JP 58106457A JP 10645783 A JP10645783 A JP 10645783A JP S59231359 A JPS59231359 A JP S59231359A
Authority
JP
Japan
Prior art keywords
light
heat
optical fibers
heat collector
solar light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58106457A
Other languages
Japanese (ja)
Other versions
JPS6335905B2 (en
Inventor
Nagayasu Ikeda
池田 長康
Shunichi Sasaki
俊一 佐々木
Takeshi Sakamoto
坂元 健
Takashi Horigome
堀米 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINENERUGII SOGO KAIHATSU KIKO
Original Assignee
SHINENERUGII SOGO KAIHATSU KIKO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINENERUGII SOGO KAIHATSU KIKO filed Critical SHINENERUGII SOGO KAIHATSU KIKO
Priority to JP58106457A priority Critical patent/JPS59231359A/en
Publication of JPS59231359A publication Critical patent/JPS59231359A/en
Publication of JPS6335905B2 publication Critical patent/JPS6335905B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To provide the title device in which the light and heat collecting efficiency is improved, the use of molten salt is facilitated and generation of thermal strain is prevented by collecting solar light of high density led out by flexible optical fibers to a common heat collector by fixed mirrors disposed within a large number of channels provided radially around a heat collctors, and converting the solar light into thermal energies. CONSTITUTION:Flexible optical fibers 3 are fitted to light collectors 1 and 2 so that one end surface of each of the optical fibers 3 is positioned at a light collecting point of solar light L, and collected solar light is led out by the optical fibers 3. A large number of channels 6 are formed below the ground surface radially centering around the heat collector 4, and are covered with a lid member 7. Perforated holes 7a are provided at suitable positions of the lid member 7. Other ends of the optical fibers are collectively inserted into the perforated holes 7a, and fixed mirrors 8 inclined at an angle of 45 deg. are disposed below the holes 7a. Thus, the light from each optical fiber 3 is reflected toward the heat collector 4. By this arrangement, sun tracking devices of respective light collectors do not reqire high accuracy and may be simple in construction.

Description

【発明の詳細な説明】 抜権分見 この発明は、太陽熱発電のように太陽の熱エネルギーを
利用するシステムにおいて、太陽光を効率良く集光して
大きな熱エネルギーを取り出すための太陽光集光集熱装
置に関する。
[Detailed description of the invention] This invention is a solar light concentrator for efficiently concentrating sunlight and extracting a large amount of thermal energy in a system that utilizes the sun's thermal energy such as solar thermal power generation. Regarding a heat collection device.

従米捉4 太陽の熱エネルギーを利用するシステム、特に密度の高
い熱エネルギーを必要とする太陽熱発電プラントにおけ
る集光集熱装置は、「集中方式」と「分散方式」とに大
別される。
4. Systems that utilize the sun's thermal energy, especially solar power generation plants that require high-density thermal energy, are broadly divided into ``concentrated systems'' and ``distributed systems.''

従来の集中方式は、タワー集光方式とも呼ばれ、広い平
らな敷地に多数のへりオスタット(平面鏡)を配置して
、そのへりオスグツト群の中央にタワーを設置し、その
頂部に設けた集熱器に各ヘリオスタットからの反射光を
集中させ、そこで太陽光を熱エネルギーに変換し、集熱
管内の媒体(水又は溶融塩等)を加熱して、それをパイ
プラインによって地上へ導いて、蓄熱器を介して蒸気を
タービン発電機に供給する方式である。
The conventional concentration method, also known as the tower concentrating method, involves arranging a large number of hemi-ostats (plane mirrors) on a large flat site, installing a tower in the center of the group of hemi-ostats, and installing a tower at the top of the tower to collect heat. The reflected light from each heliostat is concentrated in a vessel, which converts sunlight into thermal energy, heats the medium (water or molten salt, etc.) in the heat collection tube, and guides it to the ground via a pipeline. This method supplies steam to a turbine generator via a heat storage device.

しかしながら、このタワー集光方式では、広い面積から
1箇所に太陽光を集めるため、各ヘリオスタットに高精
度の追尾装置を必要とし、しかも各ヘリオスタットとタ
ワーとの位置関係が僅かずつ異なっているため、各追尾
装置にそれぞれ異なった動きをさせなければならず、追
尾機構及びその制御装置が複雑で高価になり、その保守
にも多大な労力と経費を要する。
However, this tower condensing method requires a high-precision tracking device for each heliostat in order to concentrate sunlight in one place from a wide area, and the positional relationship between each heliostat and the tower is slightly different. Therefore, each tracking device must be made to move differently, making the tracking mechanism and its control device complicated and expensive, and its maintenance requires a great deal of effort and expense.

しかも、全てのへりオスタットの鏡面に略垂直に太陽光
を入射させるようにはできないので、鏡の有効利用率が
あまり良くない。
Moreover, since it is not possible to make sunlight incident approximately perpendicularly to the mirror surfaces of all heliostats, the effective utilization rate of the mirrors is not very good.

また、タワーの頂部に集熱器や蒸気ドラム等の重量物を
地震や強風にも耐えるように支持しなければならないの
で、大型で頑丈なタワー構造を必要とし、建設コストが
高くなる。しかも、風等によりタワーが揺動すると追尾
が困難になるという問題もある。
Furthermore, heavy objects such as heat collectors and steam drums must be supported at the top of the tower to withstand earthquakes and strong winds, which requires a large and sturdy tower structure, which increases construction costs. Moreover, there is also the problem that tracking becomes difficult when the tower swings due to wind or the like.

さらに、集熱器を断熱して曇天時や夜間等の保温を計る
ことが困難であり、且つ高温の蒸気を長いパイプライン
で地上へ導く間に多量の熱損失を生じるため、太陽エネ
ルギーの利用効率が低くなってしまう問題がある。
Furthermore, it is difficult to insulate heat collectors to keep them warm on cloudy days or at night, and a large amount of heat is lost while leading high-temperature steam to the ground through long pipelines, making it difficult to use solar energy. There is a problem of low efficiency.

一方、分散方式は、広い敷地に多数の集光型集熱器を分
散して設置し、それぞれの集熱器で太陽光を熱エネルギ
ーに変換し、その熱を集熱媒体(油、湯又は蒸気等)に
よりパイプラインで中央に導く方式であり、集光装置と
してはパラボラ鏡やフレネルレンズ等が使用される。
On the other hand, in the distributed method, a large number of solar collectors are distributed over a large site, each collector converts sunlight into thermal energy, and the heat is transferred to a heat collecting medium (oil, hot water, or This method uses a pipeline to guide the light to the center using steam, etc., and a parabolic mirror, Fresnel lens, etc. is used as the condensing device.

この方式では、太陽の追尾精度は集中方式に比べて低く
てよく、しかも各集光装置を全て同じ姿勢で動かせばよ
いので、追尾装置が簡単で安価になるし、タワーを必要
としないので建設コストも安くて済む利点がある。
With this method, the tracking accuracy of the sun is lower than that of the concentrated method, and since all the concentrators need to be moved in the same position, the tracking device is simple and inexpensive, and there is no need for a tower. It has the advantage of being low cost.

しかしながら、集光倍率が10〜100倍程度と低いた
め、高温が得られにくい。
However, since the light collection magnification is as low as about 10 to 100 times, it is difficult to obtain a high temperature.

そこで、前記の集中方式と分散方式の特徴を取り入れた
曲面集光方式による太陽熱発電プラントが香川県仁尾町
に建設されている。
Therefore, a solar thermal power generation plant using a curved surface concentrating method that incorporates the characteristics of the above-mentioned concentrated method and distributed method is being constructed in Nio Town, Kagawa Prefecture.

この方式では、多数の平面反射鏡を複数のユニットにま
とめて分散設置し、各ユニット毎に焦点位置に集熱管を
設けた曲面鏡を対向配置して、各平面鏡で太陽光を各ユ
ニット毎の曲面鏡へ向けて反射させ、その曲面鏡による
反射光を集熱管に集光させる。そこで太陽光を熱エネル
ギーに変換し。
In this method, a large number of flat reflecting mirrors are distributed and installed in multiple units, and each unit has a curved mirror with a heat collecting tube at its focal point, which is placed facing each other. The light is reflected toward a curved mirror, and the reflected light from the curved mirror is focused on a heat collection tube. There, sunlight is converted into thermal energy.

高温高圧の蒸気を発生させる。このような各ユニットの
集熱管をパイプラインによって連結して、発生させた蒸
気を溶融塩蓄熱器を介してタービン発電機へ供給する。
Generates high-temperature, high-pressure steam. The heat collection pipes of each unit are connected by a pipeline, and the generated steam is supplied to the turbine generator via the molten salt heat storage device.

この方式によれば、タワー集光方式と同程度の高温高圧
の蒸気を得ることができるので、発電能力も同程度にな
り、しかも、タワーを必要としないので建設コストがそ
れだけ安くはなるが、各平面鏡の追尾は、タワー集光方
式と同様に高精度を要する。
According to this method, it is possible to obtain steam at the same high temperature and pressure as the tower condensing method, so the power generation capacity is also about the same, and since no tower is required, the construction cost is lower. Tracking of each plane mirror requires high precision, similar to the tower condensing method.

また、この方式によっても、集熱器における保温が困難
なこと及びパイプラインにおける熱損失の問題は解決さ
れない。
Furthermore, this method does not solve the problems of difficulty in keeping warm in the heat collector and heat loss in the pipeline.

特に、集熱媒体としてNaNO3、KNO3等の溶融塩
を使用すると熱エネルギーへの変換効率が良くなるが、
温度が200℃以下に低下すると凝固してしまうため、
上記した従来の各方式では、夜間等においても集熱器(
集熱管)及びパイプラインを常に200℃以上に保温す
ることは困難であるため使用できなかった。
In particular, if a molten salt such as NaNO3 or KNO3 is used as a heat collecting medium, the conversion efficiency into thermal energy will be improved;
If the temperature drops below 200℃, it will solidify, so
In each of the conventional methods described above, the heat collector (
It was difficult to keep heat collecting pipes and pipelines at 200°C or higher at all times, so they could not be used.

さらに、従来の集中方式や曲面集光方式では。Furthermore, in the conventional focusing method and curved surface focusing method.

集熱器又は集熱管の全面に均等に太陽光を集光するのは
困難であり、集光むらにより表面の各部に大きな温度差
が生じ、熱歪により破損することがあって耐久性の点で
も問題があった。
It is difficult to concentrate sunlight evenly over the entire surface of a heat collector or heat collection tube, and uneven light concentration causes large temperature differences on different parts of the surface, which can lead to damage due to thermal distortion, which reduces durability. But there was a problem.

且−煎 この発明は、上述した従来の各方式による集光集熱装置
における各種の問題を解決して、集光集熱効率が良く熱
エネルギー輸送中の熱損失を極めて少なくでき、溶融塩
の使用も容易であり、熱歪の発生も防止でき、しかも建
設コストが比較的安くて済む太陽光集光集熱装置を提供
することを目的とする。
This invention solves various problems in the conventional condensing and heat concentrating devices described above, has high condensing and heat concentrating efficiency, extremely reduces heat loss during thermal energy transport, and uses molten salt. It is an object of the present invention to provide a solar light condensing and heat concentrating device that is easy to install, can prevent the occurrence of thermal distortion, and can be constructed at relatively low cost.

通−氏 そこで、この発明による太陽光集光集熱装置は、前述し
た従来の分散方式による集光型集熱器における集光装置
と同様なそれぞれ太陽を追尾する追尾装置を備えた可動
の反射鏡又はレンズによる多数の集光器によって太陽光
を集光し、それを可撓性光ファイバによって光のまま導
出し、各集光器から導出した高密度の太陽光を、集熱器
を中心として放射状に設けた多数のチャンネル内に配置
した固定ミラーによってそれぞれ共通の集熱器に向けて
集め、そこで熱エネルギーに変換するようにしたもので
ある。
Mr. Tsuji Therefore, the solar light concentrating heat collecting device according to the present invention is a movable reflector equipped with a tracking device for tracking the sun, similar to the light concentrating device in the conventional distributed type solar heat collector described above. Sunlight is concentrated by multiple concentrators made of mirrors or lenses, and then guided as light through flexible optical fibers. Fixed mirrors arranged in a number of radial channels collect the heat toward a common collector, where it is converted into thermal energy.

ヌー施二四 以下、添付図面を参照してこの発明の詳細な説明する。Nu Shi 24 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図において、1はパラボラ鏡11とその焦点位置の
手前に配置した平面鏡12を用いた集光器、2はフレネ
ルレンズ21を用いた集光器であり、それぞれ支持枠1
”5.23及び追尾装置14゜24を介して地上に設置
され、パラボラ鏡11又はフレネルレンズ21の光軸(
1点鎖線で示す)が略太陽に向くように追尾するが、そ
の追尾精度はそれ程高精度でなくてよい。
In FIG. 1, 1 is a condenser using a parabolic mirror 11 and a plane mirror 12 placed in front of its focal point, and 2 is a condenser using a Fresnel lens 21.
5.23 and the tracking device 14. The optical axis of the parabolic mirror 11 or Fresnel lens 21 (
(indicated by a dashed-dotted line) is tracked so that it points approximately toward the sun, but the tracking accuracy does not need to be that high.

この集光器1及び2は、それぞれ太陽光線りの集光点に
一端面が位置するように可撓性光ファイバ乙を取付けて
あり、集光した太陽光をこの先ファイバ3によって導出
する。
Each of the light concentrators 1 and 2 has a flexible optical fiber (B) attached so that one end face thereof is located at the condensing point of sunlight, and the collected sunlight is led out through the fiber 3.

このような集光器1及び2(いずれか一方のみでもよい
)を第2図に示すように複数個(図示の例では7個)ず
つブロックにして多数配設し、その全体の中央部に集熱
器4を断熱壁5で覆って地下又は半地下状態で設置する
As shown in Fig. 2, a large number of such condensers 1 and 2 (only one of them may be used) are arranged in blocks (seven in the illustrated example), and a large number of condensers 1 and 2 are arranged in the central part of the whole. A heat collector 4 is covered with a heat insulating wall 5 and installed underground or semi-underground.

そして、この集熱器4を中心として放射状に多数のチャ
ンネル6を地表面(第1図にSで示す)下に形成し、蓋
体7で覆っている。
A large number of channels 6 are formed radially below the earth's surface (indicated by S in FIG. 1) around this heat collector 4, and are covered with a lid 7.

この各チャンネル6の蓋体7の適所に透孔7aを設け、
1つの透孔7aに1つのブロックを構成する複数の集光
器1又は2に一端部を接続した光ファイバ3の他端部を
まとめて挿着し、その直下のチャンネル6内に45°の
傾斜で固定のミラー8を配設し、各光ファイバ乙の端面
から略垂方向に高密度の光を放射させ、それをこの固定
ミラー8で略水平に集熱器4に向けて反射させる。
A through hole 7a is provided at an appropriate position on the lid 7 of each channel 6,
The other ends of the optical fibers 3, one end of which is connected to a plurality of concentrators 1 or 2 constituting one block, are inserted into one through hole 7a, and a 45° angle A tilted and fixed mirror 8 is disposed to radiate high-density light substantially vertically from the end face of each optical fiber B, and the fixed mirror 8 reflects it substantially horizontally toward the heat collector 4.

したがって、各チャンネル6を通して集熱器4の外周に
略均等に密度の高い太陽光を集めることができ、それを
熱エネルギーに変換させて配管9aから集熱器4に導入
した集熱媒体(水又は溶融塩)Wを使用し高温高圧の蒸
気■を発生させ、短かい配管9bによって第2図に示す
タービン発電機10に供給して発電する。
Therefore, it is possible to collect high-density sunlight almost uniformly around the outer circumference of the heat collector 4 through each channel 6, convert it into thermal energy, and introduce the heat collecting medium (water (or molten salt) W is used to generate high-temperature, high-pressure steam (2), which is supplied to the turbine generator 10 shown in FIG. 2 through a short pipe 9b to generate electricity.

この場合、高温高圧の蒸気を蓄熱器を介してタービン発
電機に供給するようにしてもよいが、集熱器4自体が地
下に設置され、断熱壁5によって覆われているので保温
が良く、さらに集熱器4の内部に蓄熱材を入れることも
できるので、蓄熱器の役目を兼ねることができる。
In this case, high-temperature, high-pressure steam may be supplied to the turbine generator via a heat storage device, but since the heat collector 4 itself is installed underground and covered by a heat insulating wall 5, heat retention is good. Furthermore, since a heat storage material can be placed inside the heat collector 4, it can also serve as a heat storage.

なお第1図に示す例では、チャンネル6の深さを2段に
して、2つのブロックの集光器群によって集光された太
陽光を一部共通のチャンネルを通して、集熱器の上下方
向に異なる位置を照射するようにしているが、これを3
段以上にしてもよいし、1段のみにして、全て集熱器の
円周方向の異なる位置を照射するようにしてもよい。
In the example shown in Figure 1, the depth of the channel 6 is set to two levels, and the sunlight collected by the two blocks of collectors passes through a part of the common channel and is directed upward and downward to the collectors. I am trying to irradiate different positions, but this is done in 3 different locations.
There may be more than one stage, or there may be only one stage, and all different positions in the circumferential direction of the heat collector may be irradiated.

また、各チャンネル6は、地表から溝を堀っただけのよ
うに図示しであるが、セメント等で周壁を固ためたり、
U字溝ブロックや金属又は合成樹脂製の管材等を埋設し
て形成するとよい。
In addition, each channel 6 is shown as just a groove dug from the ground surface, but the surrounding wall may be hardened with cement etc.
It may be formed by embedding a U-shaped groove block or a pipe material made of metal or synthetic resin.

集熱器4としては、用途に応じて、細いU字状のパイプ
を多数篭形に配列したものや、ボイラ型のものなど適宜
なものを使用できる。
As the heat collector 4, an appropriate one such as one in which many thin U-shaped pipes are arranged in a basket shape or a boiler type one can be used depending on the purpose.

さらにまた、光ファイバの使用長をさらに短かくするた
めに、追尾装置14.24による集光器1.2の回動を
許容するのに必要な長さだけ光ファイバ3を使用し、そ
の先は地上にサブダクトとサブミラーを設けて、光ファ
イバ乙によって導出した太陽光をメインダクト6内のミ
ラー8に向けて照射させるようにすることもできる。
Furthermore, in order to further shorten the length of the optical fiber used, the optical fiber 3 is used for the length necessary to allow rotation of the condenser 1.2 by the tracking device 14.24, and then It is also possible to provide a subduct and a submirror on the ground so that the sunlight led out by the optical fiber B is directed toward the mirror 8 in the main duct 6.

肱−策 以上説明したようなこの発明による太陽光集光集熱装置
は、従来のタワー集光方式や曲面集光方式の装置に比し
て次のような多くの利点がある。
The solar light condensing and heat concentrating device according to the present invention as described above has many advantages over conventional tower concentrating type or curved surface concentrating type devices, as follows.

(1)各集光器の太陽追尾装置が、従来の分散型と同様
にあまり高精度を要しないので簡単で安価なもので済む
(1) The solar tracking device of each concentrator does not require very high precision like the conventional distributed type, so it can be simple and inexpensive.

(2)各集光器への入射光線が反射鏡又はレンズの光軸
に略平行になるように追尾すれば、鏡又はレンズの有効
利用率がよい。
(2) If the incident light beam to each condenser is tracked so as to be substantially parallel to the optical axis of the reflecting mirror or lens, the effective utilization rate of the mirror or lens is good.

(3)光ファイバによる光エネルギーの伝達損失は極め
て小さいが、その光ファイバの使用長も短かくて済み、
大部分はチャンネルによって確保される空間光路内を通
して直接集熱器に光エネルギーを伝達し、且つ集熱器は
1ケ所で地上又は地下に設置できるので、タービン発電
機等の熱エネルギー利用装置までの配管を極めて短かく
でき、エネルギー損失を大幅に減少させることができる
(3) The transmission loss of optical energy through optical fibers is extremely small, but the length of the optical fibers used can be shortened.
Most of the light energy is transmitted directly to the heat collector through the spatial light path secured by the channel, and the heat collector can be installed in one place above ground or underground, so it can be easily connected to thermal energy utilization devices such as turbine generators. Piping can be made extremely short and energy loss can be significantly reduced.

(4)従来のタワー集光方式と同程度の集光倍率を得る
ことができ、しかもタワーを必要としないので建設コス
トを大幅に低減することができる。
(4) It is possible to obtain a light condensing magnification comparable to that of the conventional tower condensing method, and since no tower is required, construction costs can be significantly reduced.

(5)集熱器を断熱し、さらには蓄熱機能を持たせるこ
とにより高温を維持することが容易であり、また集熱器
表面への入力光量の均等化をR」ることもできるので、
集熱器が熱歪により破損することがなくなる。
(5) It is easy to maintain a high temperature by insulating the heat collector and adding a heat storage function, and it is also possible to equalize the amount of light input to the heat collector surface.
The heat collector will not be damaged due to thermal distortion.

(6)上記(5)に加えて、集熱器からの出力配管も極
めて短かくて済むので、夜間等においては集熱器と共に
電熱等によって保温することも容易であるから、集熱媒
体として溶融塩を使用しても凝固する恐れをなくすこと
ができる。
(6) In addition to (5) above, since the output piping from the heat collector can be extremely short, it is easy to keep warm together with the heat collector by electric heating etc. at night, so it can be used as a heat collecting medium. The use of molten salt also eliminates the risk of solidification.

(7)チャンネルを地表面丁番こ形成すれば、チャンネ
ル内の温度変化を少なくすると共に、風やもや等の影響
を防ぐことが容易になり、チャンネル内での光エネルギ
ーの伝達損失をより小さくできる。
(7) If the channel is hinged on the ground surface, it will be possible to reduce the temperature change inside the channel, and it will be easier to prevent the effects of wind, mist, etc., and the transmission loss of light energy within the channel will be further reduced. Can be made smaller.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す縦断面構成図、第2
図は同じくその模式的平面構成図である。 1.2・・・集光器   3・・・可撓性光ファイバ4
・・・集熱器     5・・・断熱壁6・・・チャン
ネル   7・・・蓋体8・・・固定ミラー   9a
、’3b・・・配管10・・・タービン発電機
FIG. 1 is a vertical cross-sectional configuration diagram showing one embodiment of the present invention, and FIG.
The figure is also a schematic plan configuration diagram thereof. 1.2...Concentrator 3...Flexible optical fiber 4
... Heat collector 5 ... Heat insulation wall 6 ... Channel 7 ... Lid body 8 ... Fixed mirror 9a
,'3b...Piping 10...Turbine generator

Claims (1)

【特許請求の範囲】 1 それぞれ太陽を追尾する追尾装置を備えた可動の反
射鏡又はレンズによる多数の集光器と、その各集光器に
よって集光された太陽光をそれぞれ導出する可撓性光フ
ァイバと、該光ファイバによって導出された太陽光をそ
れぞれ共通の集熱器に向けて反射させる固定ミラーと、
該各固定ミラーと前記集熱器との間の光路を確保するた
めに前記集熱器を中心として放射状に設けた多数のチャ
ンネルとからなる太陽光集光集熱装置。 2 上記各チャンネルが、地表面下に設けられている特
許請求の範囲第1項記載の太陽光集光集熱装置。
[Claims] 1. A large number of concentrators made up of movable reflecting mirrors or lenses, each equipped with a tracking device that tracks the sun, and flexibility to derive the sunlight collected by each concentrator, respectively. an optical fiber, and a fixed mirror that reflects sunlight guided by the optical fiber toward a common collector;
A solar light collecting and heat collecting device comprising a large number of channels provided radially around the heat collector to ensure an optical path between each of the fixed mirrors and the heat collector. 2. The solar light condensing and heat collecting device according to claim 1, wherein each of the channels is provided below the ground surface.
JP58106457A 1983-06-14 1983-06-14 Light and heat collecting device for sun light Granted JPS59231359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58106457A JPS59231359A (en) 1983-06-14 1983-06-14 Light and heat collecting device for sun light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58106457A JPS59231359A (en) 1983-06-14 1983-06-14 Light and heat collecting device for sun light

Publications (2)

Publication Number Publication Date
JPS59231359A true JPS59231359A (en) 1984-12-26
JPS6335905B2 JPS6335905B2 (en) 1988-07-18

Family

ID=14434115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58106457A Granted JPS59231359A (en) 1983-06-14 1983-06-14 Light and heat collecting device for sun light

Country Status (1)

Country Link
JP (1) JPS59231359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216906U (en) * 1985-07-15 1987-01-31
JPH02208448A (en) * 1989-02-06 1990-08-20 Asahi Chem Ind Co Ltd Sun light converging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216906U (en) * 1985-07-15 1987-01-31
JPH02208448A (en) * 1989-02-06 1990-08-20 Asahi Chem Ind Co Ltd Sun light converging device

Also Published As

Publication number Publication date
JPS6335905B2 (en) 1988-07-18

Similar Documents

Publication Publication Date Title
Buck et al. Solar-hybrid gas turbine-based power tower systems (REFOS)
US6899097B1 (en) Solar blackbody waveguide for efficient and effective conversion of solar flux to heat energy
El Gharbi et al. A comparative study between parabolic trough collector and linear Fresnel reflector technologies
US5047654A (en) Solar powered electricity mine system
US20070186921A1 (en) Cylindrical solar energy collector
US8863516B2 (en) System for collecting concentrated solar radiation
TWI595198B (en) Fiber-based transmission system for solar energy system and method of providing and using the same
Poullikkas et al. Optimum sizing of steam turbines for concentrated solar power plants
KR100935921B1 (en) Sunlight collection solar concentrator
CN102252441A (en) Heat collecting system for high-order focusing integrated light
Krothapalli et al. Concentrated solar thermal power
CN102269139A (en) Solar high-temperature thermoelectricity large-sized practical energy source secondary combination focusing and energy transfer transmission system
CN1963591A (en) Method and apparatus for high-energy light gathering
US20140299121A1 (en) Radiation collection utilizing total internal reflection and other techniques for the purpose of dispatchable electricity generation and other uses
US4943125A (en) Solar collector
KR20180023430A (en) Photovolataic system
JPS59231359A (en) Light and heat collecting device for sun light
JPS59709B2 (en) A device that concentrates solar energy to generate electricity
JPS5997460A (en) Solar light collector
CN209800175U (en) Solar photo-thermal power generation system
CN202581855U (en) Full-circumference radiation-acceptance condenser utilizing nest conical annular surface
JPS5997461A (en) Solar light collector
CN202472105U (en) Light field heat collection system for tower type solar energy thermal power plant
Khalid et al. Concentrated solar power technologies and its prospect in Pakistan
Jiang et al. Investigation of solar thermal power technology