JPS59230035A - Plasma treatment process - Google Patents

Plasma treatment process

Info

Publication number
JPS59230035A
JPS59230035A JP58104906A JP10490683A JPS59230035A JP S59230035 A JPS59230035 A JP S59230035A JP 58104906 A JP58104906 A JP 58104906A JP 10490683 A JP10490683 A JP 10490683A JP S59230035 A JPS59230035 A JP S59230035A
Authority
JP
Japan
Prior art keywords
plasma
processing
microwave
pressure
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58104906A
Other languages
Japanese (ja)
Other versions
JPH0254375B2 (en
Inventor
Kenji Fukuda
賢治 福田
Takaoki Kaneko
金子 隆興
Yoshinobu Takahashi
芳信 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toyota Motor Corp
Original Assignee
Toshiba Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toyota Motor Corp filed Critical Toshiba Corp
Priority to JP58104906A priority Critical patent/JPS59230035A/en
Priority to AU29217/84A priority patent/AU544534B2/en
Priority to US06/619,174 priority patent/US4576692A/en
Priority to DE8484106753T priority patent/DE3463001D1/en
Priority to EP84106753A priority patent/EP0129199B1/en
Publication of JPS59230035A publication Critical patent/JPS59230035A/en
Publication of JPH0254375B2 publication Critical patent/JPH0254375B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To enable the automatic control of the operation of a plasma treatment apparatus and the quality control of the treated product such as molded PP article, etc., by continuously measuring or inspecting the pressure in the treating chamber and the state of the generated plasma, and using a timer. CONSTITUTION:The object to be treated is placed in the treating chamber 12, and the chamber is evacuated to the pressure P1 measured by a vacuum gauge, when the oxygen gas is introduced into the chamber 1. When the pressure in the treating chamber 12 detected by the vacuum gauge reaches the treatment pressure P2, microwave is generated by the microwave oscillator 2 and transmitted to the generation furnaces 6-1-3. At the same time, the Tesla coil for assisting the discharge is energized by the control of a timer, and a high-voltage electric discharge is generated from the tip of a high-voltage cable. The oxygen gas flowing through the plasma generation tubes 7-1-3 is ionized by the high-voltage discharge to generate electrons. The producd electrons are made to a plasma state in the region having strong electric field caused by the microwave, and is diffused to the object in the form of shower by the shower tubes 10-1-9 in the chamber 1.

Description

【発明の詳細な説明】 技術分野 氷見8Aμ、プラズマ処理技術に門し、さらに詳しく述
べると、例えばポリプロピレン、ポリエチレン等の合成
樹脂からなる製品、すなわち、被処理物の表面を改質す
るためにプラズマ処理ifi施するに際して、プラズマ
処理設備の運転を自動制御し、よって、品質の管理を計
ろうとするものである〇 従来技術 近年、自動車部品の材料が@量でかつ意匠性に優れた合
成樹脂材料に移行しつつあることは周知の通りである。
Detailed Description of the Invention Technical Field Himi 8 Aμ, plasma processing technology, and more specifically, plasma treatment is used to modify the surface of products made of synthetic resins such as polypropylene, polyethylene, etc. When applying the treatment ifi, the operation of the plasma treatment equipment is automatically controlled, thereby controlling the quality.〇Prior art In recent years, the materials used for automobile parts are synthetic resin materials with excellent quantity and design. As is well known, there is a shift towards

ところで、比較的安価で容易に入手可能なポリプロピレ
ン、ポリエチレン等の合成樹脂材料は、それらを例えば
車両外板に使用した場合、材料表面とその上に施される
塗膜との密着性が悪いので、この技術分野において不所
望な層間剥離奮発生1−ることか屡々である9かかる問
題(イ)−力〒消する1手段として、樹脂材料の直面を
改質して塗膜の密着性を良好ならしめる技術、例えば、
塗装前に(ず・j脂材刺の表面をグロー放電、コロナ放
電、ラジオ波放電、マイクロ波放電等に曝してその材料
の表面全酸化(極性基の導入)する力・もしくはエツチ
ング(いわゆるアンカー効果の向上)すゐ技術が知られ
ている。このような技術はプラズマ処理技術と呼ばれて
いる。
By the way, when synthetic resin materials such as polypropylene and polyethylene, which are relatively cheap and easily available, are used for the outer panels of vehicles, for example, the adhesion between the material surface and the coating applied thereon is poor. In this technical field, undesirable delamination occurs frequently (9).As a means of eliminating such problems (a), it is possible to improve the adhesion of the coating film by modifying the surface of the resin material. Techniques that make it good, for example,
Before painting, the surface of the resin material is exposed to glow discharge, corona discharge, radio wave discharge, microwave discharge, etc. to completely oxidize the surface of the material (introduction of polar groups) or etching (so-called anchoring). (Improvement of effectiveness) Sui technology is known.Such technology is called plasma processing technology.

プラズマ処理を行なう場合、その処理効果を向上させる
ために反応室ケ減圧して真空状態にすることが必要であ
り、この状態を維持するだめに、現在バッチ処理が主流
になっている。一方、この処理技術全大物でかつ複雑形
状の樹脂材料部品全同時に多数個表面処理しなければな
らない、例えば自動車部品の製造というfi’J!’J
E工程に導入する場合、短時間で真空状態にしかつ1回
の処理でより多数個の被処理物をプラズマ処理すること
が必要である。この必要性を考慮して、最近、プラズマ
発生部分と反応室(すなわち、処理容器)とを分離した
形式のプラズマ処理設備が多く用いられている。このよ
うな形式のプラズマ処理設備では、処理容器外のプラズ
マ発生部分(プラズマ発生炉と、それに直交するプラズ
マ発生管の組み合わせ)においてプラズマを発生させ、
このプラズマを処理容器内へ輸送し、そして容器内に装
備したシャワー管でプラズマを照射拡散する。
When performing plasma processing, it is necessary to reduce the pressure in the reaction chamber to create a vacuum state in order to improve the processing effect, and in order to maintain this state, batch processing is currently the mainstream. On the other hand, this processing technology is very important, and it is necessary to simultaneously perform surface treatment on a large number of complex-shaped resin material parts, such as in the production of automobile parts. 'J
When introducing into the E process, it is necessary to create a vacuum state in a short time and to plasma-process a larger number of objects in one treatment. In view of this need, recently, many plasma processing equipment have been used in which a plasma generation portion and a reaction chamber (ie, a processing container) are separated. In this type of plasma processing equipment, plasma is generated in a plasma generation part (a combination of a plasma generation furnace and a plasma generation tube perpendicular to it) outside the processing container.
This plasma is transported into a processing container, and the plasma is irradiated and diffused using a shower pipe installed inside the container.

ところで、プラズマ処理効果を評価する手段としては、
周知の通り、Xa先光電子分光法ESCA)、フーリエ
変換赤外分光法(FT−IR)等の表面分析法、あるい
は、最も簡便な方法として、被処理物表面の水ヌレ性を
定量評価することからなる接触角測定法がある。これら
の方法は、いずれも、プラズマ処理により被処理物の最
上層I F、:Q 10〜\ 数100Aの膜厚)に生成した例えば−OIt 、 /
C=O、−NHC=O等の親水性基の量ff:評価する
もので、極めて有効な処理効果評価手段である。
By the way, as a means of evaluating the plasma treatment effect,
As is well known, surface analysis methods such as Xa-based photoelectron spectroscopy (ESCA), Fourier transform infrared spectroscopy (FT-IR), or, as the simplest method, quantitative evaluation of water wetness on the surface of the object to be treated can be used. There is a contact angle measurement method consisting of: In both of these methods, for example, -OIt, /
Amount ff of hydrophilic groups such as C═O and -NHC═O: This is an extremely effective means of evaluating treatment effects.

このような評価手段を使用してプラズマ処理設備の運転
の自動制御ができかつひいてはプラズマ処理の品質管理
ができることが望ましいというものの、実際には不可能
である。ンよぜなら、プラズマ処理の品質を:を例えば
処理容器Vコの減圧度、処理ガス量、放電出力等の処理
条件に依符するにも拘らず、」1記した評価手段はプラ
ズマ処理過程の製品を評価するだけのものであり、また
、評価に時間を要することから、連続生産ラインの設備
運転管理技術、例えばプラズマの発生状態と、その時の
品質を、その都度管理して、不都合を最小限に抑えると
いう点で、適していない〃・らである。
Although it would be desirable to be able to use such evaluation means to automatically control the operation of plasma processing equipment and, in turn, control the quality of plasma processing, this is not possible in practice. However, the quality of plasma processing depends on processing conditions such as the degree of pressure reduction in the processing vessel, the amount of processing gas, and the discharge output. Since the evaluation only evaluates the products in question, and the evaluation takes time, it is necessary to use equipment operation management technology for continuous production lines, such as controlling the state of plasma generation and the quality at that time, to avoid any inconvenience. It is not suitable in terms of keeping the amount to a minimum.

発明の目的 本発明の目的は、プラズマ処理を実施するに際して、プ
ラズマ発生状態を足景的にかつ連続的に評価して、プラ
ズマ処理設備の運転を連続的に管理・制御1−るととも
に、設備運転(処i!lり中の処理品質も連続的に管理
でき、よって・品質の不都合を最小限に抑えることので
きるような設備運転の管理・制御技術を・提供すること
にある。
OBJECTS OF THE INVENTION It is an object of the present invention to continuously and continuously evaluate the state of plasma generation when performing plasma processing, to continuously manage and control the operation of plasma processing equipment, and to The purpose of the present invention is to provide a technology for managing and controlling equipment operation that can continuously manage the quality of processing during operation, thereby minimizing quality problems.

発明の構成 上記した目的は、本発明によれば、ラジオ波、マイクロ
波等の高周波金利用したプラズマ処理を実施するに当り
、処理容器内の圧力又はプラズマ発生状態を連続的に計
測検知することとタイマー使用との組み合わせにより、
プラズマ処理設備の運転全自動制御することによ−て達
成することができる。
According to the present invention, the above-mentioned object is to continuously measure and detect the pressure inside the processing container or the state of plasma generation when performing plasma processing using high frequency metal such as radio waves and microwaves. In combination with the use of a timer,
This can be achieved by fully automatic control of the operation of plasma processing equipment.

本発明によれば、処理容器内の圧力を真空計で検知する
ことにより、プラズマ用処理ガスの導入、そしてプラズ
マ処理の開始を制御する。
According to the present invention, the introduction of plasma processing gas and the start of plasma processing are controlled by detecting the pressure inside the processing container with a vacuum gauge.

本発明によれば、プラズマ処理過程で、プラズマ発生状
態をプラズマ発光景又はプラズマ放電エネルギー値とし
て連続的に計測検知し、その計測値が所定の領域を外れ
た場合にはプラズマ処理の再開を繰り返すかもしくは設
備の運転を停止する。
According to the present invention, during the plasma processing process, the state of plasma generation is continuously measured and detected as a plasma emission scene or plasma discharge energy value, and if the measured value is out of a predetermined area, the plasma processing is repeated. or stop operation of the equipment.

さらに、本発明によれば、上記とけ異なってプラズマ発
生状態に支障がない場合、プラズマ処理の開始とともに
作動するタイマーの使用により、プラズマ処理時間を制
御し、そして処理を完了する。
Further, according to the present invention, if there is no problem in the plasma generation state other than the above, the plasma processing time is controlled by using a timer that operates at the start of the plasma processing, and the processing is completed.

実施例 次に、マイクロ波放電によるプラズマ処理全例にとって
、添付の図面ひ参照しながら本発明を詳説する。
EXAMPLES Next, the present invention will be described in detail with reference to the accompanying drawings for a complete example of plasma treatment by microwave discharge.

第3A図及び第】11図1は、それぞれ、マイクロ波放
電プラズマ処理装置の概要(1−示す平面図及び側面図
である0図中のlf′J、処理容器であり、その内部、
1゛なわち、処理室i、j12で示される。
Figure 3A and Figure 11 respectively show an overview of the microwave discharge plasma processing apparatus (1-f'J in Figure 0, which is a plan view and a side view, shows the processing vessel, its interior,
1, that is, processing chambers i and j12.

処理室12へのプラズマのij−人は次のようにして行
なう:先ず、マイクロ波発振機2でマイクロ波?発生さ
せ、このマイクロ波をマイクロ波反射電波を系外へ分熱
するだめのアイソレータ3に送り、さらに、人反別電力
を測定−1−るためのパワーモニターイフ(内部4、反
射電力を最小にする1ヒめのスリー、スタブチューナー
5を経で、えダ波管16−1〜3VCよ−てプラズマ発
生炉G−1−3に伝送する。プラズマ発生炉[コでは、
プランジヤーの位置2予め調整することによりマイクロ
波の電界強度が最も強くなるようにコントロールするこ
とができる。
Plasma is supplied to the processing chamber 12 as follows: First, the microwave oscillator 2 generates a microwave. This microwave is sent to the isolator 3 which heats the microwave reflected radio waves to the outside of the system. In the first three, it is transmitted to the plasma generation furnace G-1-3 via the stub tuner 5 and the Eda wave tubes 16-1 to 3VC.
By adjusting the position 2 of the plunger in advance, the electric field strength of the microwave can be controlled to be the strongest.

一方、プラズマ用処理ガス(ここでは酸素ガス)を圧縮
刺入したガスボンベ16−1,2Th用意し、そのバル
ブ14の開閉によって流量計15−1. 。
On the other hand, gas cylinders 16-1 and 2Th containing compressed plasma processing gas (oxygen gas in this case) are prepared, and the flowmeters 15-1 and 2Th are opened and closed by opening and closing the valves 14. .

2の指示にもとづく適切量の酸素ガスをガス供給用ナイ
ロン製ガスデユープ13−1〜3によってプラズマ発生
% 7−1〜3に供給する。プラズマ発生管は、図示さ
れる通り、発生炉6−1〜3と直焚する。処理ガスが内
部を通過するこの発生管は石莢管である。ここでは、管
と管などを接続する7ζめにテフロン(フルオロカーボ
ン柘(l旨f)商品a) 釆’、’Jのコネクタ、すな
わち、フロロコネクタを使用した。
An appropriate amount of oxygen gas based on the instructions in step 2 is supplied to plasma generation points 7-1 to 7-3 by gas supplying nylon gas duplexes 13-1 to 3. As shown in the figure, the plasma generating tube is directly fired with the generating furnaces 6-1 to 6-3. This generator tube through which the process gas passes is a capsule tube. Here, Teflon (fluorocarbon product a) button', 'J connectors, that is, fluoro connectors, were used for the 7ζ for connecting pipes, etc.

プラズマ発生管7−1〜3でプラズマを発生させ、この
プラズマをプラズマ輸送管8で分岐、軸送後、プラズマ
導入口9−1〜9葡経てプラズマ照射用ガラス製シャワ
ー管1O−1=9に送り、ここから被処理物(図示せず
)上に噴射する。ここで、処理室12は、プラズマ処理
中でも真空に保つため、処理室排気用真空ポンプ(図示
せず)に接続した排気口1i−i〜9から連続的に排気
されるようにできている。
Plasma is generated in the plasma generation tubes 7-1 to 7-3, and this plasma is branched in the plasma transport tube 8, and after being axially transported, it is passed through the plasma introduction ports 9-1 to 9-9, and is then transferred to the plasma irradiation glass shower tube 1O-1=9. from where it is injected onto the object to be treated (not shown). Here, the processing chamber 12 is continuously evacuated from exhaust ports 1i-i to 9 connected to a vacuum pump (not shown) for evacuating the processing chamber in order to maintain a vacuum state even during plasma processing.

本例の場合、図示しないけれども、数百后の高電圧な・
発することが可能に:テスラーコイルη:プラズマ発生
管7−1〜3上に配管し、その高電圧放電により処理ガ
スを予備励起することが好オしい。
In this example, although not shown, a high voltage of several hundred
It is preferable that the Tesler coil η be installed on the plasma generating tubes 7-1 to 7-3 and pre-excite the processing gas by its high voltage discharge.

なぜなら、こうすることによって、処理ガス導入系@:
損傷することなく、安定してプラズマ化ガスを処理容魯
内に導入することができるからである。
This is because by doing this, the processing gas introduction system @:
This is because the plasma-forming gas can be stably introduced into the processing chamber without being damaged.

次に、本発明方法の好ましい一例を第2図のプラズマ処
理装置自動運転フローチャートをあわせて参照しながら
説明する:処理室J−2に被処理物(図示せず)を載置
し、室内ケ真空排気寸ろ。この真空排気は、真空ポンプ
(図示せず)により、室内の圧力が所定の圧力P、  
K達するまで行なうつ真空計(図示せず)で圧力P1 
 の検知後、ガスバルブ14金開けてボンベ36−1.
2内の酸素ガスを処理容器1に尋人する。この酸素ガス
の導入に当って流量計15−1.2により所定流量とな
るように酸素ガスの流出をコントロールし、流量のコン
トロールされたガスをガスチューブ13−1〜3、発生
管7−1〜3を介して容器l内へ流し込む。
Next, a preferred example of the method of the present invention will be explained with reference to the automatic operation flowchart of the plasma processing apparatus shown in FIG. Vacuum exhaust size. This evacuation is performed by using a vacuum pump (not shown) to reduce the pressure in the room to a predetermined pressure P,
Pressure P1 with a vacuum gauge (not shown) until K is reached.
After detection, open the 14K gas valve and open the cylinder 36-1.
Oxygen gas in the container 2 is transferred to the processing container 1. When introducing this oxygen gas, the flow meter 15-1.2 controls the outflow of the oxygen gas to a predetermined flow rate, and the gas with the controlled flow rate is passed through the gas tubes 13-1 to 3 and the generation tube 7-1. -3 into container l.

酸素ガスの導入によって処理尾12(1)圧力が上昇す
る。室内の圧力が所定の減圧状rfv < −、t−な
わち、処理圧)P2 になったのをnび真空用で検知ν
ξ、マイクロ波発振機2によりマイクロ波を発振させ、
このマイクロ波をアイソレータ3、パワーそニター相出
部4、スリースタプチー−−す−5、渚、波管16−1
〜3を介して発生炉6−1〜3内へ伝送する。なお、発
生炉内では、プランジャーの位fi、調整によって、マ
イクロ波の電界強度が最も強くなるように予め調整して
おく。なお、こσフマイクロ波発振と同時に、放電補助
用テスラーコイル(図示せず)も、タイマー制御によっ
て約1秒間にわたって作動させ、高圧ケーブル先端から
約400〜500KVの高電圧で放電させる。この放電
によ、r11プラズマ発生管内を流れる酸素ガスが、そ
の程度こそマイクロ波放電による電(Qlf (プラズ
マ状態)よりは数段劣るというものの、電離され、そし
7て電子を生成する。この電離された酸素ガスは、輸送
距離が短かいために、その電離状態全失活することなし
にマイクロ波による強電界領域へ供給され、生成された
電子がトリガとなって瞬蒔のうちに高エネルギーを有す
るプラズマ化状態となるつ換言すると、電ぼtされた酸
素ガスはマイクロ波放電状態となり、マイクロ波反射電
力は最小になる、プラズマ1ヒされた酸素ガスは、次い
で、プラズマ翰送管ト】、゛プラズマ導入ロ9−1〜9
ヶ介して処理容器l内のシャワー管10−1〜9に送ら
れ、ここから被処理物へシャワー拡散される。
The pressure of the treatment tail 12(1) increases due to the introduction of oxygen gas. When the pressure in the room reaches a predetermined reduced pressure (rfv < -, t-, that is, processing pressure) P2, it is detected by the vacuum sensor ν.
ξ, the microwave is oscillated by the microwave oscillator 2,
This microwave is transferred to the isolator 3, the power sonicator phase output part 4, the three taps 5, Nagisa, and the wave tube 16-1.
-3 to the generating furnaces 6-1 to 6-3. Note that in the generating furnace, the electric field strength of the microwave is adjusted in advance by adjusting the position of the plunger so that it becomes the strongest. Incidentally, at the same time as the σf microwave oscillation, a discharge assisting Tesler coil (not shown) is also operated for about 1 second under timer control, and a high voltage of about 400 to 500 KV is discharged from the tip of the high voltage cable. Due to this discharge, the oxygen gas flowing inside the r11 plasma generation tube is ionized, and electrons are generated, although the degree of ionization is several orders of magnitude lower than that generated by microwave discharge (Qlf (plasma state)). Because the transport distance is short, the oxygen gas is supplied to the strong electric field region of the microwave without completely deactivating its ionized state, and the generated electrons act as a trigger to generate high energy in a blink of an eye. In other words, the electrified oxygen gas becomes a microwave discharge state, and the microwave reflected power becomes the minimum. ]、゛Plasma introduction 9-1~9
The water is sent to the shower pipes 10-1 to 10-9 in the processing container 1 through the filter, and is shower-diffused from there to the object to be processed.

本例では、マイクロ波の発振と同時に、その発振時間が
タイマC図示せず)Kより制御され4.。
In this example, simultaneously with the oscillation of the microwave, the oscillation time is controlled by a timer C (not shown).4. .

さらに、マイクロ波のグら振グ】島比と」、て発生せ【
−1められるプラズマぐ〕発生状態が、へれも寸だ図示
しないが、プラズマ監視装膜によυ連t;、:的に管理
される。こc/)監視装匠に、(す、プラズマ発生状態
に不都合が発生し7°ζ場合にはマイクロ波発振が終り
返される。そして、このマイクロ波発振が3回にわたっ
て僅り返されてもプラズマの発生が所定の状態に達しな
い時(すなわち、Noの時)、貴報が発せられるととも
に、プラズマ処理装置の運転が停止される。一方、プラ
ズマの発生が所定の状に!iで所定の時間(でわたって
保持された鴨合、マイクロ波発振が停止されると同時(
く、ガスバルブ14が閉状態になり、真空ポンプも停止
して処理が完了するっなお、こわ−らの制御系をタイム
チャートで示すと、第3図の通りである。
In addition, microwave fluctuations occur with Shimahi.
Although not shown in detail, the generated state of the plasma detected is controlled in a continuous manner by a plasma monitoring device. (c/) In the monitoring device, (if an inconvenience occurs in the plasma generation state and 7° When plasma generation does not reach a predetermined state (i.e., No), a notification is issued and the operation of the plasma processing equipment is stopped.On the other hand, when plasma generation does not reach a predetermined state! When the microwave oscillation is stopped and the microwave oscillation is stopped (
Then, the gas valve 14 is closed, the vacuum pump is also stopped, and the process is completed.The time chart of the control system is shown in FIG. 3.

μ上、プラズマ状態監視機構全プラズマ発光量を例にと
って説明し、てき1とけれども、木発IIl]茗・実施
する場合VCはその他の監視(9,17?、例えば入反
射電力測定法や処理容器中のイオン電流測定法等もまた
本発明の範1■を逸脱し7ない限りにおいて任意に71
I用し得るということが理解されるであろう。
In the above, the plasma condition monitoring mechanism will be explained by taking the total plasma luminescence amount as an example. Methods for measuring ion current in containers, etc. may also be optionally used as long as they do not deviate from scope 1 of the present invention.
It will be understood that it can be used for multiple purposes.

発明の効果 本発明によれば、先ず、ソラダマ処理設備グ、J自動運
転が可能にな2・。−fなわち、プラズマの発生状態を
連U1−的に、そして定r″的Cで測定が−ることがで
きるので、処理設備の自動運転曹御及びその時の品ガ管
理が可能になる。本発明によれば、し、たがって、プラ
ズマ処理時の品質の不都合を°最小限に抑えることがで
きる。
Effects of the Invention According to the present invention, firstly, automatic operation of the Soladama processing equipment becomes possible. In other words, since the state of plasma generation can be measured in a continuous manner and at a constant rate C, it becomes possible to control the automatic operation of the processing equipment and to manage the product at that time. According to the present invention, quality problems during plasma processing can therefore be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図及び第1B図は、それぞれ、マイクロ波放電プ
ラズマ処理装置の概要金示す平面図及び佃j面図、。 第2図は、プラズマ処理8置の自動運転のフローチャー
ド、そして 第3図は、プラズマ処理装置の自動運転の制御系のタイ
ムチャートである。 図中、lは処理容器、2はマイクロ波発振機、6−1〜
3はプラズマ発生炉、7−1〜3はプラズマ発生管、1
2は処理案、そして113−1.2は処理ガスボンベで
ある。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士 背 木    朗 弁理士 西 舘 和 之 弁理士 内 1)幸 勇 弁理士 山 口 昭 之 第1A図 第2図
FIG. 1A and FIG. 1B are a plan view and a side view, respectively, showing an outline of the microwave discharge plasma processing apparatus. FIG. 2 is a flowchart of automatic operation of eight plasma processing stations, and FIG. 3 is a time chart of a control system for automatic operation of the plasma processing apparatus. In the figure, l is a processing container, 2 is a microwave oscillator, and 6-1~
3 is a plasma generation furnace, 7-1 to 3 are plasma generation tubes, 1
2 is a processing plan, and 113-1.2 is a processing gas cylinder. Patent Applicant Toyota Motor Corporation Patent Application Agent Patent Attorney Akira Segi Patent Attorney Kazuyuki Nishidate 1) Yuki Yuki Patent Attorney Akira Yamaguchi Figure 1A Figure 2

Claims (1)

【特許請求の範囲】 1、被処理物をプラズマ処理する方法であって、処理容
器内の圧力又はプラズマ発生状態を連続的に計測検知す
ることとタイマー使用との組み合わせによりプラズマ処
理設備の運転を自動制御することを特徴とするプラズマ
処理方法。 2、処理容器内の圧力全真空計で検知してプラズマ用処
理ガスの導入及びプラズマ処理の開始を特徴する特許請
求の範囲第1項に記載の方法。 3、 プラズマ処理過程で、プラズマ発生状態をプラズ
マ発光量又はプラズマ放電エネルギー値として連続的に
計測検知し、その計測値が所定の領域を外れた場合r(
はプラズマ処理の再開を繰り返すかもしくは設備の運転
を特徴する特許請求の範囲第1項に記載の方法っ 4、 プラズマ発生状態に支障がない場合には、プラズ
マ処理の開始とともに作動するタイマーの使用により、
プラズマ処理時間全制御し、そして処理を特徴する特許
請求の範囲第1項に記載の方法。
[Claims] 1. A method for plasma processing an object to be processed, in which the operation of plasma processing equipment is controlled by continuously measuring and detecting the pressure inside the processing container or the state of plasma generation and using a timer. A plasma processing method characterized by automatic control. 2. The method according to claim 1, wherein the introduction of the plasma processing gas and the start of the plasma processing are performed by detecting the pressure with a total vacuum gauge in the processing container. 3. During the plasma processing process, the plasma generation state is continuously measured and detected as the amount of plasma light emission or the plasma discharge energy value, and if the measured value is out of a predetermined area, r(
4. The method according to claim 1, which is characterized by repeating the restart of the plasma treatment or operating the equipment. 4. If there is no problem with the plasma generation state, use of a timer that operates at the start of the plasma treatment. According to
2. A method as claimed in claim 1, characterized in that the plasma treatment time is fully controlled.
JP58104906A 1983-06-14 1983-06-14 Plasma treatment process Granted JPS59230035A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58104906A JPS59230035A (en) 1983-06-14 1983-06-14 Plasma treatment process
AU29217/84A AU544534B2 (en) 1983-06-14 1984-06-08 Plasma coating
US06/619,174 US4576692A (en) 1983-06-14 1984-06-11 Method for controlling the operation of a microwave-excited oxygen plasma surface treatment apparatus
DE8484106753T DE3463001D1 (en) 1983-06-14 1984-06-13 A method for controlling the operation of a microwave-excited oxygen plasma surface treatment apparatus
EP84106753A EP0129199B1 (en) 1983-06-14 1984-06-13 A method for controlling the operation of a microwave-excited oxygen plasma surface treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104906A JPS59230035A (en) 1983-06-14 1983-06-14 Plasma treatment process

Publications (2)

Publication Number Publication Date
JPS59230035A true JPS59230035A (en) 1984-12-24
JPH0254375B2 JPH0254375B2 (en) 1990-11-21

Family

ID=14393163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104906A Granted JPS59230035A (en) 1983-06-14 1983-06-14 Plasma treatment process

Country Status (1)

Country Link
JP (1) JPS59230035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160138A (en) * 1986-01-08 1987-07-16 Hitachi Ltd Discharge washing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160138A (en) * 1986-01-08 1987-07-16 Hitachi Ltd Discharge washing apparatus

Also Published As

Publication number Publication date
JPH0254375B2 (en) 1990-11-21

Similar Documents

Publication Publication Date Title
US4576692A (en) Method for controlling the operation of a microwave-excited oxygen plasma surface treatment apparatus
EP1509332B2 (en) Application of a coating forming material onto at least one substrate
JP4036247B2 (en) Method and apparatus for inner coating of hollow body
WO2003097245A2 (en) Atomisation of a precursor into an excitation medium for coating a remote substrate
Ichikawa et al. Actinometry measurement of dissociation degrees of nitrogen and oxygen in N2–O2 microwave discharge plasma
JP2000510910A (en) Method and apparatus for treating the inner surface of a container
US6564810B1 (en) Cleaning of semiconductor processing chambers
JPS59230035A (en) Plasma treatment process
JPS59230034A (en) Plasma treatment process
JPH0254373B2 (en)
JPS59226027A (en) Plasma treatment
JPS59189130A (en) Plasma treatment
JPH09169595A (en) Formation of thin film
EP0152511B1 (en) Apparatus and method for plasma treatment of resin material
CN105873346B (en) Hot air plasma treatment
JPS5986633A (en) Process and apparatus for plasma treatment
JP2001336063A (en) Method for producing metal-carbon fiber composite material
JPH033700B2 (en)
JPS608049A (en) Plasmic treatment
JP2003218035A (en) Method for discharge plasma treatment
Elfa et al. Comparative study between chemical and atmospheric pressure plasma jet cleaning on glass substrate
JPS59155440A (en) Apparatus for plasma treatment
RU2479167C1 (en) Apparatus for irradiating articles with stream of hydrogen atoms with thermal velocities
JPS608048A (en) Plasmic treatment
WO2022013087A1 (en) Method and device for the outer-wall and/or inner-wall coating of hollow bodies