JPS59229475A - Fuel channel box - Google Patents

Fuel channel box

Info

Publication number
JPS59229475A
JPS59229475A JP58102649A JP10264983A JPS59229475A JP S59229475 A JPS59229475 A JP S59229475A JP 58102649 A JP58102649 A JP 58102649A JP 10264983 A JP10264983 A JP 10264983A JP S59229475 A JPS59229475 A JP S59229475A
Authority
JP
Japan
Prior art keywords
channel box
fuel channel
fuel
longitudinal direction
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58102649A
Other languages
Japanese (ja)
Inventor
Yasuhiro Aizawa
相澤 泰博
Masana Sasaki
政名 佐々木
Hiromasa Hirakawa
平川 博将
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP58102649A priority Critical patent/JPS59229475A/en
Publication of JPS59229475A publication Critical patent/JPS59229475A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To reduce the bending deformation of a fuel channel box made of a Zr alloy plate under irradiated fast neutrons by specifying the f-value of the plate in the longitudinal direction calculated from the X-ray diffraction intensity of a crystal face of the Zr alloy. CONSTITUTION:A fuel channel box forming a fuel assembly for a boiling water reactor is made of a Zr alloy plate having 0.15-0.5, preferably 0.15-0.40 f-value in the longitudinal direction calculated from the X-ray diffraction intensity of the (0002) crystal face. The elongation of the Zr alloy due to growth under irradiated fast neutrons in the operation of the nuclear reactor is effectively inhibited.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は沸騰水型原子炉用燃料集合体を構成する燃料チ
ャンネルボックスに係シ、特に照射による曲シ変形の少
ない特性を有する制御棒案内面として好適な燃料チャン
ネルボックスに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fuel channel box constituting a fuel assembly for a boiling water nuclear reactor, and in particular to a control rod guide surface having a characteristic of less bending deformation due to irradiation. The present invention relates to a fuel channel box suitable as a fuel channel box.

〔発明の背景〕[Background of the invention]

沸騰水型原子炉の燃料集合体は第1図に示すように、複
数体の核燃料要素2、核燃料要素2の水平方向間隔を一
定値以上に保持するための数個の支持格子3並びに核燃
料要素2を支持しかつその間隔を一定に保持する上部タ
イプレート4及び下部タイプレート5が燃料チャンネル
ボックス6内に収納されている構造を有している。
As shown in FIG. 1, the fuel assembly of a boiling water reactor includes a plurality of nuclear fuel elements 2, several support grids 3 for maintaining the horizontal spacing of the nuclear fuel elements 2 at a certain value or more, and the nuclear fuel elements. The fuel channel box 6 has a structure in which an upper tie plate 4 and a lower tie plate 5, which support the fuel cell 2 and maintain a constant interval between them, are housed in a fuel channel box 6.

燃料集合体における燃料チャンネルボックス6の主な機
能は核燃料要素2を冷却するに十分な冷却材の確保とそ
の流路の形成、制御棒案内面の形成及び燃料集合体の剛
性の確保でおる。
The main functions of the fuel channel box 6 in the fuel assembly are to secure enough coolant to cool the nuclear fuel element 2, to form a flow path for the coolant, to form a control rod guide surface, and to ensure the rigidity of the fuel assembly.

燃料チャ/ネルボックス6を構成するジルコニウム合金
は、原子炉の運転に伴う高速中性子の照射によって特定
方向に伸びる所開照射成長伸びを生じる特性があり、前
記照射成長伸びは燃料チャンネルボックス6において特
に長手方向が太きい。
The zirconium alloy constituting the fuel channel box 6 has a characteristic of causing open irradiation growth elongation that extends in a specific direction by irradiation with fast neutrons during nuclear reactor operation. It is thicker in the longitudinal direction.

ところが、例えば原子炉の炉心周辺領域のように高速中
性子束の炉心径方向分布に勾配がある領域では、燃料チ
ャンネルボックスの各側面で高速中性子束(φ)が異な
るため、燃料チャンネルボックスの各側面長手方向の照
射成長伸びた差が生じる。
However, in a region where the distribution of fast neutron flux in the core radial direction has a gradient, such as the region around the core of a nuclear reactor, the fast neutron flux (φ) differs on each side of the fuel channel box. Longitudinal irradiation growth causes elongated differences.

このように燃料チャンネルボックスの各側面長手方向に
照射成長伸び差を生じると、第2図に示すように高速中
性子束が大なる方が凸となる湾曲を生じ、特に炉心最外
周部では制御棒側に凸となる曲シが発生するので、制御
棒挿入通路の間隙が減少する可能性がある。
When the difference in irradiation growth and elongation occurs in the longitudinal direction of each side of the fuel channel box, as shown in Figure 2, a curve is created in which the faster the fast neutron flux is larger, the more convex the control rod becomes. Since a convex bend occurs on the side, the gap in the control rod insertion passage may be reduced.

そこで、従来は炉心最周部に装荷される燃料については
、燃料チャンネルボックスの曲シという観点から炉心最
外周部の装荷期間、最外周燃料セル内の制御棒をはさん
で対峙する燃料の組合せ並びに燃料シャラフリング等を
考える際、燃料チャンネルボックスの曲シによる影響を
少なくする方法を採っていた。
Therefore, conventionally, regarding the fuel loaded in the outermost part of the core, from the viewpoint of the curve of the fuel channel box, the loading period of the outermost part of the reactor core, the combination of fuels facing each other across the control rods in the outermost fuel cell, Also, when considering fuel shuffling, etc., a method was adopted to reduce the influence of the bending of the fuel channel box.

しかしながら、前記炉心最外周部燃料に関する考慮は燃
料シャラフリング計画を複雑にする要因となっていた。
However, consideration regarding the fuel at the outermost periphery of the core has become a factor that complicates the fuel shoring plan.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、沸騰水型原子炉用燃料集合体を構成す
る燃料チャンネルボックスにおいて、照射面シ変形が少
なく制御棒案内面形成機能上すぐれた特性を有する燃料
チャンネルボックスを提供することにある。
An object of the present invention is to provide a fuel channel box constituting a fuel assembly for a boiling water reactor, which has less deformation of the irradiated surface and has excellent characteristics in terms of control rod guide surface formation function. .

〔発明の概要〕[Summary of the invention]

高速中性子束の炉心径方向勾配が燃料チャンネルボック
スの照射面シ変形の原因のひとつであることは既に述べ
たが、本質的には燃料チャンネルボックスが長手方向に
照射成長伸びを生じることに起因している。
It has already been mentioned that the gradient of fast neutron flux in the core radial direction is one of the causes of deformation of the irradiated surface of the fuel channel box, but essentially it is caused by the irradiation growth and elongation of the fuel channel box in the longitudinal direction. ing.

そこで、本発明は、長手方向の照射成長伸びが少ない特
性を有するジルコニウム合金製板材で構成された燃料チ
ャンネルボックスであれば、仮に高速中性子束の炉心径
方向勾配がある炉心位置に装荷されても照射による曲り
変形が発生しにくいということに着目したものである。
Therefore, the present invention provides a fuel channel box made of a zirconium alloy plate material that has a characteristic of little irradiation growth and elongation in the longitudinal direction, even if it is loaded at a core position where there is a core radial gradient of fast neutron flux. The focus was on the fact that bending and deformation due to irradiation is less likely to occur.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例について説明する。 An embodiment of the present invention will be described below.

燃料チャンネルボックスを構成しているジルコニウム合
金は特定の結晶方向が、板材の特定方向にかたよった配
列をなす所謂集合組織を形成しており、板材の方向によ
って機械的性質が異なるなどの異方性を有している。こ
のため、照射成長伸び特性も板材の各方向によって異な
っておシ、ジルコニウム合金製板材の板材各方向の照射
伸び特性の差異は前述の集合組織に依存している。
The zirconium alloy that makes up the fuel channel box forms a so-called texture in which specific crystal orientations are arranged in a specific direction of the plate material, and is anisotropic, with mechanical properties differing depending on the direction of the plate material. have. For this reason, the irradiation growth and elongation characteristics differ depending on each direction of the sheet material, and the difference in the irradiation growth and elongation characteristics in each direction of the sheet material of a zirconium alloy sheet material depends on the above-mentioned texture.

そこで、本発明は燃料チャンネルボックスの長手方向の
照射伸びをジルコニウム合金製板材の集合組織の詞整に
よって低く抑え、照射量)変形を少なくすることをねら
った。
Therefore, the present invention aims to suppress the irradiation elongation in the longitudinal direction of the fuel channel box by adjusting the texture of the zirconium alloy plate material, thereby reducing the deformation (irradiation dose).

以上、本実施例について、その効果を含め具体的に説明
する。・ ジルコニウム及びその合金の照射伸びは、照射温度(T
)集合組織、高速中性子照射量(φt)工 並びに冷間カーに依存する。すなわち次式で表せる。
The present embodiment will be specifically described above, including its effects. - The irradiation elongation of zirconium and its alloys is determined by the irradiation temperature (T
) depends on texture, fast neutron dose (φt) and cold car. In other words, it can be expressed by the following equation.

す・−A (T)・B(f)・C(φt)・D(w) 
   (1)ζこで、a gr’ :ジルコニウムない
しその合金の照射成長歪 A(T):照射温度(T)の関数 B(f):ジルコニウムないしその合金の集合組織に依
存する関数 C(φt):高速中性子照射量(φt)の関数H(W)
 :冷間加工率(−)の関数 (5) なお、燃料チャンネルボックスは再結晶化焼鈍を行うの
で式(1)中のH(W)は1となる。また、集合組織に
依存する関数B(f)は、板材の任意方向においての金
属結晶面(0002)のX線回折強度から算出されるf
値(Ba5al pole texturefBcto
r)で表され、近似的に次式となる。
S・-A (T)・B(f)・C(φt)・D(w)
(1) ζwhere, a gr': Irradiation growth strain A(T) of zirconium or its alloy: Function B(f) of irradiation temperature (T): Function C(φt) that depends on the texture of zirconium or its alloy. ): Function H(W) of fast neutron irradiation amount (φt)
:Function of cold working rate (-) (5) Note that since the fuel channel box undergoes recrystallization annealing, H(W) in equation (1) is 1. In addition, the function B(f) that depends on the texture is f calculated from the X-ray diffraction intensity of the metal crystal plane (0002) in an arbitrary direction of the plate material.
Value (Ba5al pole texturefBcto
r), which is approximated by the following equation.

B (f ) = 1−3 f I(2)ここで、f!
 :板材の任意方向i(圧延方向、圧延直角方向、肉厚
方向)のf値 したがって式(1) 、 (2)よシ g、 、 oc 1−3 f、          (
3)式(3)よシ、燃料チャンネルボックスの長手方向
(圧延方向)のf値がft中0.333であればε5.
=0となシ、長手方向に照射成長伸びを生じないことに
なる。すなわち、このようなジルコニウム合金製板材で
燃料チャンネルボックスを構成すれば、照射面シ変形を
生じにくい燃料チャンネルボックスが得られることにな
る。
B (f) = 1-3 f I (2) where f!
: f value in any direction i (rolling direction, rolling direction, wall thickness direction) of the plate material. Therefore, formulas (1), (2), , oc 1-3 f, (
3) According to equation (3), if the f value in the longitudinal direction (rolling direction) of the fuel channel box is 0.333 in ft, then ε5.
= 0, no irradiation growth elongation occurs in the longitudinal direction. That is, if a fuel channel box is constructed from such a zirconium alloy plate material, a fuel channel box that is less likely to cause deformation of the irradiated surface can be obtained.

したがって、燃料チャンネルボックス長手方向(6) のf値が0.15〜0.5の範囲でめれば照射成長伸び
の抑制に有効であるが、好ましくは0.333に近い0
.25〜0.40の範囲が最も効果があシ、この場合的
シ変形は十分小さく抑えられ、第3図に示すように解析
上は従来の曲り変形の半分以下となる。
Therefore, if the f value in the longitudinal direction (6) of the fuel channel box is within the range of 0.15 to 0.5, it is effective in suppressing irradiation growth and elongation, but it is preferable to have an f value close to 0.333.
.. The range of 25 to 0.40 is most effective; in this case, the occasional bending deformation can be kept sufficiently small, and as shown in FIG. 3, it is analytically less than half of the conventional bending deformation.

〔発明の効果〕〔Effect of the invention〕

本発明によって照射面シ変形が従来と比べ半分以下の燃
料チャンネルボックスが得られるので、従来、炉心最外
周部燃料に適用していた考慮事項の撤廃かいし緩和が可
能となシ、燃料シャラフリンク計画の自由度が増す。
The present invention makes it possible to obtain a fuel channel box with less than half the deformation of the irradiated surface compared to the conventional one, making it possible to eliminate or alleviate the considerations that were conventionally applied to the fuel at the outermost periphery of the core. Increased flexibility in planning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は沸騰水型原子炉用燃料集合体の構造図、第2図
は燃料チャンネルボックスの照射向シ概念図、第3図は
本発明の効果を示す線図である。 1・・・燃料集合体、2・・・核燃料要素、3・・・支
持格子、4・・・上記タイプレート、5・・・下部タイ
プレート、6・・・燃料チャンネルボックス。 代理人 弁理士 高橋明夫 $ 1 m
FIG. 1 is a structural diagram of a fuel assembly for a boiling water reactor, FIG. 2 is a conceptual diagram of the irradiation direction of a fuel channel box, and FIG. 3 is a diagram showing the effects of the present invention. DESCRIPTION OF SYMBOLS 1... Fuel assembly, 2... Nuclear fuel element, 3... Support grid, 4... Above tie plate, 5... Lower tie plate, 6... Fuel channel box. Agent Patent Attorney Akio Takahashi $1m

Claims (1)

【特許請求の範囲】[Claims] 1、ジルコニウム合金製の板材から構成される燃料チャ
ンネルボックスにおいて、結晶面(0002)のX線回
折強度から算出される板材長手方向のf値すなわちf、
が0.15〜0.5の範囲を有する板材で構成すること
を特徴とする燃料チャンネルボックス。
1. In a fuel channel box made of a plate made of zirconium alloy, the f value in the longitudinal direction of the plate calculated from the X-ray diffraction intensity of the crystal plane (0002), that is, f,
A fuel channel box characterized in that it is constructed of a plate material having a range of 0.15 to 0.5.
JP58102649A 1983-06-10 1983-06-10 Fuel channel box Pending JPS59229475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58102649A JPS59229475A (en) 1983-06-10 1983-06-10 Fuel channel box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58102649A JPS59229475A (en) 1983-06-10 1983-06-10 Fuel channel box

Publications (1)

Publication Number Publication Date
JPS59229475A true JPS59229475A (en) 1984-12-22

Family

ID=14333087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58102649A Pending JPS59229475A (en) 1983-06-10 1983-06-10 Fuel channel box

Country Status (1)

Country Link
JP (1) JPS59229475A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179859A (en) * 1985-01-08 1986-08-12 Sumitomo Metal Ind Ltd Manufacture of nuclear fuel cladding tube made of zr base alloy
JPH0517837A (en) * 1990-11-28 1993-01-26 Hitachi Ltd Zirconium-base alloy plate reduced in irradiation growth, its production, and its use
US5297177A (en) * 1991-09-20 1994-03-22 Hitachi, Ltd. Fuel assembly, components thereof and method of manufacture
EP0795618A1 (en) * 1996-03-13 1997-09-17 Hitachi, Ltd. Zirconium based alloy of low irradiation growth, method of producing the same, and use of the same
WO1998010427A1 (en) * 1996-09-04 1998-03-12 Siemens Aktiengesellschaft Guide tube for pressurized water reactor fuel element and corresponding production process
US6704386B2 (en) 2000-01-21 2004-03-09 Hitachi, Ltd. Fuel channel box and a method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179859A (en) * 1985-01-08 1986-08-12 Sumitomo Metal Ind Ltd Manufacture of nuclear fuel cladding tube made of zr base alloy
JPH0517837A (en) * 1990-11-28 1993-01-26 Hitachi Ltd Zirconium-base alloy plate reduced in irradiation growth, its production, and its use
US5223211A (en) * 1990-11-28 1993-06-29 Hitachi, Ltd. Zirconium based alloy plate of low irradiation growth, method of manufacturing the same, and use of the same
EP0689209A1 (en) 1990-11-28 1995-12-27 Hitachi, Ltd. Method of operating a nuclear reactor containing a plurality of nuclear fuel channel boxes and manufacturing said boxes
EP0488027B2 (en) 1990-11-28 2008-12-31 Hitachi Ltd. Method of manufacturing a zirconium based alloy fuel channel box
US5297177A (en) * 1991-09-20 1994-03-22 Hitachi, Ltd. Fuel assembly, components thereof and method of manufacture
EP0795618A1 (en) * 1996-03-13 1997-09-17 Hitachi, Ltd. Zirconium based alloy of low irradiation growth, method of producing the same, and use of the same
US5862194A (en) * 1996-03-13 1999-01-19 Hitachi, Ltd. Zirconium based alloy of low irradiation growth, method of producing the same, and use of the same
WO1998010427A1 (en) * 1996-09-04 1998-03-12 Siemens Aktiengesellschaft Guide tube for pressurized water reactor fuel element and corresponding production process
US6704386B2 (en) 2000-01-21 2004-03-09 Hitachi, Ltd. Fuel channel box and a method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4229258A (en) Fuel assembly
JP3100602B2 (en) Spring member for irradiation environment
JPS59229475A (en) Fuel channel box
JPS5829877B2 (en) Boiling water reactor core
EP0817203B1 (en) Fuel assembly and fuel assembly channel box manufacturing method
RU2142169C1 (en) Fast reactor
US4894200A (en) Method of operating a nuclear reactor
US5176877A (en) Nuclear fuel assembly and nuclear reactor core containing said assembly
JP2798926B2 (en) Fuel assembly for boiling water reactor
JP4094092B2 (en) Fuel assemblies for boiling water reactors
JPH0379430B2 (en)
US3213530A (en) Method of constructing a nuclear reactor core from graphite blocks
JPH05215879A (en) Fuel assembly
JP4138190B2 (en) Fuel assemblies and reactor cores
JP2000304885A (en) Fuel assembly and unclear reactor core
JPH02156191A (en) Core of atomic reactor
JPH065320B2 (en) Fuel assembly for boiling water reactor
RU2548024C2 (en) Sodium-cooled fast reactor core
JP2000180575A (en) Fuel assembly for boiling-water reactor and reactor core using it
JPH0580172A (en) Fuel assembly
JPS6318030A (en) Zirconium and zirconium alloy and its production
JPS62200286A (en) Channel box
JPH0155436B2 (en)
JP3314382B2 (en) Fuel assembly
JPS59133489A (en) Fuel assembly