JPS59229130A - Utilizing method of fermentation heat and device therefor - Google Patents

Utilizing method of fermentation heat and device therefor

Info

Publication number
JPS59229130A
JPS59229130A JP58103392A JP10339283A JPS59229130A JP S59229130 A JPS59229130 A JP S59229130A JP 58103392 A JP58103392 A JP 58103392A JP 10339283 A JP10339283 A JP 10339283A JP S59229130 A JPS59229130 A JP S59229130A
Authority
JP
Japan
Prior art keywords
heat
fermentation
tank
raw material
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58103392A
Other languages
Japanese (ja)
Inventor
Takashi Taniguchi
隆 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58103392A priority Critical patent/JPS59229130A/en
Publication of JPS59229130A publication Critical patent/JPS59229130A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V30/00Apparatus or devices using heat produced by exothermal chemical reactions other than combustion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To enable to utilize the fermentation heat for room heating by a method wherein a fermentative raw material mainly composed of rice bran is filld in a fermenter, a heat generated by the fermentation with stirring at intervals is extracted and utilized for the heating of a regenerative water tank with a heat pipe. CONSTITUTION:A fermentative raw material mainly composed of a rice bran is filled in a fermenter 1 having an inverse truncated cone shape, rotated horizontally at a rate of one rotation per day, fermented by the stirring with a stirring device 12. Thereby, the raw material is fermented, then generates heat, the generated heat is extracted to a regenerative water tank 8 via heat pipes 11, and a water in the regenerative water tank 8 is heated. The heated water is distributed and utilized at required location. By said structure, the fermentation heat can be utilized effectively for the room heating and the like.

Description

【発明の詳細な説明】 本発明は米糠を主体とした醗酵原料の醗酵熱利用方法及
びその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for utilizing fermentation heat of fermentation raw materials mainly consisting of rice bran.

多大の石油エネルギーを消費するハウス園芸等の暖房施
設において、近年の石油価格の高騰により、数々の省エ
ネルギ一対策が行なわれている。
BACKGROUND OF THE INVENTION In heating facilities such as greenhouse horticulture, which consume a large amount of petroleum energy, a number of energy saving measures have been taken due to the recent rise in petroleum prices.

例えば、ハウス内の熱をできる限り外へ逃がさないよう
に多重被覆によって保温する方法がある。
For example, there is a method of insulating the greenhouse by using multiple layers to prevent the heat inside the greenhouse from escaping as much as possible.

しかしこの方法は、被覆材によって太陽光の透過が妨げ
られるため、光条件が悪化し、作物の順調な生育に支障
をきたす恐れがある。また湿度が過飽和状態の場合、被
覆材に水滴が付着し、病害の蔓延につながる。
However, with this method, the coating material prevents sunlight from passing through, leading to worsening light conditions and the risk of interfering with the smooth growth of crops. Also, if the humidity is supersaturated, water droplets will adhere to the coating material, leading to the spread of diseases.

更に、蓄熱及び代替エネルギーによる省エネルギ一対策
もある。例えば太陽熱、地熱等を利用する方法であるが
、しかしこれらの方法は、設備に美大な費用を要し、技
術的に困難な点もあり、天候や地理的条件に左右される
等、問題点が多い。
Furthermore, there are energy saving measures through heat storage and alternative energy. For example, there are methods that utilize solar heat, geothermal heat, etc. However, these methods require enormous costs for equipment, are technically difficult, and are affected by weather and geographical conditions, etc. There are many points.

本発明はハウス園芸におけるこのような問題点を解決せ
んと鋭意研究した結果得られたもので、○米糠等を醗酵
させて肥料として有効利用する際に、その腐熟化過程で
発生するかなりの醗酵熱に着目し、この醗酵熱を施設の
暖房等に供する方法を提供せんとするものである。
The present invention was obtained as a result of intensive research to solve these problems in greenhouse gardening. ○ When rice bran, etc. is fermented and used effectively as fertilizer, a considerable amount of fermentation occurs during the ripening process. Focusing on heat, we aim to provide a method for using this fermentation heat for heating facilities, etc.

また本発明は、非常に安価に製造でき、コンパクトで使
用し易く、且つ性能が非常に優れ運転費が少なくて済み
、上記醗酵熱を最大限有効利用し得る醗酵熱利用装置を
提供することを目的としている。
Another object of the present invention is to provide a fermentation heat utilization device that can be manufactured at a very low cost, is compact and easy to use, has excellent performance, requires low operating costs, and can utilize the fermentation heat to the maximum extent possible. The purpose is

以下図面に基づいて本発明を説明する。The present invention will be explained below based on the drawings.

第1図は本発明実施例装置の外観正面図、第2図はその
内部構成を示す部分断面側面図である。
FIG. 1 is an external front view of an apparatus according to an embodiment of the present invention, and FIG. 2 is a partially sectional side view showing its internal structure.

図において、1は逆円錐台形状の醗酵槽で、底壁2と側
周壁3とから成り、上面は開放し、側周壁3の外側は円
筒状の外壁4で被包され、保温構造に構成されている。
In the figure, reference numeral 1 denotes a fermentation tank in the shape of an inverted truncated cone, consisting of a bottom wall 2 and a side peripheral wall 3. The top surface is open, and the outside of the side peripheral wall 3 is covered with a cylindrical outer wall 4, which has a heat-retaining structure. has been done.

保温外壁4の底部は、醗酵槽1底壁8との間隔を塞ぐた
め内向き7ランジ5に形成され、下端部は架台6周縁に
連設された支持枠7によって固定支持されている。
The bottom of the heat-insulating outer wall 4 is formed into an inward seven-flange 5 to close the gap with the bottom wall 8 of the fermentation tank 1, and the lower end is fixedly supported by a support frame 7 connected to the periphery of the pedestal 6.

○ また外壁4の上端には一体的に蓄熱水槽8が立設し
ている。蓄熱水槽8は、横断面が弓形の筒状密閉体で、
外壁4をそのま一上方に延長させた形態で弧状凸面の外
側周壁9が形成されており、その弓形状の底壁10が醗
酵槽1上面の%〜%程度を覆うように立設されている。
○ Also, a heat storage water tank 8 is integrally installed at the upper end of the outer wall 4. The heat storage water tank 8 is a cylindrical sealed body with an arcuate cross section.
An arcuate convex outer circumferential wall 9 is formed by extending the outer wall 4 upward, and its arcuate bottom wall 10 is erected to cover about % to % of the top surface of the fermenter 1. There is.

なお、蓄熱水槽8の各壁は、断熱材を主体とした強化プ
ラスチックで形成されている。
Note that each wall of the heat storage water tank 8 is made of reinforced plastic mainly made of a heat insulating material.

この蓄熱水槽8の底壁10には、複数本のヒートパイプ
11が基盤目配列に又は千鳥配列に取付けられている。
A plurality of heat pipes 11 are attached to the bottom wall 10 of the heat storage water tank 8 in a grid pattern or a staggered pattern.

各ヒートパイプ11は、底壁10をは!垂直に貫通し、
一端は蓄熱水槽8内部中央に貫入され、他端は醗酵槽1
内部深くに挿入されている。
Each heat pipe 11 covers the bottom wall 10! penetrate vertically,
One end is inserted into the center of the heat storage tank 8, and the other end is inserted into the fermentation tank 1.
It is inserted deep inside.

この場合、ヒートパイプ11の作動液としては一般的に
は水であるが、その他メタノール、エタノール、アセト
ンなどを使用できる。パイプの構成材料としては鉄製が
一般的である。またパイプの形状は円筒が普通であるが
、任意の断面形状でよく、ウィックの断面形状も任意で
ある。
In this case, the working fluid for the heat pipe 11 is generally water, but methanol, ethanol, acetone, etc. can also be used. Steel is commonly used as the material for pipe construction. The shape of the pipe is generally cylindrical, but it may have any cross-sectional shape, and the cross-sectional shape of the wick may also be arbitrary.

12は攪拌装置で、上記ヒートパイプ11群と醗酵○検
測周壁3との間の適当箇所に組み込まれ、攪拌軸(回転
軸)13の一端は、槽上面に固設されたモータ14に連
結され、他端は槽底壁2に向けては!垂直に槽1内に挿
入されている。この攪拌軸13の周りには、螺旋状の攪
拌翼15が支持杆16によって取付けられている。
Reference numeral 12 denotes a stirring device, which is installed at an appropriate location between the group of heat pipes 11 and the fermentation/inspection peripheral wall 3, and one end of a stirring shaft (rotary shaft) 13 is connected to a motor 14 fixed on the top surface of the tank. and the other end should be directed towards the tank bottom wall 2! It is inserted vertically into the tank 1. A spiral stirring blade 15 is attached around the stirring shaft 13 by a support rod 16.

また上記攪拌軸13の長さは、その他端面17と対向す
る槽底壁2内面との間に間隔dが存するよう決定され、
攪拌翼15の下端18も攪拌軸13の他端面17以上に
下方に突出しないように構成されている。
Further, the length of the stirring shaft 13 is determined so that a distance d exists between the other end surface 17 and the inner surface of the opposing tank bottom wall 2,
The lower end 18 of the stirring blade 15 is also configured not to protrude downward beyond the other end surface 17 of the stirring shaft 13.

なお間隔dは、醗酵槽1内の醗酵原料自体がその醗酵熱
を有効に保温(断熱)し得る層の厚みに決定される。
Note that the distance d is determined to be the thickness of the layer that allows the fermentation raw material itself in the fermentation tank 1 to effectively retain (insulate) its fermentation heat.

一方、槽底壁2においては、その中心部はモータ19の
回転を減速して伝える回転装置20に連結され架台6上
に水平回転自在に保持されるとともに、適当間隔の複数
箇所においてもローラ21を介して架台支柱22に水平
回転自在に保持されている。なお、回転装置20及びロ
ーラ21に対応する底壁2の裏面には、更に鉄板20a
及び212が溶着され、部分O的に底壁2の強度が補強
されている。
On the other hand, the center of the tank bottom wall 2 is connected to a rotating device 20 that decelerates and transmits the rotation of a motor 19, and is held horizontally rotatably on a pedestal 6. It is horizontally rotatably held by the pedestal support 22 via. In addition, on the back side of the bottom wall 2 corresponding to the rotating device 20 and the rollers 21, an iron plate 20a is further provided.
and 212 are welded to partially reinforce the strength of the bottom wall 2.

また蓄熱水槽8には、暖房用往管23が接続されポンプ
24を介して暖房施設に導かれ、暖房施設からは遺骨2
5が導かれている。更に水を補給するための給水口26
が貫入され、その先端には浮子27を備えた止水弁が設
けられており、また蓄熱水f#8内の温度調整のために
、温度計28.予備ヒータ29及びその温度調節器30
が内設されている。また、醗酵原材料に水分を供給する
ために、一端を醗酵槽1内に臨ませた水分供給管31が
接続されている。
In addition, a heating outgoing pipe 23 is connected to the heat storage water tank 8 and is led to a heating facility via a pump 24, and from the heating facility, the remains 2
5 is being led. Water supply port 26 for further supplying water
is penetrated, and a water stop valve equipped with a float 27 is provided at the tip thereof, and a thermometer 28. Preliminary heater 29 and its temperature regulator 30
is installed inside. Further, in order to supply moisture to the fermented raw materials, a moisture supply pipe 31 with one end facing into the fermentation tank 1 is connected.

なお醗酵槽l側周壁8の下部には醗酵済み原料を取り出
すための取出口82が設けられ、これと対面する外壁4
にも同様に取出口33が設けられている。また、84は
原材料投入用ホッパーで、85はそれに連なるシュート
であり、36はこの装置全体の操作盤である。
Note that an outlet 82 for taking out the fermented raw material is provided at the lower part of the peripheral wall 8 on the fermentation tank l side, and the outer wall 4 facing this is provided with an outlet 82 for taking out the fermented raw material.
An outlet 33 is also provided in the same manner. Further, 84 is a hopper for inputting raw materials, 85 is a chute connected thereto, and 36 is an operation panel for the entire apparatus.

第3図は別の実施例装置の内部構成を示す部分断面側面
図である。この実施例では、蓄熱水槽8の内部と直接連
通する円筒状の熱交換水flilI87が醗酵槽1の丁
度中央部に垂下され、且つ熱交換水僧○87の側面には
多数のヒートパイプ11が適当間隔に取付けられている
FIG. 3 is a partially sectional side view showing the internal configuration of another example device. In this embodiment, a cylindrical heat exchange water flil I87 that directly communicates with the inside of the heat storage water tank 8 is suspended in the exact center of the fermentation tank 1, and a large number of heat pipes 11 are installed on the side of the heat exchange water flil I87. Installed at appropriate intervals.

熱交換水槽37は有底の上面が開放した7ランジ管で、
72ンジ38による管継手を介して、蓄熱水槽8底壁1
0の開孔部89と連結されている。また各ヒートパイプ
11の一端は、第4図に示すように、熱交換水槽87内
部に交互に重なるように貫入され、他端は醗酵槽1内に
若干下降気味に突出させである。なおヒートパイプ11
群は、攪拌R15の作動に支障なき程度に適宜配列され
ている。
The heat exchange water tank 37 is a 7-lunge tube with a bottom and an open top.
The bottom wall 1 of the heat storage water tank 8 is
It is connected to the opening 89 of No. 0. Further, as shown in FIG. 4, one end of each heat pipe 11 penetrates into the heat exchange tank 87 so as to be alternately overlapped, and the other end projects slightly downward into the fermentation tank 1. In addition, heat pipe 11
The groups are appropriately arranged to the extent that they do not interfere with the operation of the stirring R15.

このように構成された装置の醗酵if l内に、米糠を
酸酢熱発生源の主体とした原材料が充填される。例えば
米糠45部、きのこ培土滓50部、醗酵誘発剤5部を混
合し適当に水分調整したもの、或いは米糠48部、おが
屑40部、籾殻12部と共に適量の醗酵助剤を混合し水
分調整したものを醗酵熱発生原材料とする。
The fermentation chamber of the apparatus configured as described above is filled with a raw material in which rice bran is the main source of acid-acid heat generation. For example, 45 parts of rice bran, 50 parts of mushroom soil slag, and 5 parts of fermentation inducing agent were mixed and the moisture content was adjusted appropriately, or the moisture content was adjusted by mixing 48 parts of rice bran, 40 parts of sawdust, and 12 parts of rice husk with an appropriate amount of fermentation aid. The material is used as a raw material for fermentation and heat generation.

醗酵PJ1は、−日一回転の割合で水平回転され(例え
ば約20〜30分間を要して一回転させる)、またこの
水平回転と同時にその時間帯だけ攪拌装装置12を例え
ば毎分5〜6回転の割合で駆動させる。
The fermentation projector 1 is horizontally rotated at a rate of one rotation per day (for example, it takes about 20 to 30 minutes to complete one rotation), and at the same time as this horizontal rotation, the stirring device 12 is rotated at a rate of, for example, 5 to 30 minutes per minute. Drive at a rate of 6 rotations.

これにより原材料は、適当に切り返えされ、上部も下部
も万遍なく攪拌され、空気との接触が良好となり、醗酵
を促進させ、内部に約60〜70°Cの醗酵熱を常時発
生させる。
As a result, the raw materials are properly turned over and stirred evenly from the top to the bottom, allowing good contact with air, promoting fermentation, and constantly generating fermentation heat of about 60-70°C inside. .

米糠は好気性の微生物によって適度の温度と湿度の条件
下で醗酵を促進するので、このような攪拌により酸素を
供給し、温度と湿度の均一化を図って醗酵を促進させる
ことができる。従って、この攪拌は時々或いは間欠的に
行なわれるのがよい。
Fermentation of rice bran is promoted by aerobic microorganisms under conditions of appropriate temperature and humidity, so such stirring can supply oxygen and promote fermentation by equalizing temperature and humidity. Therefore, this stirring is preferably performed occasionally or intermittently.

また、この切り返し・攪拌操作を怠ると黴を生じる恐れ
がある。
Moreover, if this turning and stirring operation is neglected, mold may be generated.

また醗酵槽1は、上面が開放状態で且つ開放面積が広く
なるよう逆円錐台形に形成されているので、空気との接
触は一層大きく、醗酵はさらに促進される。
Further, since the fermentation tank 1 is formed into an inverted truncated cone shape with an open upper surface and a large open area, contact with air is greater and fermentation is further promoted.

また米糠の醗酵に伴って、植物にとっては必須の成分で
あるCO2が盛んに発生し、いわゆるCO2濃度の上昇
効果のあることが認められた。
In addition, it was observed that with the fermentation of rice bran, a large amount of CO2, which is an essential component for plants, is generated, which has the effect of increasing the so-called CO2 concentration.

第5図は、本発明装置と重油ボイラー加温によOる対照
区とのco!濃度の変化を、キュウリ栽培のへウス内に
おいて、1983年4月20日〜25日の晴れた日の平
均値で示したグラフである。
Figure 5 shows the co-operation between the apparatus of the present invention and a control area heated by a heavy oil boiler. This is a graph showing changes in concentration as average values for sunny days from April 20 to April 25, 1983 in a cucumber cultivation chamber.

この第5図によれば、対照区ではCO2の濃度は夕方の
6時頃から上昇し始め、午前6時には約11000pp
となっている。しかし、太陽が昇りキュウリの光合成が
盛んになると、ハウス内のCO!濃度は約’isopp
mにまで急激に低下する。この対照区に比べて、本発明
装置では、CO2の最高値は午前6時に1200ppm
 、最低値は午後3時に約500 ppmとなっている
。このような本発明装置によるCO2濃度の上昇効果は
、当然光合成の増大をもたらすことになる。
According to this Figure 5, in the control area, the concentration of CO2 began to rise around 6pm, and by 6am it was about 11,000pp.
It becomes. However, when the sun rises and the cucumber's photosynthesis increases, CO in the greenhouse increases! The concentration is about 'isopp
It rapidly decreases to m. Compared to this control area, in the device of the present invention, the highest value of CO2 was 1200 ppm at 6 am.
The lowest value was about 500 ppm at 3:00 p.m. Such an effect of increasing CO2 concentration by the device of the present invention naturally leads to an increase in photosynthesis.

第6図は本発明装置加温によるキュウリの生育と重油ボ
イラー加温によるキュウリの生育とを比較したグラフで
あるが、本発明装置加温によるキュウリの生育が著しく
促進されていることがわかる。また、収穫時期は一週間
以上も短縮することができた。これは本発明装置から発
生する002などの効果によるものと推定される。
FIG. 6 is a graph comparing the growth of cucumbers heated by the device of the present invention and the growth of cucumbers heated by the heavy oil boiler, and it can be seen that the growth of cucumbers by heating the device of the present invention is significantly promoted. Additionally, the harvest time could be shortened by more than a week. It is presumed that this is due to the effect of 002 etc. generated from the device of the present invention.

○ 槽1内の醗酵熱は、ヒートパイプ11により速やか
に効率良く蓄熱水槽8に移動され放出される。
○ The fermentation heat in the tank 1 is quickly and efficiently transferred to the heat storage water tank 8 and released by the heat pipe 11.

米糠を主体とした醗酵原材料中から60〜70’(!の
醗酵熱を上部に原材料とは離して設けた水槽8に熱伝導
させるには上記ヒルドパイブ11が正に最適である。
The Hildpipe 11 is ideal for conducting heat transfer of 60 to 70' (!) of fermentation heat from the fermented raw material mainly consisting of rice bran to the water tank 8 provided at the upper part separated from the raw material.

即ち、ヒートパイプは熱伝導性に非常に優れ、熱応答性
が良く、熱源と放熱部とを分離でき、構造が簡単で軽量
・コンパクトであり、また熱輸送用のポンプ等の可動部
分を必要としないので、メンテナンスの必要度合が少な
く、信頼性が高く、騒音もないからである。
In other words, heat pipes have excellent thermal conductivity, good thermal response, can separate the heat source and heat radiation part, have a simple structure, are lightweight and compact, and do not require moving parts such as pumps for heat transport. This is because there is no need for maintenance, high reliability, and no noise.

このように、熱交換器即ち熱伝導体としてヒートパイプ
11を使用することにより、本発明装置自体の構造を非
常に簡素化でき、且つ軽量・コンパクト化することがで
き、また非常に安価に製造することができる。
As described above, by using the heat pipe 11 as a heat exchanger, that is, a heat conductor, the structure of the device of the present invention itself can be greatly simplified, and it can be made lightweight and compact, and it can be manufactured at a very low cost. can do.

ヒートパイプ11を介して加温された蓄熱水槽8内の熱
水は、暖房用パイプ23.25を通して循環させること
により、ハウス内の床(地中)暖房に利○用される。ま
たハウス(室)内暖房用に補助ボイラーと併用すること
もできる。
The hot water in the heat storage water tank 8 heated via the heat pipe 11 is circulated through the heating pipes 23, 25 and is used for floor (underground) heating in the house. It can also be used in conjunction with an auxiliary boiler for indoor heating.

米糠を主体とした醗酵が進行するにつれ、微生物の活動
が鈍るので、適当間隔に新しい醗酵原材料を補充し、醗
酵熱及び温水温度の低下を防止する必要がある。例えば
醗酵中の原材料に新しい米糠を、当初仕込み米糠社の約
1″a程度ずつ月3回あて、ホッパー84よりシュート
85を通して内部深くに補給すれば、長期間に亘って所
望する温度を確保することができる。
As fermentation based on rice bran progresses, the activity of microorganisms slows down, so it is necessary to replenish new fermentation raw materials at appropriate intervals to prevent a drop in fermentation heat and hot water temperature. For example, if new rice bran is applied to the raw material during fermentation three times a month at a rate of approximately 1"a of the original rice bran, and the hopper 84 is replenished deep into the interior through the chute 85, the desired temperature can be maintained for a long period of time. be able to.

第7図は本発明装置内部の醗酵熱温度、蓄熱水槽の温水
温度、ハウス内地中湿度、無加温地中温度並びにハウス
内気温の関係を示したグラフで、装置内部の醗酵熱は常
に60〜70°Cであり、蓄熱水槽の温水は50〜55
°Cを示し、ノ1ウスの地中温度は加温パイプをサーモ
スタットにて温度制御することにより約20〜25°C
に保たれている。なお、無加温の地中温度は5〜10°
Cであり、これは時折ハウス内の気温より低くなること
が観察された。
Figure 7 is a graph showing the relationship between the fermentation heat temperature inside the device of the present invention, the hot water temperature in the heat storage tank, the underground humidity inside the greenhouse, the unheated underground temperature, and the inside temperature of the greenhouse. -70°C, and the hot water in the thermal storage tank is 50-55°C.
°C, and the underground temperature of Novus is approximately 20 to 25 °C by controlling the temperature of the heating pipe with a thermostat.
is maintained. In addition, the underground temperature without heating is 5 to 10 degrees.
C, which was sometimes observed to be lower than the temperature inside the house.

次に、醗酵を終え腐敗した米糠を主体とする材O料は、
取出口82.88より取り出される。この醗酵済堆肥の
無機成分を測定したところ、N : 2.00%。
Next, the material O is mainly composed of rice bran that has been fermented and rotted.
It is taken out from the take-out ports 82 and 88. When the inorganic components of this fermented compost were measured, N: 2.00%.

P:3.17%、 K : 2,56%、水分: 54
.0%を示した。
P: 3.17%, K: 2,56%, Moisture: 54
.. It showed 0%.

この醗酵済堆肥は、リンとカリを特別に多く含んでおり
、苗床用堆肥(土壌改良剤)として有効であることが認
められた。
This fermented compost contains particularly high amounts of phosphorus and potassium, and was found to be effective as a compost for seedlings (soil conditioner).

以上説明したように本発明方法及び装置によれば、次の
様な優れた効果が認められる。
As explained above, according to the method and apparatus of the present invention, the following excellent effects are recognized.

■今迄無視されていた米糠の醗酵熱(自然エネルギー)
を使用し、石油燃料は一切使用していないので、燃料費
節減の効果は顕著である。
■Rice bran fermentation heat (natural energy) that has been ignored until now
Since no petroleum fuel is used, the effect of reducing fuel costs is significant.

■熱源である米糠自体は供給過剰で簡単に多社に入手で
き、しかもわずかな原材料の補給で長期間所定熱を確保
することができる。
■The heat source, rice bran itself, is in oversupply and can be easily obtained from many companies, and it is possible to maintain the specified heat for a long period of time with a small supply of raw materials.

(H1酵に伴いCO■濃度の上昇効果が認められ、植物
の生育促進に有効である。それに反し、糞尿等の醗酵で
は、NHsやCH4の発生があり、公害の恐れがある。
(H1 fermentation has the effect of increasing CO2 concentration, which is effective in promoting plant growth. On the other hand, fermentation of excrement, etc. generates NHs and CH4, which may cause pollution.

0石油燃料の如き火災の心配は全くない。また健康上特
に問題となる公害の恐れも全くない。
0 There is no fear of fire like with petroleum fuel. There is also no risk of pollution, which is a particular health problem.

Q■醒酵済材料は良質な有機質肥料として或1/’4ま
苗床の土壌改良剤として使用され、廃棄物をま一切出す
、経済的利用価値は非常に高し)。
Q: The fermented material is used as a high-quality organic fertilizer or as a soil conditioner for seedbeds, and no waste is produced, so the economic value is very high.

■太陽エネルギーなど他の自然エネルギーの利用と比較
して、天候や地理的条件に左右されず、また昼夜の別な
く有効である。
■Compared to the use of other natural energies such as solar energy, it is not affected by weather or geographical conditions and is effective day and night.

■他の代替エネルギーの設備費に比べ安価である。■It is cheaper than the equipment costs of other alternative energies.

■醗酵槽を保温しているので外界温度の低下時にも醗酵
温度条件が保持され、しかも特殊な攪拌手段により醗酵
槽内を万遍なく攪拌し空気との接触を最大限にして好気
性微生物の活動を活発にしている。これにより、米糠の
醗酵が良好に行なわれ、醗酵熱の発生を最大限に促進さ
せることができる。
■Since the fermentation tank is kept warm, the fermentation temperature conditions are maintained even when the outside temperature drops, and a special stirring means is used to evenly stir the inside of the fermentation tank, maximizing contact with the air and incubating aerobic microorganisms. Actively active. Thereby, the fermentation of rice bran can be carried out well, and the generation of fermentation heat can be promoted to the maximum extent.

■醗酵槽、蓄熱水槽が一体にまとめられたコンノくクト
な装置のため、設置面積が少なく、容易に任意の場所に
設置できる。
■Since it is a compact device that integrates a fermentation tank and a heat storage water tank, it takes up little space and can be easily installed in any location.

■醗酵槽の底壁部においては、醗酵原料自体の断熱性と
発熱性を巧みに利用して底壁部の断熱効果を得ているの
で、装置をそれだけ安価に製造することができる。
(2) In the bottom wall of the fermentation tank, the heat insulating effect of the bottom wall is achieved by skillfully utilizing the heat insulating properties and exothermic properties of the fermentation raw material itself, so the device can be manufactured at a lower cost.

■本発明方法に最適の熱伝導体としてヒートパイプを使
用しているので、他の熱交換器を利用するのに比し、効
率が非常に高く、構造が簡単で軽量且つコンパクトであ
ることから、装置全体も簡素化され非常に安価に製造す
ることができる0
■Since a heat pipe is used as the optimal heat conductor for the method of the present invention, it has extremely high efficiency, simple structure, light weight, and compactness compared to using other heat exchangers. , the entire device is simplified and can be manufactured at a very low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例装置の外観正面図、第2図はその
内部構成を示す部分断面側面図、第3図は別の実施例装
置の内部構成を示す部分断面側面図、第4図は熱交換水
槽87とヒートパイプ11群との関係を示す斜視図であ
る。 第5図は本発明装置と重油ボイラー加温による対照区と
のCO2濃度の変化を示したグラフ、第6図は本発明装
置加温によるキュウリの生育と重油ボイラー加温による
キュウリの生育とを比較したグラフ、第7図は本発明装
置内部の醗酵熱温度。 蓄熱水槽の温水温度、ハウス内の地中温度、無加O湿地
中温度並びにハウス内気温の関係を示したグラフである
。 1・・・醗酵槽 2・・・底壁 8・・・側周壁 4・
・・外壁8・・・蓄熱水槽 11・・・ヒートバイブ 
12・・・攪拌装置 加・・・回転装置 21・・・四
−ラ 23・・・暖房用往管 24・・・ポンプ 25
・・・選管 87・・・熱交換水槽38・・・7ランジ
 d・・・間隔 勿 1 図 第 2 図 駕 3 図 第 5 図
FIG. 1 is an external front view of a device according to an embodiment of the present invention, FIG. 2 is a partially sectional side view showing its internal configuration, FIG. 3 is a partially sectional side view showing the internal configuration of another embodiment of the device, and FIG. 4 2 is a perspective view showing the relationship between a heat exchange water tank 87 and a group of heat pipes 11. FIG. Fig. 5 is a graph showing the change in CO2 concentration between the device of the present invention and the control area heated by the heavy oil boiler, and Fig. 6 is a graph showing the growth of cucumbers by heating the device of the present invention and the growth of cucumbers by heating the heavy oil boiler. The compared graph, Figure 7, shows the fermentation heat temperature inside the apparatus of the present invention. It is a graph showing the relationship among the hot water temperature of the heat storage tank, the underground temperature inside the greenhouse, the temperature inside the untreated wetland, and the inside temperature of the greenhouse. 1...Fermentation tank 2...Bottom wall 8...Side wall 4.
・・Outer wall 8・Thermal storage water tank 11・Heat vibrator
12... Stirring device Adding... Rotating device 21... Four-ra 23... Outgoing pipe for heating 24... Pump 25
... Pipe selection 87 ... Heat exchange water tank 38 ... 7 lunge d ... Interval 1 Figure 2 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】 1)米糠を主体として調製された醗酵熱発生原材料を醗
酵槽内に充填し、この原材料を時折攪拌しながら醗酵熱
を生ぜしめ、その醗酵熱をヒートパイプを用いて蓄熱水
槽に導入することにより温水を得ることを特徴とする醗
酵熱の利用方法。 2)底壁が水平回転自在に保持された回転式醗酵槽と、
該醗酵槽の側周を外側より囲み保温する保温壁と、該保
温壁の上部に固定され上記醗酵槽の上面の一部に被さる
蓄熱水槽と、一端がこの蓄熱水槽の内部と連通し他端が
上記醗酵槽内部″に挿入された複数本のヒートパイプ群
と、該ヒートパイプ群と上記醗酵槽側周壁との間に組み
込まれた攪拌装置とを備えていることを特徴とする醗酵
熱利用装置。
[Scope of Claims] 1) Filling a fermentation tank with a fermentation heat-generating raw material prepared mainly from rice bran, stirring the raw material occasionally to generate fermentation heat, and storing the fermentation heat using a heat pipe. A method of utilizing fermentation heat characterized by obtaining hot water by introducing it into an aquarium. 2) A rotary fermentation tank whose bottom wall is horizontally rotatable;
a heat-retaining wall that surrounds the periphery of the fermentation tank from the outside and keeps it warm; a heat-storage water tank that is fixed to the top of the heat-storage wall and covers a part of the top surface of the fermentation tank; one end of the tank is connected to the inside of the heat-storage tank; A method for utilizing fermentation heat characterized by comprising a plurality of heat pipe groups inserted into the fermentation tank, and a stirring device installed between the heat pipe group and the fermentation tank side peripheral wall. Device.
JP58103392A 1983-06-09 1983-06-09 Utilizing method of fermentation heat and device therefor Pending JPS59229130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58103392A JPS59229130A (en) 1983-06-09 1983-06-09 Utilizing method of fermentation heat and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58103392A JPS59229130A (en) 1983-06-09 1983-06-09 Utilizing method of fermentation heat and device therefor

Publications (1)

Publication Number Publication Date
JPS59229130A true JPS59229130A (en) 1984-12-22

Family

ID=14352792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58103392A Pending JPS59229130A (en) 1983-06-09 1983-06-09 Utilizing method of fermentation heat and device therefor

Country Status (1)

Country Link
JP (1) JPS59229130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135332B2 (en) * 2001-07-12 2006-11-14 Ouellette Joseph P Biomass heating system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135332B2 (en) * 2001-07-12 2006-11-14 Ouellette Joseph P Biomass heating system
US7744671B1 (en) * 2001-07-12 2010-06-29 Ouellette Joseph P Biomass heating system

Similar Documents

Publication Publication Date Title
CN107484580A (en) Booth type heliogreenhouse and its application with solar energy collection hold over system
CN105705003A (en) Fodder growing system and method
CN204762530U (en) Big -arch shelter heating system of joint gas hanging stove of solar energy constant temperature methane -generating pit
CN110268882A (en) Novel agricultural Greenhouse System and solar energy accumulation energy supplying system
CN204466323U (en) Plant the dual-purpose booth of cultivation
Ma Direct wind heating greenhouse underground heating system
CN104014580B (en) A kind of organic solid castoff stabilizing treatment system
JP2001037348A (en) Greenhouse
US5144940A (en) Compost water heater and method
CN205682013U (en) A kind of Multifunctional greenhouse
CN107896747A (en) Heat-energy utilizing device and method in heliogreenhouse
JP2013127349A (en) Heat supply device and heat supply system
JP5430365B2 (en) Fermentation heat utilization system
JPH11235130A (en) Device for culturing plant
JPS59229130A (en) Utilizing method of fermentation heat and device therefor
JPS5924189A (en) Method and device for utilizing fermentation heat of rice bran
CN114149895B (en) Aerobic fermentation heat recycling equipment for agricultural and forestry waste coupled cultivation excrement
RU2446672C1 (en) Bioenergy complex
CN205556562U (en) Box retort of living beings
RU2595143C1 (en) Reactor for aerobic fermentation of biomass
CN2764771Y (en) Comprehensive development and utilization apparatus for organic, ecological and environment-friendly biogas energy source
CN107418881A (en) A kind of methane-generating pit heating system and method
CN209854010U (en) Fermenting installation of animal waste conversion fertilizer
CN206922689U (en) A kind of Alpine-arctic Pastoral distributed energy comprehensively utilizes ecological residence system
CN220044337U (en) Active regulation and control system for cold prevention, temperature increase and air increase of greenhouse