JPS59227044A - Recording beam monitoring device - Google Patents

Recording beam monitoring device

Info

Publication number
JPS59227044A
JPS59227044A JP58102079A JP10207983A JPS59227044A JP S59227044 A JPS59227044 A JP S59227044A JP 58102079 A JP58102079 A JP 58102079A JP 10207983 A JP10207983 A JP 10207983A JP S59227044 A JPS59227044 A JP S59227044A
Authority
JP
Japan
Prior art keywords
recording
semi
light
reflected
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58102079A
Other languages
Japanese (ja)
Other versions
JPH0680540B2 (en
Inventor
Takafumi Sugano
菅野 隆文
Ichiro Ueno
一郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Nippon Victor KK
Panasonic Holdings Corp
Original Assignee
Victor Company of Japan Ltd
Nippon Victor KK
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd, Nippon Victor KK, Matsushita Electric Industrial Co Ltd filed Critical Victor Company of Japan Ltd
Priority to JP58102079A priority Critical patent/JPH0680540B2/en
Publication of JPS59227044A publication Critical patent/JPS59227044A/en
Publication of JPH0680540B2 publication Critical patent/JPH0680540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Head (AREA)

Abstract

PURPOSE:To raise the accuracy of focus setting by providing the second reflector for reflecting further one of optical beams reflected by the first semi-transmitting mirror, in the direction of the first semi-transmitting mirror, and an optical means for observing each light reflected by the same surface of the first semi-transmitting mirror. CONSTITUTION:A slit 11 and a lens 12 constitute a part of a beam shaping optical system. The first recording beam 14 is rectangular. A polarized beam splitter 13 adds the first recording beam 14 and the second recording beam shown in a figure 15. Light which has passed through the polarized beam splitter 13 or has been reflected is led to a wedge plate 16, respectively, reflected by each end face, reflected partially by a semi-transmitting mirror 17, and led to a collimating system 26. On the other hand, light which has passed through the semi-transmitting mirror 17 is focused by a lens 18, and converted photoelectrically by a photoelectric converting element 19. The recording beam which has passed through the wedge plate 16 is totally reflected by a total reflection mirror 27, led to a recording lens 24, and focused onto a recording medium 25.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光ビームにより記録媒体上に清報を記録する
記録装置に関するもので、特に前記光ビームの監視手段
に特徴を有する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a recording device that records news on a recording medium using a light beam, and is particularly characterized by a means for monitoring the light beam.

従来例の構成とその間頂点 近年、光学式ビデオディスクやPCMオーディオ信号や
静止画ファイルなどの製品化が進んでおり、その為の原
盤を安定に供給する手段の必要性が叫ばれでいる。
Conventional configurations and top points In recent years, optical video discs, PCM audio signals, still image files, and other products have been increasingly commercialized, and there has been a growing need for a means to stably supply master discs for these products.

\、 このような原盤全記録する為の記録装置においては記録
レンズと記録媒体との間隔を記録レンズの焦点深度内の
一定値に常に保つ為のフォーカスサーボが非常に重要と
なる。現状ではボイスコイルなどの要素技術やサーボ技
術の向上により安定したフォーカスサーボを実現するこ
とが可能になったが、フォーカスの設定精度がまだ不十
分であり、原盤の歩留シに下げているのが現状である。
In such a recording device for recording the entire master disc, a focus servo is very important to keep the distance between the recording lens and the recording medium at a constant value within the depth of focus of the recording lens. At present, it has become possible to realize stable focus servo due to improvements in elemental technology such as voice coils and servo technology, but focus setting accuracy is still insufficient, and the yield rate of master discs is being reduced. is the current situation.

第1図に光学的記録装置の原理図を示す。FIG. 1 shows a diagram of the principle of an optical recording device.

レーザー1よりの光は露光ajfflJ側j用光変調器
2を通過後、全反射ミラー3により反射され、信号変調
用光変調器4に導かれ、所望の信号に応じて光強度が変
調される。その後全反射ミラー5により反射すtz、ビ
ームエクスパンダ−系6,7で所望のビーム径に広げら
れた鏝、ボイスコイル9にマウントさ扛た記録レンズ8
に入射し、記録媒体10の表面にほぼ回折限界のスポッ
トとして照射される。
The light from the laser 1 passes through the exposure ajfflJ side j optical modulator 2, is reflected by the total reflection mirror 3, is guided to the signal modulation optical modulator 4, and the light intensity is modulated according to the desired signal. . Thereafter, the beam is reflected by a total reflection mirror 5, the beam is expanded to a desired beam diameter by beam expander systems 6 and 7, and a recording lens 8 is mounted on a voice coil 9.
The light is incident on the surface of the recording medium 10 as a nearly diffraction-limited spot.

現在光学的記録装置に使用されている記録レンズの開口
率(N、A)は約0.9で、集光されるスポットの14
2  の強度は、波長が4579への場合、λ 0.82− 二〇 、421t m N、A となる。
The aperture ratio (N, A) of the recording lens currently used in optical recording devices is approximately 0.9, and the focused spot is 14
2 becomes λ 0.82-20, 421t m N,A when the wavelength is 4579.

又、記録レンズの焦点深度は λ/2(N、A)   −±0.28pmとなる。Also, the depth of focus of the recording lens is λ/2(N, A) -±0.28pm.

従って、フォーカス設定誤差は記録レンズの焦点深度内
、すなわち°土0.28μm 程度におさえる必要があ
る。
Therefore, the focus setting error must be kept within the depth of focus of the recording lens, that is, approximately 0.28 μm.

従来のフォーカス位置設定方法は、特頭昭53−137
23号などがある。この方法の原理は、記録レンズに所
望のビーム径を有する平行光を入射させた場合、記録媒
体よりの反射光が記録レンズが記録媒体上に焦点を結ん
でいる場合は平行光となるが、記録レンズが記録媒体に
近すきる所にあれば反射光が発散ぎみになり、逆の場合
は集束きみになることに着目し、記録レンズとビームエ
クスパンダ−系の間に平行板を約45°傾けて挿入し、
その両面で反射されたビームの干渉により焦点位1ft
t検出するものである。
The conventional focus position setting method is
There are issues such as No. 23. The principle of this method is that when parallel light with a desired beam diameter is incident on the recording lens, the reflected light from the recording medium becomes parallel light when the recording lens focuses on the recording medium. Focusing on the fact that if the recording lens is too close to the recording medium, the reflected light will tend to diverge, whereas in the opposite case it will be focused, we installed a parallel plate of about 45 mm between the recording lens and the beam expander system. °Insert it at an angle,
The focal position is 1ft due to the interference of the beams reflected on both sides.
t to be detected.

この方法においては次の問題点がある。This method has the following problems.

1 干渉縞の重なり部分が狭い為、設定精度が悪い。1. Setting accuracy is poor because the overlapping area of interference fringes is narrow.

2 記録レンズに入射する平行ビーム径によって検出精
度が悪くなる。
2. Detection accuracy deteriorates depending on the diameter of the parallel beam incident on the recording lens.

3 記録レンズに入射するビーム形状に制限がある。3. There are restrictions on the beam shape that enters the recording lens.

以上の問題点をさらに詳細に説明すると、第1の問題点
については、第2図に示す如く、ビーム半径Tと平行平
板の両面により反射される結像面上の距離りを一致させ
た場合でも、干渉面積の最大幅は2、縦方向寸法は二2
rである。ビーム径r〜とビームの距離りはr’?hの
時に検出感度が最大になる。現在一般的に使用されてい
る記録レンズの一例をあげると、開口率(N、A)−〇
、9 j焦点距離’::3mm、有効開口−f5mmφ
である。従って干渉面積は1幅=2 、5 ml +縦
方向寸法二mmとなる〇ビーム径を記録レンズの有効開
口よりも大きくすることは、記録レンズ外の光が増加す
るので、光源への負担が増加し重重しくない0又有効開
口の大きな記録レンズを使用することは、レンズ自身が
高価になると同時に、重量が増加し、記録時に必要不可
欠なフォーカシング用のボイスコイルに負担を重くする
ことになる。
To explain the above problem in more detail, the first problem is when the beam radius T and the distance on the imaging plane reflected by both surfaces of the parallel plate are made to match, as shown in Figure 2. However, the maximum width of the interference area is 2, and the vertical dimension is 22.
It is r. What is the beam diameter r~ and the distance between the beams r'? The detection sensitivity is maximum at h. An example of a recording lens commonly used at present is: aperture ratio (N, A) - 〇, 9 j focal length':: 3 mm, effective aperture - f5 mmφ
It is. Therefore, the interference area is 1 width = 2.5 ml + vertical dimension 2 mm. Making the beam diameter larger than the effective aperture of the recording lens increases the amount of light outside the recording lens, which reduces the burden on the light source. Using a recording lens with a large effective aperture that is not bulky or heavy means that the lens itself becomes expensive, increases weight, and puts a heavy burden on the voice coil for focusing, which is essential during recording. .

第3図を用いて干渉縞、の形と記録レンズと記録媒体と
の位置関係について説明する。第3図において、 fa
)fd記録レンズが記録媒体上に焦点を結んでいる位置
を示し、“干渉縞は一様に明るくなる。
The shape of interference fringes and the positional relationship between the recording lens and the recording medium will be explained using FIG. In Figure 3, fa
) Indicates the position where the fd recording lens focuses on the recording medium, and indicates that the interference fringes become uniformly bright.

(blは記録レンズが近すぎる場合を示し干渉縞は樽型
となり 、 (C1は逆に記録レンズが遠すぎる場合を
示し、干渉縞は鞍型になる。この様な干渉縞の変化を前
述の如く干渉面積の幅が2.6mmt縦方向寸法15m
mの狭い面積の中で目視により判断し、フォーカスの設
定位置を±o、28μtn  内におさえるには、かな
りの経験者でも難かしい。又、光変調器やその他の光学
素子を通過してくる実際の光学記録装置に上記検出方法
を構成した場合、理論計算」二の検出感度よりも焦点位
置近傍で検出感度が下がる傾向にある。現在、ビデオデ
ィスクやPCMオーディオディスクなど量産化を目的と
する光学記録機においては、誰でも簡単にしかも正確に
フォーカス位置の設定の可能な検出方式が重重れるっ次
に第2の問題点について述へる。
(BL indicates when the recording lens is too close, and the interference fringes become barrel-shaped; (C1 indicates when the recording lens is too far away, and the interference fringes become saddle-shaped. The width of the interference area is 2.6mm and the vertical dimension is 15m.
It is difficult even for someone with considerable experience to visually judge and keep the focus setting position within ±o, 28 μtn within a narrow area of m. Furthermore, when the above detection method is configured in an actual optical recording device where light passes through a light modulator or other optical elements, the detection sensitivity tends to be lower near the focal position than the detection sensitivity in the theoretical calculation (2). Currently, optical recorders aimed at mass production such as video discs and PCM audio discs require a detection method that allows anyone to easily and accurately set the focus position.Next, we will discuss the second problem. decrease.

平行平板を用いた検出方式では、ビーム半径rが両面で
反射されたビーム間距離りと一致する時に最大検出感度
が得られる。又ビーム間距離りと平行平板の厚みdとの
関係は で内えられる。ここでn(l−1:屈折率である。従っ
てn : 1.6の場合、hユdとなる。最大検出感度
を得る為のビーム半径rと厚みdとの関係ばrコdとな
る。しかし、現状の研摩技術において、平面度をλ/4
 以」二に研摩する場合の厚みはsmm以上必要とされ
ている。従ってビーム半径が3mm以下の場合は精度の
良い平行平板が得られず検出感度が著しく悪く々る〇 次に第3の問題について述べる。今までの説明において
、記録レンズに入射するビームはすべて円形であると考
えてきた。しかし、記録されるピットの記録媒体上の半
径方向寸法と円周方向寸法を異なる比で記録する場合が
ある。例えば、あるビデオディスクシステムにおいては
、最小記録波長Q、58μm 全得る為に情報記録ビー
ム形状を記録レンズに対して矩形としている。この場合
のビー)、形状は記録レンズの有効開口5mmφに対し
て。
In the detection method using parallel plates, maximum detection sensitivity is obtained when the beam radius r matches the distance between the beams reflected on both surfaces. Also, the relationship between the distance between the beams and the thickness d of the parallel plate can be expressed as follows. Here, n(l-1: refractive index. Therefore, when n: 1.6, hyud.The relationship between beam radius r and thickness d to obtain the maximum detection sensitivity is rkod. However, with the current polishing technology, the flatness is reduced to λ/4.
Second, the thickness when polishing is required to be at least smm. Therefore, if the beam radius is 3 mm or less, a highly accurate parallel plate cannot be obtained and the detection sensitivity is extremely poor.Next, we will discuss the third problem. In the explanation so far, it has been assumed that all beams incident on the recording lens are circular. However, there are cases where the radial and circumferential dimensions of the recorded pits are recorded at different ratios on the recording medium. For example, in a certain video disk system, the information recording beam shape is made rectangular with respect to the recording lens in order to obtain the minimum recording wavelength Q of 58 μm. In this case, the shape is based on the effective aperture of the recording lens of 5 mmφ.

8X3mm!度となる。このような場合、干渉部分の縦
方向仕法は3mmと女り、前述の円形ビームに比べてさ
らに干渉縞の変化によるフォーカス設定精度が悪くなる
〇 発明の目的 本発明は、上述の問題点を解消し、フォーカス設定精度
を高めるとともに、記録レンズをも含めた光学系の光軸
確認が容易に行える光記録装置の光ビームの監視装置を
提供する。
8X3mm! degree. In such a case, the length of the interference part in the vertical direction is 3 mm, and the focus setting accuracy due to changes in interference fringes becomes even worse than in the case of the circular beam described above.Purpose of the InventionThe present invention solves the above-mentioned problems. The present invention provides a monitoring device for a light beam of an optical recording device, which improves focus setting accuracy and allows easy confirmation of the optical axis of an optical system including a recording lens.

発明の構成 本発明は、上記目的達成のために、記録レンズに入射す
る光ビームと記録婬体よりの反射光の一部をそれぞれ反
対方向に反射する第1の半透過鏡により反射された光ビ
ームのどちらか一方を前記第1の半透過鏡方向にさらに
反射する第2の反射鏡と、前記第1の半透過鏡の同一表
面で反射される各々の光を観察する光学手段とを有する
こと全特徴とする。
SUMMARY OF THE INVENTION In order to achieve the above-mentioned object, the present invention provides a first semi-transmissive mirror that reflects a portion of a light beam incident on a recording lens and a portion of light reflected from a recording medium in opposite directions. a second reflecting mirror that further reflects either one of the beams toward the first semi-transmitting mirror; and an optical means for observing each light beam reflected by the same surface of the first semi-transmitting mirror. This is a full feature.

実施例の説明 第4図を用いて本発明の一実施例について説明する。第
4図に於いて、スリット11とレンズ12はビーム整形
光学系の一部を構成している。ここでレンズ12の焦点
距離ヲ11  とし、ボイスコイルにマウントされた記
録レンズ24の焦点距離をf22図中座標のy軸方向の
スリット幅をδとすると、記録媒体25上でトラック方
向に照射されるスポット径5DT SDT−δ、f2/f。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. In FIG. 4, a slit 11 and a lens 12 constitute a part of a beam shaping optical system. Here, if the focal length of the lens 12 is 11, and the focal length of the recording lens 24 mounted on the voice coil is f22, and the slit width in the y-axis direction of the coordinate in the figure is δ, then the irradiation on the recording medium 25 in the track direction is Spot diameter 5DT SDT-δ, f2/f.

となる。ここでスリット11のX方向の幅は入射ビーム
に対して十分に広いので、記録媒体上の信号方向のスポ
ット径SDs は SDs二ノ/N、A となる。ここでλは波長、 N、A  けレンズの開口
数である□従って第1の記録ビーム14は矩形となって
いる。偏光ビームスプリンター13は前述の第1の記録
ビーム14と図中15で示される第2の記録ビームを加
算する@第2の記録ビームは!・ランキング用の信号を
記録する為のものである。
becomes. Here, since the width of the slit 11 in the X direction is sufficiently wide with respect to the incident beam, the spot diameter SDs in the signal direction on the recording medium is SDs2/N,A. Here, λ is the wavelength, and N and A are the numerical apertures of the lenses. Therefore, the first recording beam 14 has a rectangular shape. The polarization beam splinter 13 adds the above-mentioned first recording beam 14 and the second recording beam indicated by 15 in the figure.@Second recording beam is!・This is for recording signals for ranking.

偏光ビームスプリッタ13を通過あるいは反射した光は
、各々ウェッジ板16に導ひかれ、各々の端面で反射さ
れ半透過鏡17で1部反射され、コリメート系26に導
びかれる。−力学透過鏡17を通過した光は、レンズ1
8により集束されて。
The light that has passed through or reflected from the polarizing beam splitter 13 is guided to the wedge plate 16, reflected at each end face, partially reflected by the semi-transmissive mirror 17, and guided to the collimating system 26. - The light passing through the dynamic transmission mirror 17 is transmitted through the lens 1
Focused by 8.

光電変換素子19により光電変換される。この信号は記
録光のモニターとして使用される。ここでウェッジ板1
6はウェッジ角θを有している為、ウェッジ板16の第
1面で反射された光は、第2面で反射された光に対して
2θの角度を持ち、さらに半透過鏡17で反射された後
には4θの角度金持つ。このウェッジ板16の第1面は
ARコートが、第2面は反射率が約1%となる様に多層
膜コートされている。コリメーター系26はレンズ20
.21.23で構成されており、レンズ20の焦点距離
f3は約so、、1.1.ンンズ21,23は顕微鏡対
物レンズの40倍、接眼レンズの10倍に相当する0従
ってコリメーター視野内に於ける第1の記録ビームδ′
は δ′=δ・f3/f1・M となる。ここでMはレンズ21.23は顕微鏡倍率で4
00倍である。
The photoelectric conversion element 19 performs photoelectric conversion. This signal is used as a monitor of the recording light. Here wedge board 1
6 has a wedge angle θ, the light reflected from the first surface of the wedge plate 16 has an angle of 2θ with respect to the light reflected from the second surface, and is further reflected by the semi-transmissive mirror 17. After that, it has a 4θ angle. The first surface of this wedge plate 16 is coated with an AR coating, and the second surface is coated with a multilayer film so that the reflectance is approximately 1%. Collimator system 26 is lens 20
.. 21.23, and the focal length f3 of the lens 20 is approximately so, 1.1. The lenses 21 and 23 correspond to 40 times the microscope objective lens and 10 times the eyepiece lens, so that the first recording beam δ' in the collimator field of view is
becomes δ′=δ・f3/f1・M. Here, M is the lens 21.23 is the microscope magnification of 4
00 times.

ウェッジ板16を通過した記録ビームは全反射ミジー2
γで全反射され、記録レンズ24に導びかれ記録媒体2
5上に集光される。記録媒体26より反射された光は入
射と同光路を戻り、ウェッジ板16によりコリメーター
系26へと導ひかれる。
The recording beam that has passed through the wedge plate 16 is totally reflected midge 2.
It is totally reflected by γ, guided to the recording lens 24, and recorded on the recording medium 2.
The light is focused on 5. The light reflected from the recording medium 26 returns along the same optical path as the incident light, and is guided to the collimator system 26 by the wedge plate 16.

ここで記録媒体上でのトラック方向幅4wするとコリメ
ーター視野内でのスポツ) W’ idW′=f3/f
2・M−W=f3/f1・MB2となり、δ′=W′ 
 となる・従ってコリメーター視野上では入射光ビーム
と反射光ビームの倍率は等しくなる。又記録レンズ24
の焦点距離第2二3mmとするとコリメーター系の総合
倍率MAはMA、、=M−f3/f2m7000倍とな
る。又、コリメーター視野内にはウェッジ板26の第2
面で反射された光のみが見える。第1面で反射された光
は、コリメーター系に対して入射光は4θ、記録媒体2
6よりの反射光は2θだけ角度を持つ為、コリメーター
視野外に結像される◎ウェッジ角θば、記録されるl・
ラックピッチをPとすると θ/2’2 P/ 第2 全満足すればよく、1分もあれば十分である。
Here, if the track direction width on the recording medium is 4w, then the spot within the field of view of the collimator) W'idW' = f3/f
2・M−W=f3/f1・MB2, and δ′=W′
Therefore, on the field of view of the collimator, the magnification of the incident light beam and the reflected light beam are equal. Also, recording lens 24
When the focal length is 223 mm, the total magnification MA of the collimator system is 7000 times MA, . . . =M-f3/f2m. In addition, the second wedge plate 26 is located within the field of view of the collimator.
Only the light reflected by the surface is visible. The light reflected from the first surface is incident on the collimator system at 4θ, and the recording medium 2
Since the reflected light from 6 has an angle of 2θ, it is imaged outside the field of view of the collimator ◎If the wedge angle θ is the recorded l・
If the rack pitch is P, then θ/2'2 P/2 should be completely satisfied, and one minute is sufficient.

この極に構成されたビーム監視系においては、■ 記録
レンズに入射する記録ビームの観察■ 記録媒体より反
射された記録ビームの観察■ 第1の記録ビームと第2
の記録ビームの相対位置調整 ■ フォーカス位置の精密設定 などに利用出来る。このような複雑な光学装置に於いて
は、記録ビームの光軸ズレの確認が問題となるが1本発
明においては入射光と反射光をコリメーター系で観察す
ることによって簡単に光軸の確認が行なえる。平行平板
を用いる方法で干渉縞を観察しているだけなので光軸の
確認寸では出来ない。
In this pole-configured beam monitoring system, ■ Observation of the recording beam incident on the recording lens ■ Observation of the recording beam reflected from the recording medium ■ Observation of the first recording beam and the second recording beam
Adjustment of relative position of recording beam■ Can be used for precise setting of focus position. In such a complex optical device, it is a problem to check the optical axis deviation of the recording beam, but in the present invention, the optical axis can be easily checked by observing the incident light and reflected light with a collimator system. can be done. Since the interference fringes are only observed using a method using parallel plates, it cannot be done using the optical axis confirmation dimension.

又、平行平板方式の欠点であった設定精度については、
記録媒体よりの反射光を高倍率で観察している為、設定
位置が焦点深度よりもはずれた場合のコリメーター視野
内の像は急激に変化し、誰でも容易に同−設定位置に設
定することが可能となる。
In addition, regarding the setting accuracy, which was a drawback of the parallel plate method,
Since the reflected light from the recording medium is observed at high magnification, the image within the field of view of the collimator changes rapidly if the setting position is out of focus depth, so anyone can easily set it to the same setting position. becomes possible.

さらに記録レンズに入射するビーム径が変化した場合、
コリメーター系の総合倍率を変えることで所望の検出精
度を得ることが可能であり、平行平板方式の欠点であっ
た入射ビーム径が小さくなると検出感度が下がるという
問題も解決される。
Furthermore, if the beam diameter incident on the recording lens changes,
By changing the overall magnification of the collimator system, it is possible to obtain the desired detection accuracy, and the problem of the detection sensitivity decreasing as the incident beam diameter becomes smaller, which was a drawback of the parallel plate method, is also solved.

さらに第1の半透過鏡の厚みには何の制限もないので1
例えばビーム径が小さくても、平行平板方式の如く研摩
精度により検出感度が左右されることはない。
Furthermore, since there is no limit to the thickness of the first semi-transparent mirror,
For example, even if the beam diameter is small, the detection sensitivity is not influenced by polishing accuracy unlike the parallel plate method.

又、第1の半透過鏡はコリメーター観察系視野内に所望
の面で反射された光のみを入射させるのが重重しいので
、ウェッジ板を採用した方が望ましい。
Further, since it is difficult for the first semi-transmissive mirror to allow only the light reflected by a desired surface to enter the field of view of the collimator observation system, it is preferable to use a wedge plate.

父、本発明の記録ビーム監視光学系の好適な構成として
は、少なくとも第1の半透過鏡と第2の半透過鏡もしく
は全反射鏡とコリメーター系を同一基板上に配置し、し
かもこの基鈑を第1の半透過鏡の所望の面の光軸中心を
軸として回転させる構成が望ましい。コリメータ系には
さらに3次元微動装置に取りつけることも可能である。
A preferred configuration of the recording beam monitoring optical system of the present invention is that at least the first semi-transmitting mirror, the second semi-transmitting mirror or the total reflecting mirror and the collimator system are arranged on the same substrate, and A configuration in which the plate is rotated around the optical axis center of a desired surface of the first semi-transmissive mirror is desirable. The collimator system can also be attached to a three-dimensional fine movement device.

又、コリメーク観察系の前に必要により光アッテネータ
−を挿入することも可能である。
It is also possible to insert an optical attenuator before the collimating observation system, if necessary.

発明の効果 以−ヒの如く本発明のビーム監視光学系を用いることに
より、従来より問題となっていたフォーカス設定精度を
酋めると同時に、記録レンズに入射する光と記録W体よ
り反射された光のビームを同時に観察することにより、
記録レンズをも含めた光学系の光軸確認が容易に行え、
さらにビーム径に」:って検出精度が左右されることも
ない。又2ビーム記録などのビームの相対位置調整にも
利用出来るものである。
As can be seen from the effects of the invention, by using the beam monitoring optical system of the present invention, focus setting accuracy, which has been a problem in the past, can be improved, and at the same time, the light incident on the recording lens and the light reflected from the recording W body can be improved. By observing the beams of light simultaneously,
The optical axis of the optical system, including the recording lens, can be easily confirmed.
Furthermore, the detection accuracy is not influenced by the beam diameter. It can also be used to adjust the relative position of beams in two-beam recording.

本発明は単一の記録ビームを有する装置にも適用はi:
IT能であるし、光磁気記録やその他の1.き込み可[
1ヒな記録再生装置にも有効である。父本発明の一実施
例で述べた構成に11φ岨されるものではない。ヒIJ
えばコリメーター系にさらに半透過鏡を挿入しITVカ
メラなどに導く構成も可能であるし、第2の半透過鏡を
透過した光をさらに分岐し他のモニターとして1更用す
ることも可能である。又、記録と読み出しに異なる波長
の光源を有する様な記録再生装置においても適用可能な
ものである。
The invention also applies to devices with a single recording beam:
IT ability, magneto-optical recording and other 1. It is possible to write [
It is also effective for small recording and reproducing devices. The diameter of 11 mm is not limited to the configuration described in the embodiment of the present invention. Hi IJ
For example, it is possible to insert an additional semi-transmissive mirror into the collimator system and guide it to an ITV camera, etc., or it is also possible to further branch the light transmitted through the second semi-transmissive mirror and use it as another monitor. be. Furthermore, the present invention can also be applied to a recording/reproducing apparatus having light sources of different wavelengths for recording and reading.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は記録装置の原理構成図、第2図は従来の平行平
板方式のビームの状態ヲ示す図、第3図は平行平板方式
のフォーカス状態を示す図、第4図は本発明による記録
装置の記録ビーム監視装置の一実施例の構成図である。 1・・・・・・レーザー、2,4・・・・・・光変調器
、3,5・・・・・全反射ミラー、6.7・・・・・レ
ンズ、8・・・・・・記録レンズ、9・・・・・・ボイ
スコイル、10・・・・・・記録媒体、11・・・・・
スリット、12.18・・・・・・レンズ、13・・・
・・ビームスフ!j ツタ、 14 、15・・目・・
記録ビーム、16・・・・ウェッジ板、17・・・・・
・半透過鏡、19・・・・・・光電変換素子、20,2
1,22°゛・・レンズ、23・・−・・・基板、24
・・・・・・記録レンズ、25・・・−・・記録媒体、
26・・・・・・コリメーター系、27・・・・・・全
反射ミラー。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 第2図 3図
Figure 1 is a diagram showing the principle configuration of the recording device, Figure 2 is a diagram showing the beam state of the conventional parallel plate system, Figure 3 is a diagram showing the focus state of the parallel plate system, and Figure 4 is the recording according to the present invention. FIG. 2 is a configuration diagram of an embodiment of a recording beam monitoring device of the apparatus. 1... Laser, 2, 4... Light modulator, 3, 5... Total reflection mirror, 6.7... Lens, 8...・Recording lens, 9...Voice coil, 10...Recording medium, 11...
Slit, 12.18...Lens, 13...
...beamsuf! j ivy, 14th, 15th...
Recording beam, 16... Wedge plate, 17...
・Semi-transparent mirror, 19...Photoelectric conversion element, 20,2
1,22°゛...Lens, 23...Substrate, 24
...recording lens, 25...-recording medium,
26... Collimator system, 27... Total reflection mirror. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)記録用光源と、その記録用光源から出射した光を
信号に応じて変調する光変調器と、その光変調器からの
出力光をほぼ回折限界まで集光して記録媒体上に照射す
る記録レンズと、前記記録レンズに入射する光と前記記
録媒体よりの反射光の一部全各々反対方向に反射する為
の第1の半透過鏡と、その第1の半透過鏡によシ反射さ
れた光のどちらか一方を前記第1の半透過鏡方向にさら
に反射する為の第2の反射鏡と、第1の半透過鏡の同一
表面で反射される各々の光を観察する為の光学手段を有
することを特徴とする記録ビーム監視肢覆。
(1) A recording light source, an optical modulator that modulates the light emitted from the recording light source according to a signal, and the output light from the optical modulator is focused almost to the diffraction limit and irradiated onto the recording medium. a first semi-transmissive mirror for reflecting the light incident on the recording lens and a portion of the reflected light from the recording medium in opposite directions; a second reflecting mirror for further reflecting either one of the reflected lights toward the first semi-transmitting mirror; and a second reflecting mirror for observing each light reflected by the same surface of the first semi-transmitting mirror. Recording beam monitoring limb, characterized in that it has optical means.
(2)!1の半透過鏡をウェッジ板とすることを特徴と
する特許請求の範囲5g1項記載の記録ビーム監視装置
(2)! The recording beam monitoring device according to claim 5g1, wherein the first semi-transmissive mirror is a wedge plate.
(3)少なくとも第1の半透過鏡と第2の反射鏡と観察
光学系を同一基板上に配置し、その基板を前記第1の半
透過鏡の所望の反射面の光軸中心を軸として回転可能に
することを特徴とする特許請求の範囲第1項記載の記録
ビーム監視装置。
(3) At least the first semi-transmitting mirror, the second reflecting mirror, and the observation optical system are arranged on the same substrate, and the substrate is centered around the optical axis center of the desired reflecting surface of the first semi-transmitting mirror. 2. The recording beam monitoring device according to claim 1, wherein the recording beam monitoring device is rotatable.
JP58102079A 1983-06-07 1983-06-07 Recording beam monitoring device Expired - Lifetime JPH0680540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58102079A JPH0680540B2 (en) 1983-06-07 1983-06-07 Recording beam monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58102079A JPH0680540B2 (en) 1983-06-07 1983-06-07 Recording beam monitoring device

Publications (2)

Publication Number Publication Date
JPS59227044A true JPS59227044A (en) 1984-12-20
JPH0680540B2 JPH0680540B2 (en) 1994-10-12

Family

ID=14317764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58102079A Expired - Lifetime JPH0680540B2 (en) 1983-06-07 1983-06-07 Recording beam monitoring device

Country Status (1)

Country Link
JP (1) JPH0680540B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199249A (en) * 1985-02-28 1986-09-03 Matsushita Electric Ind Co Ltd Optical information recorder
JPS63266646A (en) * 1987-04-22 1988-11-02 Pioneer Electronic Corp Multibeam type optical head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176547A (en) * 1981-04-20 1982-10-29 Victor Co Of Japan Ltd Optical recorder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57176547A (en) * 1981-04-20 1982-10-29 Victor Co Of Japan Ltd Optical recorder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61199249A (en) * 1985-02-28 1986-09-03 Matsushita Electric Ind Co Ltd Optical information recorder
JPS63266646A (en) * 1987-04-22 1988-11-02 Pioneer Electronic Corp Multibeam type optical head

Also Published As

Publication number Publication date
JPH0680540B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
KR910006649B1 (en) Opticla pick-up unit
US4564931A (en) Optical recording and reproducing head
US4824191A (en) Optical pickup
US4464741A (en) Optical focusing-error detection device
US5029255A (en) Optical scanning device including mirror objective having two windows at least one having an aspherical surface
US4734905A (en) Optical head device
KR100263154B1 (en) Optical pick-up using optical phase plate
US4688880A (en) Hologram lens
JPH10255304A (en) Method and device of adjusting objective lens for optical pickup
US5353274A (en) Beam diameter expansion of a multi-beam optical information system
JPS62222440A (en) Optical head for optical disk device
JPS59227044A (en) Recording beam monitoring device
JPS60202553A (en) Waveguide path type optical head
JP2901728B2 (en) Optical head and information recording / reproducing apparatus using the same
US5701286A (en) Super-resolution optical head device which produces side spots without side lobes
JPS63229640A (en) Optical head device
JP2001067714A (en) Optical pickup device
JP2000501545A (en) Apparatus for writing to and / or reading from optical storage media having different structures
JPS627609B2 (en)
JPH10134394A (en) Optical pickup device and its adjusting method
JP2933325B2 (en) Wavefront aberration measuring device for optical system for optical information recording / reproducing device
JPH10134398A (en) Optical head
JP2660140B2 (en) Optical head device
JPH0138564Y2 (en)
JP2997277B2 (en) Measuring device for optical system for optical information recording / reproducing device and light beam measuring method