JPS59226766A - Magnetic fluid seal apparatus - Google Patents

Magnetic fluid seal apparatus

Info

Publication number
JPS59226766A
JPS59226766A JP58098037A JP9803783A JPS59226766A JP S59226766 A JPS59226766 A JP S59226766A JP 58098037 A JP58098037 A JP 58098037A JP 9803783 A JP9803783 A JP 9803783A JP S59226766 A JPS59226766 A JP S59226766A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic fluid
shaft
pole piece
obstacle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58098037A
Other languages
Japanese (ja)
Inventor
Shojiro Miyake
正二郎 三宅
Sadao Takahashi
高橋 貞男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58098037A priority Critical patent/JPS59226766A/en
Publication of JPS59226766A publication Critical patent/JPS59226766A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/43Sealings between relatively-moving surfaces by means of fluid kept in sealing position by magnetic force

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Sealing Of Bearings (AREA)

Abstract

PURPOSE:To provide a reliable magnetic fluid seal apparatus that will not be damaged by the repetition of the reciprocating motion by means of providing an obstacle to a movable shaft that obstracts the movement of the magnetic fluic to a pole piece. CONSTITUTION:A magnetic body 6 that has an annular groove in the center that constitutes an obstacle 7a is fixedly attached to a shaft 2. The outer circumference of the magnetic body 6 is discontinuous in the axial direction, and so, the obstacle 7a always constitutes a place where the magnetic field is weak relative to the movement of the shaft 2. Accordingly, it constitutes an inpassable obstacle for the magnetic fluid 5 to move onto a neighboring pole piece 4 as it is normally attracted to the magnetic filed. The inner diameter of the pole piece 4 is tapered, and by making use of the magnetic graduation effect in which the magnetic field becomes stronger toward the smaller diameter side, the magnetic fluid is returned to the smaller diameter side. 5' indicates the behavior of the magnetic fluid 5 when the shaft 2 moves to the low pressure side.

Description

【発明の詳細な説明】 本発明は、ハウジングとこのハウジングに運動可能に支
持された軸との間に保持される磁性流体によってこれら
の間をシールする磁性流体シール機構に関し、特に軸の
軸方向運動に基づく磁性流体の流出及び剥離を未然に防
止するように企図したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic fluid sealing mechanism that seals a housing and a shaft movably supported by the housing by a magnetic fluid held between the housing and the shaft, particularly in the axial direction of the shaft. This is designed to prevent outflow and separation of the magnetic fluid due to movement.

密封室の内部と外部とを回転軸やピストンロッド尋の回
転運動やMII&運動する軸を介して連通する場合、密
封室と軸とのシールについてまず第1K考慮しなければ
ならない・特に大規模集積回路の製造に必要な各種薄膜
形成装置や露光装置、或いは宇宙空間をシュミレートし
たスペースチャンバ等のように密封Mが真空槽の場合に
紘、シール機構が装置全体の信頼性を大きく左右するた
め、従来から0リンク中パッキング材等のゴム状弾性体
をシール材としたものでは気密性や耐久性の点で問題が
多く、とても可動部分のシールには使用できなかった・
最近ポリフェニルエーテルやアルキルナフタリンダイエ
ステル等の流体を分散媒として磁性体の微粉末を混和し
た磁性流体を磁力によりシール材としてシール部分に保
持するようにしたものが開発され、極めて優秀な密封性
が摩擦抵抗の小さい状態で得られることから、前述した
真空槽とこれに対して運動可能な軸との間のシール材と
して用いられている。
When communicating between the inside and outside of a sealed chamber via a rotary shaft, a rotating shaft of a piston rod, or a shaft that moves, the first consideration must be given to the seal between the sealed chamber and the shaft.Especially for large-scale accumulation. When the seal M is a vacuum chamber, such as various thin film forming equipment and exposure equipment necessary for manufacturing circuits, or a space chamber simulating outer space, the sealing mechanism greatly affects the reliability of the entire equipment. Conventionally, sealing materials using rubber-like elastic materials such as 0-link packing materials had many problems in terms of airtightness and durability, and could not be used to seal moving parts.
Recently, a product has been developed in which magnetic fluid, which is made by mixing fine powder of magnetic material with a fluid such as polyphenyl ether or alkylnaphthalene diester as a dispersion medium, is held in the seal part as a sealing material by magnetic force, and it has extremely excellent sealing performance. Since it can be obtained with low frictional resistance, it is used as a sealing material between the above-mentioned vacuum chamber and a shaft that can move relative to the vacuum chamber.

この磁性流体を使用した従来のシール機構の一例を破断
して第1図に示す@同図に示すように、ハウジングlに
対して運動可能に支持された軸2の周囲には、永久磁石
3とこの永久磁石3を挾んで対向する一対のポールピー
ス4とがハウジングlに増9付けられてお)%軸2の外
周面とこの軸2の外周面に近接状態で対向するポールピ
ース4の内周面との間に磁性流体5が前記永久磁石の磁
力により保持されている。
An example of a conventional sealing mechanism using this magnetic fluid is shown in FIG. A pair of pole pieces 4 facing each other with the permanent magnet 3 in between are attached to the housing l. A magnetic fluid 5 is held between the inner circumferential surface and the magnetic fluid 5 by the magnetic force of the permanent magnet.

ところで、軸2とヨーク4との間の磁性流体5は、軸2
が回転運動や低速の直線運動の場合には、この時の状態
を表わす第2図(a)に示すように、軸2とポールピー
ス4との間に正しく介在しているが、軸2が往復運動を
繰9返すと、第2図の)に示すように、磁性流体5が徐
々に高圧側から低圧側(図中右側)に向って移動し、つ
いにはシールが破損してしまう欠点があった。
By the way, the magnetic fluid 5 between the shaft 2 and the yoke 4 is
In the case of rotational motion or low-speed linear motion, the shaft 2 is correctly interposed between the shaft 2 and the pole piece 4, as shown in Fig. 2 (a), which shows the state at this time. When the reciprocating motion is repeated 9 times, as shown in Figure 2), the magnetic fluid 5 gradually moves from the high pressure side to the low pressure side (right side in the figure), and the seal eventually breaks. there were.

本発明は、上記従来技術の欠点に鑑み、摩擦抵抗の小さ
い磁性流体の特性を活かし真を槽と往復運動する軸との
間に使用しても容易に流出破損しない信頼性の高い磁性
流体シール機構を提供することを目的とする・かかる目
的を達成する本発明は、磁気回路の各ポールピースに対
応する可動軸の対応面にある磁性流体を隣接するポール
ピースに移動させないように可動軸に障害物を設けた点
をその技術思想の基礎とするものである。
In view of the above drawbacks of the prior art, the present invention utilizes the characteristics of magnetic fluid with low frictional resistance to provide a highly reliable magnetic fluid seal that does not easily leak and break even when used between a tub and a reciprocating shaft. Object of the present invention is to provide a mechanism for achieving such an object by moving the magnetic fluid on the corresponding surface of the movable shaft corresponding to each pole piece of the magnetic circuit to the movable shaft so as not to transfer it to the adjacent pole piece. The basis of its technical philosophy is the provision of obstacles.

以下本発明の実施例を図面に基づき詳細に説明する。な
お、従来技術と同一部分には同一番号を付し重複する説
明は省略する・第3図(a)は環状1組の磁気回路を示
した本発明の一実施例であって、本実施例では環状の磁
性体6が軸2に固着されている。この磁性体6社勿輪軸
2と一体でも良い・この磁性体6はその中央部に障害7
aである環状の溝を有している・かくて、可動部である
磁性体6の外周面は軸方向に関し不連続となっており、
前記障害7aは軸2の移動に対しても常に磁場の弱い個
所となり通常では磁性流体5は磁場に引き付けられ、隣
接のボールビーフ4側へ乗り越えられない障害となる。
Embodiments of the present invention will be described in detail below based on the drawings. In addition, the same numbers are assigned to the same parts as in the prior art, and duplicate explanations are omitted. ・Figure 3 (a) is an embodiment of the present invention showing a set of annular magnetic circuits, and this embodiment In this case, an annular magnetic body 6 is fixed to the shaft 2. This magnetic material 6 may be integrated with the ring shaft 2. This magnetic material 6 has an obstacle 7 in its center.
The outer circumferential surface of the magnetic body 6, which is the movable part, is discontinuous in the axial direction.
The obstacle 7a always becomes a location where the magnetic field is weak even when the shaft 2 moves, and normally the magnetic fluid 5 is attracted to the magnetic field and becomes an obstacle that cannot be overcome to the adjacent ball beef 4 side.

第3図伽)に示すように、磁性流体5に対する障害7b
は磁性流体5が付着しにぐい弗素樹脂等の無極性高分子
重合体7bをコーティングして凸部としても形成し得る
As shown in Figure 3), an obstacle 7b to the magnetic fluid 5
They can also be formed as convex portions by coating them with a non-polar polymer 7b such as fluororesin to which the magnetic fluid 5 does not adhere.

第3図(a)及び第3図(b)に示す磁性流体シール機
構において、軸2の往復移動範囲は、軸2が移動しても
障害7 a a 7 bとポールピース4とが相対向す
ることがないような範囲となっているO 第4図(a)は軸2が往復直線運動をする時の磁性流体
5の挙動を示す。同図に示す場合は磁性流体5が軸2の
往復運動のため徐々に低圧側(図中右側)に移動し、ポ
ールピース4(Z)高圧側(図中左111 )に近い部
分にある磁性流体5が剥離し、シール効果の安全度が低
下している状態を示している。
In the magnetic fluid seal mechanism shown in FIGS. 3(a) and 3(b), the range of reciprocating movement of the shaft 2 is such that even if the shaft 2 moves, the obstacle 7 a a 7 b and the pole piece 4 are in the opposite direction. Figure 4(a) shows the behavior of the magnetic fluid 5 when the shaft 2 makes a reciprocating linear motion. In the case shown in the figure, the magnetic fluid 5 gradually moves to the low pressure side (right side in the figure) due to the reciprocating movement of the shaft 2, and the magnetic fluid 5 in the part near the high pressure side (111 on the left in the figure) of the pole piece 4 (Z) This shows a state in which the fluid 5 has separated and the safety level of the sealing effect has decreased.

第4図の)紘ポールピース4の内径をテーバにし小径側
が磁場が強い磁気勾配の効果を用いて    □小径と
なる特定側へ磁性流体を回送させるようにしたもので%
5は軸2が低圧側(図中右側)へ移動する時の磁性流体
5の挙動を示している・この流れ紘別途ポールピース4
の先端に勾配をつけた二次元断面からなる模型によって
確認した。
(Figure 4) The inner diameter of the pole piece 4 is tapered so that the small diameter side uses the effect of the magnetic gradient where the magnetic field is strong to send the magnetic fluid to the specific small diameter side.%
5 shows the behavior of the magnetic fluid 5 when the shaft 2 moves to the low pressure side (to the right in the figure)
This was confirmed using a model consisting of a two-dimensional cross section with a sloped tip.

第4図(C)は軸2側にテーバを付したもので、第4図
中)と同様の作用・効果を奏する。また、第4図の)と
第4図(C)とを組合せるとともできる。
FIG. 4(C) shows a shaft with a taper on the shaft 2 side, which has the same functions and effects as those shown in FIG. 4(middle). It is also possible to combine the method shown in FIG. 4) with the method shown in FIG. 4(C).

第5図拡密封罠内に連続往復運動及び回転運動を導入す
るために本発明に係る磁性流体シール機構を組付けた装
置の外観を示す。同図に示すように、軸2は外部から密
封室11に運動を伝達するためのものでめる・まだ、ハ
ウジングlは磁気回路と軸2及び密封fillとの関係
寸法を保持しつつ軸2を支持している・第6弱性本発明
の磁性流体シール機構の他の実施例を断面構造で示して
いる。同図に示すように、ハウジングlti磁気回路に
必要な永久磁石3と内径をテーパにしたポールピース4
及び製産9.軸受8を固定し、滑合面以外は気密になっ
ている・軸2にL往復移動距離に応じたポールピース4
の対応面となる環状の磁性体6があり、軸2と一体に固
着されている。この磁性体6と磁気回路のポールピース
4との隙間にはシールするための磁性流体5が塗布され
てお9.この磁性流体5社障害7aを越えない限)低圧
側のポールピース4に流出することしてさない・止め栓
lOは磁性流体5を注入する場合に使用した注入孔を閉
塞するものである・ したがって軸2が運動可能に支持された筒状のハウジン
グlに固着されそれぞれ環状をなす永久磁石30ポール
ピース4に対向する部分に塗布した磁性流体5が隣接す
る低圧側のシールが破損しない限り磁性流体5は流出せ
ず、また破損した場合は差圧が集中してかがシ隣接の高
圧側から障害78を乗フ超えた磁性流体5が自動的に補
給される。次々と隣接するポールピース4から補給する
適切な段数を選定することによって完全なシールを形成
することができるO以上実施例とともに具体的に説明し
たように本発明の磁性流体シール機構は、最大往復駆動
距離を磁気回路のポールピースに対する対応面内と限定
し、その隣接する対応面は障害によって不連続の構成と
したことによって、軸の高速往@!MIM運動をするも
のに対して磁性流体は障害により隣接の磁性流体と連続
しないために流出せず信頼性の商いシール効果を得るこ
とがでさる。
FIG. 5 shows the external appearance of a device in which a magnetic fluid sealing mechanism according to the present invention is assembled to introduce continuous reciprocating motion and rotational motion into the expansion sealing trap. As shown in the same figure, the shaft 2 is used to transmit motion from the outside to the sealed chamber 11.The housing l maintains the dimensions of the relationship between the magnetic circuit, the shaft 2, and the sealing fill, and the shaft 2 A cross-sectional structure of another embodiment of the magnetic fluid sealing mechanism of the present invention is shown. As shown in the figure, a permanent magnet 3 necessary for the housing lti magnetic circuit and a pole piece 4 with a tapered inner diameter are shown.
and production9. The bearing 8 is fixed, and the parts other than the sliding surface are airtight.・Pole piece 4 is attached to the shaft 2 according to the L reciprocating distance.
There is an annular magnetic body 6 which serves as a corresponding surface, and is fixed integrally with the shaft 2. 9. A magnetic fluid 5 for sealing is applied to the gap between the magnetic body 6 and the pole piece 4 of the magnetic circuit. (Unless this magnetic fluid 5 obstruction 7a is exceeded), it will not flow into the pole piece 4 on the low pressure side. The stopper lO is to block the injection hole used when injecting the magnetic fluid 5. Therefore, Permanent magnets 30 each having an annular shape and fixed to a cylindrical housing l in which the shaft 2 is movably supported are coated with the magnetic fluid 5 applied to the portion facing the pole piece 4. Unless the seal on the adjacent low pressure side is damaged, the magnetic fluid will continue to flow. If the magnetic fluid 5 does not flow out, and if it is damaged, the differential pressure will concentrate and the magnetic fluid 5 that has exceeded the obstacle 78 will be automatically replenished from the adjacent high-pressure side. A complete seal can be formed by selecting an appropriate number of stages for replenishing from adjacent pole pieces 4 one after another. By limiting the driving distance to the corresponding plane of the magnetic circuit to the pole piece, and by configuring the adjacent corresponding planes to be discontinuous due to obstacles, the axis can move at high speed! For those that perform MIM motion, the magnetic fluid is not continuous with the adjacent magnetic fluid due to obstruction, so it does not flow out and a reliable sealing effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁性流体シール機構の破断構造を表わす
斜視図、第2図(a1社軸とポールピースの間にある磁
性流体の状態を示す従来の軸回転磁性流体シール機構の
主要部シールの説明図、第2図Φ)は軸を軸方向に移動
させ九時の磁性流体が共に移動し、隣接のシールしてい
る磁性流体と流通する状態を示す説明図、第3図(a)
及び着しK〈い無極性高分子重合体をコーティングした
4ξを示す説明囚%第4図(a)鉱従来の磁性流体の挙
動を示す説明図、第4図Φ)及び第4図(C)は磁性流
体を磁気(2)路から流出させないため回送させる構造
における磁性流体の挙動を示す説明図、第5図は本発明
の実施例を適用した装置の外観を示す外観図、第6図は
本発明の他の実施例を示す縦断面図である0 図 面 中、 lはハウジング、 2は軸、 3は永久磁石。 4はポールピース、 6は磁性体、 7a、7bは障害である。 特許出願人 日本電信電話公社 代    理    人 弁理士 光  石  士  部 (他1名) 第1図 第211 第3図 第4図
Figure 1 is a perspective view showing the broken structure of a conventional magnetic fluid seal mechanism, and Figure 2 (a1 shows the state of the magnetic fluid between the shaft and the pole piece) is the main part of the conventional shaft-rotating magnetic fluid seal mechanism. Figure 2 (Φ) is an explanatory diagram showing a state in which the shaft is moved in the axial direction and the magnetic fluid at 9 o'clock moves together and flows with the adjacent sealed magnetic fluid, Figure 3 (a)
Figure 4 (a) is an explanatory diagram showing the behavior of a conventional magnetic fluid, Figure 4 Φ) and Figure 4 (C ) is an explanatory diagram showing the behavior of the magnetic fluid in a structure that redirects the magnetic fluid to prevent it from flowing out from the magnetic path (2), FIG. 5 is an external view showing the external appearance of a device to which an embodiment of the present invention is applied, and FIG. 6 0 is a vertical sectional view showing another embodiment of the present invention. In the drawing, l is a housing, 2 is a shaft, and 3 is a permanent magnet. 4 is a pole piece, 6 is a magnetic material, and 7a and 7b are obstacles. Patent Applicant Nippon Telegraph and Telephone Public Corporation Representative Patent Attorney Mitsuishi Shibu (and 1 other person) Figure 1 Figure 211 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 (1)  可動部が運動可能に支持された筒状のハウジ
ングに環状の永久磁石を配設し、との永久磁石に固着さ
れるとともに前記可動部が貫通する環状の複数のポール
ピースと可動部との隙間に磁性流体を介在せしめて磁気
回路を構成する磁性流体シール機構において、前記ポー
ルピース間の可動部の外周面に環状の溝若しく社非磁性
体の凸部等の障害を形成したことを特徴とする磁性流体
シール機構。 (2]  前記ポールピースの前記可動部と相対向する
面を、ポールピースと可動部との間の隙間が高圧側に向
かって漸減するようテーパとしたことを特徴とする特許
請求の範囲第1項に記載の磁性流体シール機構・ (3)  前記可動部の前記ポールピースと相対向する
部分を、ポールピースと可動部との間の隙間が高圧側に
向かって漸減するようテーパとし九ことt−特徴とする
特許請求の範囲第1項に記載の磁性流体シール機構・
[Scope of Claims] (1) An annular permanent magnet is disposed in a cylindrical housing in which a movable part is movably supported, and a plurality of annular permanent magnets are fixed to the permanent magnet and through which the movable part passes. In a magnetic fluid seal mechanism in which a magnetic fluid is interposed in a gap between a pole piece and a movable part to form a magnetic circuit, an annular groove or a convex part of a non-magnetic material is formed on the outer peripheral surface of the movable part between the pole pieces. A magnetic fluid seal mechanism characterized by forming an obstacle such as. (2) The surface of the pole piece that faces the movable part is tapered so that the gap between the pole piece and the movable part gradually decreases toward the high pressure side. (3) The part of the movable part that faces the pole piece is tapered so that the gap between the pole piece and the movable part gradually decreases toward the high pressure side. - The magnetic fluid sealing mechanism according to claim 1 characterized by:
JP58098037A 1983-06-03 1983-06-03 Magnetic fluid seal apparatus Pending JPS59226766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58098037A JPS59226766A (en) 1983-06-03 1983-06-03 Magnetic fluid seal apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58098037A JPS59226766A (en) 1983-06-03 1983-06-03 Magnetic fluid seal apparatus

Publications (1)

Publication Number Publication Date
JPS59226766A true JPS59226766A (en) 1984-12-19

Family

ID=14208851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58098037A Pending JPS59226766A (en) 1983-06-03 1983-06-03 Magnetic fluid seal apparatus

Country Status (1)

Country Link
JP (1) JPS59226766A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220777A (en) * 1988-02-29 1989-09-04 Nippon Ferrofluidics Kk Magnetic fluid applied pressure-proof sealing device
JPH0391577U (en) * 1989-12-28 1991-09-18
JPH04101868U (en) * 1991-02-12 1992-09-02 エヌオーケー株式会社 Magnetic fluid seal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220777A (en) * 1988-02-29 1989-09-04 Nippon Ferrofluidics Kk Magnetic fluid applied pressure-proof sealing device
JPH0391577U (en) * 1989-12-28 1991-09-18
JPH04101868U (en) * 1991-02-12 1992-09-02 エヌオーケー株式会社 Magnetic fluid seal device

Similar Documents

Publication Publication Date Title
US5238254A (en) Ferrofluid seal apparatus
JPH04101868U (en) Magnetic fluid seal device
JPH0681840A (en) Magnetic fluid bearing seal assembly
US7100923B2 (en) Magnetic fluid seal device
JPS59226766A (en) Magnetic fluid seal apparatus
EP0105616A2 (en) Magnetic rotary seal
WO1996013960A1 (en) Electrodynamic loudspeaker with fluid-supported moving system
US5826883A (en) Sealing ring with deformable tubular sheath filled with permanent magnetic granules and method of making the same
JPWO2001098811A1 (en) Magnetic fluid sealing device and method of mounting magnetic fluid sealing device
JPS6143588B2 (en)
JP2005192387A (en) Bearing-integrated spindle motor
JPS599369A (en) Magnetic fluid sealing mechanism
JPS5843633B2 (en) Sealing device
JP2020153471A (en) Seal structure of rotary shaft of magnetic viscous fluid device
JPS59231271A (en) Magnetic fluid sealing device
JPS6239311B2 (en)
JPH03140606A (en) Rodless cylinder
SU929937A2 (en) Magnetic liquid seal
JPS63214578A (en) Magnetic fluid seal unit
JP4240907B2 (en) Magnetic fluid seal device
JPS59129699U (en) Stern tube seal assembly
JPH01158271A (en) Shaft sealing device employing magnetic fluid
JPS63163029A (en) Sealing device
SU773350A1 (en) Magnetic-liquid seal
SU1716233A1 (en) Magnetoliquid seal