JPS59226119A - Production of ferritic stainless steel sheet having excellent workability - Google Patents

Production of ferritic stainless steel sheet having excellent workability

Info

Publication number
JPS59226119A
JPS59226119A JP9851183A JP9851183A JPS59226119A JP S59226119 A JPS59226119 A JP S59226119A JP 9851183 A JP9851183 A JP 9851183A JP 9851183 A JP9851183 A JP 9851183A JP S59226119 A JPS59226119 A JP S59226119A
Authority
JP
Japan
Prior art keywords
rolling
hot
temperature
stainless steel
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9851183A
Other languages
Japanese (ja)
Inventor
Jiro Harase
原勢 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9851183A priority Critical patent/JPS59226119A/en
Publication of JPS59226119A publication Critical patent/JPS59226119A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce a ferritic stainless steel sheet having exellent workability by ending the finish rolling in a hot rolling stage at a high temp. and cold rolling the hot rolled seet without annealing. CONSTITUTION:Finish rolling in a hot rolling stage in a process for producing a ferritic stainless steel sheet by cold rolling without annealing of a hot rolled sheet is ended at >=850 deg.C to remove a heterogeous deformation zone, by which the ferritic stainless steel sheet having good deep drawability is obtd. A 430 steel contg. about 0.03-0.08% C, about 0.02-0.1% Ti, and about 0.06-0.2% Al is suitable when the raw material for which the above-mentioned method is applied is intended for deep drawing. An ordinary 430 steel added with about 0.08-0.2% Al is suitable when said material is intended for light working.

Description

【発明の詳細な説明】 本発明は熱延板焼鈍を行うことなく、冷間圧延して製造
するフェライト系ステンレス薄板の製造法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a ferritic stainless steel thin plate by cold rolling without hot-rolled plate annealing.

熱延板焼鈍を行った後、冷間圧延して製造するフェライ
ト系ステンレス薄板の製造法においては熱間圧延の仕上
圧延温度をできるだけ低温とすることが望ましいとされ
ている。本発明者は、熱延板焼鈍を行うことなく冷間圧
延して製造するフェライト系ステンレス薄板の熱間圧延
仕上圧延温度の影響について調査したところ熱延板焼鈍
後、冷間圧延した場合と全く逆に熱間圧延の仕上圧延終
了温度が高い程、成品のr値が向上することを見い出し
本発明を完成させたものである。
In a method for producing a ferritic stainless steel thin plate by hot rolling annealing and then cold rolling, it is considered desirable to set the finish rolling temperature of the hot rolling as low as possible. The present inventor investigated the effect of hot rolling finish rolling temperature on ferritic stainless thin sheets produced by cold rolling without hot rolling annealing, and found that On the contrary, the present invention was completed by discovering that the higher the finishing temperature of hot rolling, the higher the r value of the finished product.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

フェライト系ステンレス薄板を製造するに当シ熱間圧延
における仕上圧延温度を低くして熱延板焼鈍を省略する
とr値が劣化するが、その冶金的な理由は熱間圧延の低
温仕上圧延では第1図(B)に示した如く熱間圧延まま
の状態で不均質な変形帯が形成され、これが冷延板焼鈍
後に深絞9性に有利な(iii)の発達を妨げるからで
ある。第1図はフェライト系ステンレス鋼熱延板のミク
ロ組織におよばず仕上圧延温度の影響をみたもので(4
)は仕上圧延開始温度950℃、終了温度800℃で熱
間圧延を行った場合、但)は仕上圧延開始温度950℃
、終了温度570℃で熱間圧延を行った場合の板厚中心
部(圧延方向に平行な断面)を各々示している。図から
明、らかなように、Q3)においては(6)には見られ
ない不均質な変形帯が明瞭にあられれている。
When producing ferritic stainless steel thin sheets, if the finish rolling temperature in hot rolling is lowered and hot rolled plate annealing is omitted, the r value deteriorates. This is because, as shown in FIG. 1(B), inhomogeneous deformation bands are formed in the as-hot-rolled state, and this hinders the development of (iii), which is advantageous for deep drawability, after annealing the cold-rolled sheet. Figure 1 shows the effect of finish rolling temperature on the microstructure of hot-rolled ferritic stainless steel sheets (4
) is when hot rolling is performed at a finish rolling start temperature of 950°C and an end rolling temperature of 800°C; however,) is a finish rolling start temperature of 950°C
, respectively show the central part of the plate thickness (cross section parallel to the rolling direction) when hot rolling is performed at a finishing temperature of 570°C. As is clear from the figure, a heterogeneous deformation zone that is not seen in (6) is clearly seen in Q3).

フェライト系ステンレス薄板の絞り加工性の指標の代表
特性としてr値を目安としておシ、深絞シ加工せず、軽
度の絞シ加工を付与する用途ではr値は0.8以上必要
であり、深絞シ加工する場合は、1.10以上の7値が
あれば良いと考えられる。
The r value is used as a representative characteristic of the drawability index of ferritic stainless thin sheets.In applications where light drawing is applied without deep drawing, the r value is required to be 0.8 or more. When performing deep drawing processing, it is considered that a value of 7 of 1.10 or more is sufficient.

本発明において仕上圧延終了温度を850℃以上とした
のは、この温度であると、第1図の(B)にみられる不
均質な変形帯が消え7値が0.8以上の製品が得られる
からである。
In the present invention, the finish rolling end temperature is set at 850°C or higher. At this temperature, the non-uniform deformation band seen in FIG. This is because it will be done.

本発明が適用される素材としては、深絞シ用加工を目的
とした場合には、C0,03〜0.08%。
The material to which the present invention is applied is C0.03 to 0.08% when the purpose is deep drawing processing.

Ti 0102〜0.1チ、 At0.06〜0.2係
含有した430鋼が適している。Cは低い程r値が向上
す 。
430 steel containing 0.1 to 0.1% Ti and 0.06 to 0.2% At is suitable. The lower the C, the better the r value.

るが、003%未満ではりジング特性が劣化し、且つ溶
接部の耐粒界腐食性を低下するため少なくとも0.03
%以上含有することが望ましい。Cが0.08%を超え
るとr値の絶対レベルが低下し深絞り加工に適したr値
が得られないので0.−08 %以下がよい。
However, if it is less than 0.03%, the welding properties will deteriorate and the intergranular corrosion resistance of the weld will decrease, so it should be at least 0.03%.
% or more is desirable. If C exceeds 0.08%, the absolute level of the r value will decrease and it will not be possible to obtain an r value suitable for deep drawing. -08% or less is preferable.

T1を添加するのは、r値及びリジング特性を向上させ
るためであるが、0.02%未満ではr値向上効果がな
くなるので、0.02%以上添加する必要がある。T1
は添加量か多い程r値は向上するが、0.1%を超える
とりジング特性が劣化するので0、LL:I6以下が望
ましい。
The purpose of adding T1 is to improve the r value and ridging properties, but if it is less than 0.02%, the effect of improving the r value disappears, so it is necessary to add T1 in an amount of 0.02% or more. T1
The larger the amount added, the better the r value is, but since over 0.1% the deterioration properties deteriorate, 0, LL: I6 or less is desirable.

Atを添加する理由は主としてr値及びリジング特性を
向上させるためで、0.06%未満ではr値が低下する
ので、0.t)6%以上としているものであfi、0.
2%以下としたのは、これ以上の添加ではりジング特性
が劣化するからである。
The reason for adding At is mainly to improve the r value and ridging properties, and if it is less than 0.06%, the r value will decrease. t) 6% or more, fi, 0.
The reason why the content is set to 2% or less is that adding more than this will deteriorate the creeping properties.

軽加工用を目的とした場合は、通常の430鋼にAtを
0.08%〜0.2%程度添加したものが適している。
When intended for light processing, ordinary 430 steel to which At is added in an amount of about 0.08% to 0.2% is suitable.

この場合Atを0.08%以上としたのは、0.08L
i6未満では、仕上圧延温度を高くしてもr値が向上し
ないからでlLo、2%以下としたのは、これを超えて
添加してもr値向上効果はほぼ飽和するためである。こ
の場合Cは0.03%〜0.08−程度の範囲がよい。
In this case, At is set to 0.08% or more because 0.08L
If it is less than i6, the r value will not improve even if the finish rolling temperature is increased, so the reason why lLo is set to 2% or less is because the effect of improving the r value is almost saturated even if it is added in excess of this. In this case, C is preferably in the range of about 0.03% to 0.08%.

その理由はAt 、 Ti複合添加した鋼と同様、r値
及びリジング特性を確保し、且つ溶接部の粒界腐食性の
劣化を防ぐことを目的としているからである。その他A
t添加鋼が適している理由は、低降伏点化、きらきら疵
発生防止、伸びの減少防止、冷延性の向上効果等を狙っ
ているからである@ 以下に本発明の詳細な説明する。
The reason for this is that, like steel with a composite addition of At and Ti, the purpose is to ensure the r value and ridging properties, and to prevent deterioration of intergranular corrosion in the weld zone. Others A
The reason why t-added steel is suitable is that it aims to lower the yield point, prevent the occurrence of sparkling defects, prevent decrease in elongation, improve cold rollability, etc. The present invention will be explained in detail below.

実施例1 仕上圧延終了温度の影響を調査する目的で表1に示した
At添加成分で厚さ200+nmのSUS 430系フ
エライト系ステンレス鋼のスラブを1200℃の温度で
2時間加熱後、7/fスで厚さ20mmに粗圧延し、引
続き、仕上圧延を行い、3.7mmの熱延板とした。仕
上圧延開始温度は、いづれも1000℃であったが、仕
上圧延終了温度は550℃〜950℃と変化させた。こ
うして作成した熱延板は、熱延板焼鈍することなく、冷
間圧延して厚さ0.7配とし、840℃X2m1nの焼
鈍を行った後、r値を測定した。表2に仕上圧延終了温
度と7値の関係を示したが、850℃以上の温度で仕上
圧延を終了した場きは、7は0.8以上と良好であった
Example 1 For the purpose of investigating the influence of finish rolling end temperature, a slab of SUS 430 ferritic stainless steel with a thickness of 200+ nm was heated at a temperature of 1200°C for 2 hours with the At addition components shown in Table 1, and then 7/f. The material was roughly rolled to a thickness of 20 mm using a steel mill, and then finished rolled to obtain a hot rolled sheet of 3.7 mm. The finish rolling start temperature was 1000°C in all cases, but the finish rolling end temperature was varied from 550°C to 950°C. The hot-rolled sheets thus created were cold-rolled to a thickness of 0.7 mm without hot-rolled sheet annealing, and after annealing at 840° C. x 2 ml, the r value was measured. Table 2 shows the relationship between finish rolling completion temperature and 7 value, and when finish rolling was finished at a temperature of 850° C. or higher, 7 was good at 0.8 or higher.

表1 供試材の成分(重量%) 表2 仕上圧延終了温度と成品の7値 実施例・2 仕上圧延終了温度の影響を調査する目的で表3に示した
At、 ’TI添加成分で厚さ100 tram(D 
SUS430系フエライト系ステンレス鋼スラブを11
00℃の温度で2時間加熱後、3ノ々スで20閣まで粗
圧延し、引続き、3・やスで仕上圧延し、3.7rtm
O熱延板とした。仕上圧延開始温度はいづれも960℃
であったが、仕上圧延終了温度は、600℃〜850℃
と変化させた。こうして作成した熱延板は熱延板焼鈍す
ることなく冷間圧延して厚さ0.7胃とし、840℃X
 2 minの焼鈍を行った後r値を測定した。表4に
仕上圧延終了温度と7値の関係を示したが、850℃以
上の温度で仕上圧延した場合は、r値は1.10以上と
良好であった。
Table 1 Components of the sample material (wt%) Table 2 Seven-value example of finish rolling finish temperature and finished product 2 In order to investigate the influence of finish rolling finish temperature, At and 'TI additive components shown in Table 3 Sa100 tram (D
11 SUS430 ferrite stainless steel slabs
After heating at a temperature of 00°C for 2 hours, it was roughly rolled to 20 degrees with a 3-noise mill, and then finished rolled with a 3-mill mill to 3.7 rtm.
It was made into an O hot rolled sheet. Finish rolling start temperature is 960℃ in all cases.
However, the finish rolling finish temperature was 600°C to 850°C.
and changed it. The hot-rolled sheet thus produced was cold-rolled to a thickness of 0.7 mm without annealing the hot-rolled sheet, and was heated to 840°C
After annealing for 2 min, the r value was measured. Table 4 shows the relationship between finish rolling end temperature and 7 values, and when finish rolling was performed at a temperature of 850° C. or higher, the r value was good at 1.10 or higher.

表3 供試材の成分(重量%ン 表4 仕上圧延終了温度と成品のi値 以上の如く、本発明によれば熱延板焼鈍工程なしに加工
性のすぐれたフェライト系ステンレス薄板を典造するこ
とができるので産業上稗益するところが極めて犬である
Table 3 Components of the sample material (wt%) Table 4 Finish rolling temperature and i value of the finished product As shown in Table 4, the present invention can produce a ferritic stainless steel sheet with excellent workability without a hot-rolled sheet annealing process. Dogs are extremely useful in industry because they can do this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフェライト系ステンレス鋼熱延板のミクロ組織
におよぼす仕上圧延温度の影響を示す金属顕微鏡写真で
(ハ)は仕上圧延開始温度950℃、終了温度800℃
で熱間圧延を行りた場合、但)は仕上圧延開始温度95
0℃、終了温度570℃で熱間圧延を行った場合の板厚
中心部(圧延方向に平行な断面)を示す。 第1図 手続補正書(自発) 昭和58年7月7、−日 特許庁長官若杉和夫殿 ■、 事件の表示 昭和58年名許願第09851’1号 2、 発明の名称 加工性のすぐれたフェライト系ステンレス薄板の製造法 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新ト1本製鐵株式會社 代表者 武  1)   豊 6 補正の対象 明    細    書 1、発明の名称 加工性のすぐれたフェライト系ステンレス薄板の製造法 2、特許請求の範囲 熱延板焼鈍を行うことなく冷間圧延するフェライト系ス
テンレス薄板の製造法において、熱間圧延工程での仕上
圧延終了温度を850℃以上とすることを特徴とする加
工性のすぐれたフェライト系ステンレス薄板の製造法。 3、発明の詳細な説明 本発明は熱延板焼鈍を行うことなく、冷間圧延して製造
するフェライト系ステンレス薄板の製造法に関するもの
である。 熱延板焼鈍を行った後、冷間圧延して製造するフェライ
ト系ステンレス薄板の製造法においては熱間圧延の仕上
圧延温度をできるだけ低温とすることが望ましいとされ
ている。本発明者は、熱延板焼鈍を行うことなく冷間圧
延して製造するフェライト系ステンレス薄板の熱間圧延
仕上圧延温度の影響について調査したところ熱・延板焼
鈍後、冷間圧延した場合と全く逆に熱間圧延の仕上圧延
終了温度が高い程、成品のr値が向上することを見い出
し本発明を完成させたものである。 以下本発明の詳細な説明する。 フェライト系ステンレス薄板を製造するに当り熱間圧延
における仕上圧延温度を低くして熱延板焼鈍を省略する
とr値が劣化するが、その冶金的な理由は熱間圧延の低
温仕上圧延では第1図(B)に示した如く熱間圧延まま
の状態で不均質な変形帯が形成され、これが冷延板焼鈍
後に深絞り性に有利な(111)の発達を妨げるからで
ある。第1図はフェライト系ステンレス鋼熱延板のミク
ロ組織におよぼす仕上圧延温度の影響をみたもので(A
)は仕上圧延開始温度950℃、終了温度800℃で熱
間圧延を行なった場合、(B)は仕上圧延開始温度95
0℃、終了温度570℃で熱間圧延を行った場合の板厚
中心部(圧延方向に平行な断面)を各告示している。図
から明らかなように、ω)においては(A)には見られ
ない不均質な変形帯が明瞭にあられれている。 フェライト系ステンレス薄板の絞シ加工性の指標の代表
特性としてr値を目安としておp1深絞シ加工せず、軽
度の絞シ加工を付与する用途では7値は0.8以上必要
であシ、深絞シ加工する場合は、1.10以上の7値が
あれば良いと考えられる。 本発明において仕上圧延終了温度を850℃以上とした
のは、この温度であると、第1図の(B)にみられる不
均質な変形帯が消えr値が0.8以上の製品が得られる
からである。 本発明が適用される素材として軽刀U工用を目的とした
場合は、通常の430鋼にAtを0.08%〜0.2係
程度添加したものが適している。この場合Azi0.0
8%以上としたのは、0.08%未満では、仕上圧延温
度を高くしてもr値が向上しないからであυ、0.2%
以下としたのは、これを超えて添加してもr値開上効果
はほぼ飽和するためである。 この場合Cは0.03%〜0.08%程度の範囲がよい
。その理由はAA 、 Tl複合添加した鋼と同様、r
値及びリジング特性を確保し、且つ溶接部の粒界腐食性
の劣化を防ぐことを目的としているからである。その他
At添加鋼が適している理由は、低降伏点化、きらきら
疵発生防止、伸びの減少防止、冷延性の向上効果等を狙
っているからである。 本発明が適用される素材としては、深絞p加工用を目的
とした場合には、C0,03〜0.08%。 T10.02〜0.1襲、At0.06〜0.2%含有
した4 30 ′j14が適している。Cは低い程r値
が向上するが、0.03%未満ではりジング特性が劣化
するため少なくとも0.03%以上含有することが望ま
しい。Cが0.08%を超えるとr値の絶対レベルが低
下し深絞シ加工に適したr値が得られないので0.08
チ以下がよい。 T1を添加するのは、r値及びリジング特性を同上させ
るためであるが、0.02%未満ではr値向上効果がな
くなるので、0.02%以上添加する必要がある。Ti
は添加量が多い程r値は向上するが、0.1チを超える
とりジング特性が劣化するので0.1係以下が望ましい
。 Atを添加する理由は主とし−Cr値及びリジング特性
を向上させるためで、0.06%未満ではr値が低下す
るので、0.06%以上としているもので1.0.2%
以下としたのは、これ以上の添加ではりジング特性が劣
化するからである。 なお、r値1.2〜1.4以上の高い深絞9用を目的と
した場合はCを0.03%以下にし、TI、又はNbを
0.02〜0.5q6単独又は複合添加したもの、更に
1.5優程度までCuを添加した430鋼が適している
。Cを下げてこれらの元素を添加した理由は、T1Nb
については固溶Nを低減させることによるr値向上効果
を狙ったもので、Cu添加はε−Cu相の析出により、
r値向上効果を狙ったものである。この場合、リジング
特性が劣化するので、後工程で手入作業が必要となる。 以下に本発明の詳細な説明する。 実施例1 仕上圧延終了温度の影響を調査する目的で表1に示した
At添加成分で厚さ200咽のSUS 430系フエラ
イト系ステンレス鋼のスラブを1200℃の温度で2時
間加熱後、7パスで厚さ20■に粗圧延し、引続き、仕
上圧延を行い、3.7Mの熱延板とした。仕上圧延開始
温度は、いづれも1000℃であったが、仕上圧延開始
温度は550℃〜950℃と変化させた。こうして作成
した熱延板は、熱延板焼鈍することなく、冷間圧延して
厚さ0.7問とし、840℃X 2 minの焼鈍を行
った後、r値を測定した。表2に仕上圧延終了温度と7
値の関係を示したが、850℃以上の温度で仕上圧延を
終了した場合は、7は0.8以上と良好であった。 表1 供試材の成分(M関係) 表2 仕上圧延終了温度と成品の7値 実施例2 仕上圧延終了温度の影響を調査する目的で表3に示した
)L 、 Ti添加成分で厚さ100 wn(7) 5
US430系フエライト系ステンレス鋼スラブを110
0℃の温度で2時間加熱後、3パスで20ymnまで粗
圧延し、引続き、3パスで仕上圧延し、3.7waの熱
延板とした。仕上圧延開始温度はいづれも960℃であ
ったが)仕上圧延終了温度は、600℃〜850℃と変
化させた。こうして作成した熱延板は熱延板焼鈍するこ
となく冷間圧延して厚さ0.7爛とし、840℃X2’
mlnの焼鈍を行った後r値を測定した。表4に仕上圧
延終了温度と7値の関係を示したが、850℃以上の温
度で仕上圧延した場合は、r値は1.10以上と良好で
あった。 表3 供試材の成分(重量係) 表4 仕上圧延終了温度と成品の7値 実施例3 表・5に示した成分の厚さ200mmの430系ステン
レス鋼スラブを1200℃で2時間加熱後、6ノクスで
厚さ20■の粗圧延とし、仕上圧延終了温度870℃と
700℃の2東件で厚さ3IIII11の熱延板とした
。ついで熱延板焼鈍することなく0.7瓢まで冷間圧延
し、900℃X 2 minの再結晶焼鈍を行いr値を
測定した。本発明法に従って870℃で仕上圧延を終了
したものはr値1.35と良好でありたが、700℃で
仕上圧延したものはr値は1.20と低く、超深絞シ用
どしては不適当であった。 表5 供試料の成分(ifl、チ) 実施例4 表6に示した成分の厚さ250簡の430系ステンレス
鋼スラブを1250℃で2時間加熱後7ノ9スで厚さ2
0mmの粗圧延とし、6/ぐスで厚さ3.Oamの熱延
板とした。仕上熱延終了温度は900℃と750℃の2
条件で行った。こうして製造した熱延板を、熱延板焼鈍
することな(0,7+mnまで冷延し、900℃×10
秒の再結晶焼鈍を行った。 こうして製造した薄板のr(if、を測定した所、本発
明の方法に従って900℃で仕上圧延を終了した材料は
r値は1.45と良好でちったが、750℃で仕上圧延
したものは1.20と低かった。 表6 供試材の成分(重量俤) 以上の如く、本発明によれば熱延板焼鈍工程なしに加工
性のすぐれたフェライト系ステンレス薄板を製造するこ
とができるので産業上稗益するところが極めて大である
。 4、図面の簡単な説明 第1図はフェライト系ステンレス鋼熱延板のミクロ組織
におよぼす仕上圧延温度の影響を示す余滴顕微鏡写真で
仏)は仕上圧延開始温度950℃、終了温度800℃で
熱間圧延を行った場合、(B)は仕上圧延開始温度95
0℃、終了温度570℃で熱間圧延を行った場合の板厚
中心部(圧延方向に平行な断面)、を示す。
Figure 1 is a metallurgical micrograph showing the effect of finish rolling temperature on the microstructure of hot-rolled ferritic stainless steel sheets.
However, when hot rolling is carried out at the finish rolling start temperature of 95
The center part of the plate thickness (cross section parallel to the rolling direction) is shown when hot rolling is performed at 0°C and a finishing temperature of 570°C. Figure 1 Procedural Amendment (Voluntary) July 7, 1980 - Mr. Kazuo Wakasugi, Commissioner of the Japan Patent Office ■, Incident Indication 1985 Name Application No. 09851'1 No. 2, Name of Invention Ferrite with excellent workability Manufacturing method for thin stainless steel sheets 3, relationship with the case of the person making the amendment Patent applicant: 6-3 Otemachi 2-chome, Chiyoda-ku, Tokyo (665) Representative of Shinto Ippon Steel Co., Ltd. Take 1) Yutaka 6 Amendment Description of the subject matter: 1. Title of the invention: Process for manufacturing a thin ferritic stainless steel sheet with excellent workability. A method for producing a ferritic stainless steel thin plate with excellent workability, characterized in that the final rolling temperature in the inter-rolling step is 850° C. or higher. 3. Detailed Description of the Invention The present invention relates to a method for producing a ferritic stainless steel thin plate by cold rolling without hot-rolled plate annealing. In a method for producing a ferritic stainless steel thin plate by hot rolling annealing and then cold rolling, it is considered desirable to set the finish rolling temperature of the hot rolling as low as possible. The present inventor investigated the influence of hot rolling finish rolling temperature on ferritic stainless thin sheets produced by cold rolling without hot rolling annealing, and found that On the contrary, we have completed the present invention by discovering that the higher the finishing temperature of hot rolling, the higher the r value of the finished product. The present invention will be explained in detail below. When manufacturing ferritic stainless steel thin sheets, if the finish rolling temperature in hot rolling is lowered and hot rolled sheet annealing is omitted, the r value deteriorates, but the metallurgical reason for this is that low temperature finish rolling of hot rolling This is because, as shown in Figure (B), inhomogeneous deformation bands are formed in the as-hot-rolled state, and this hinders the development of (111), which is advantageous for deep drawability, after annealing the cold-rolled sheet. Figure 1 shows the effect of finish rolling temperature on the microstructure of hot-rolled ferritic stainless steel sheets (A
) is when hot rolling is performed at a finish rolling start temperature of 950°C and an end temperature of 800°C, and (B) is a finish rolling start temperature of 95°C.
Each notice shows the central part of the plate thickness (cross section parallel to the rolling direction) when hot rolling is performed at 0°C and a finishing temperature of 570°C. As is clear from the figure, a heterogeneous deformation zone that is not seen in (A) is clearly seen in ω). The r value is used as a guideline as a representative characteristic of the drawing processability index of ferritic stainless thin sheets.P1For applications where light drawing is applied without deep drawing, a value of 7 is required to be 0.8 or higher. When performing deep drawing processing, it is considered that a value of 7 of 1.10 or more is sufficient. In the present invention, the finish rolling end temperature is set at 850°C or higher. At this temperature, the heterogeneous deformation band seen in FIG. This is because it will be done. When the material to which the present invention is applied is intended for use in light sword U work, ordinary 430 steel to which 0.08% to 0.2% of At is added is suitable. In this case Azi0.0
The reason why it is set at 8% or more is because if it is less than 0.08%, the r value will not improve even if the finish rolling temperature is increased, υ, 0.2%.
The reason why the amount is set below is that even if the amount is added in excess of this amount, the effect of increasing the r value is almost saturated. In this case, C is preferably in the range of about 0.03% to 0.08%. The reason is that r
This is because the purpose is to ensure good value and ridging properties, and to prevent deterioration of intergranular corrosion in the welded part. Other reasons why At-added steel is suitable is that it aims to lower the yield point, prevent the occurrence of sparkling defects, prevent decrease in elongation, and improve cold rollability. The material to which the present invention is applied is C0.03 to 0.08% when it is intended for deep drawing p processing. 430'j14 containing T10.02 to 0.1% and At 0.06 to 0.2% is suitable. The lower the carbon content, the better the r value, but if it is less than 0.03%, the crimp properties deteriorate, so it is desirable to contain at least 0.03% or more. If C exceeds 0.08%, the absolute level of the r value will decrease and it will not be possible to obtain an r value suitable for deep drawing.
Less than 1 is better. The purpose of adding T1 is to improve the r value and ridging properties, but if it is less than 0.02%, the effect of improving the r value disappears, so it is necessary to add 0.02% or more. Ti
The larger the amount added, the better the r value is, but the r-value deteriorates when the coefficient exceeds 0.1 inch, so it is desirable that the coefficient is 0.1 coefficient or less. The reason for adding At is mainly to improve the -Cr value and ridging properties.If it is less than 0.06%, the r value will decrease, so if it is 0.06% or more, it is 1.0.2%.
The reason why the amount is set below is that adding more than this will deteriorate the sliding properties. In addition, when the purpose is deep drawing 9 with a high r value of 1.2 to 1.4 or more, C is reduced to 0.03% or less, and TI or Nb is added in the amount of 0.02 to 0.5q6 alone or in combination. Furthermore, 430 steel with Cu added to about 1.5% is suitable. The reason for adding these elements to lower C is that T1Nb
This is aimed at improving the r value by reducing solid solution N, and the addition of Cu is due to the precipitation of the ε-Cu phase.
This is aimed at improving the r value. In this case, the ridging properties deteriorate, and maintenance work is required in the post-process. The present invention will be explained in detail below. Example 1 For the purpose of investigating the influence of finish rolling end temperature, a slab of SUS 430 ferritic stainless steel with a thickness of 200mm was heated at a temperature of 1200°C for 2 hours with the At addition components shown in Table 1, and then subjected to 7 passes. The sample was roughly rolled to a thickness of 20 mm, and then finished rolled to obtain a 3.7M hot-rolled plate. The finish rolling start temperature was 1000°C in all cases, but the finish rolling start temperature was varied from 550°C to 950°C. The hot-rolled sheets thus created were cold-rolled to a thickness of 0.7 mm without hot-rolled sheet annealing, and after annealing at 840° C. for 2 min, the r value was measured. Table 2 shows finish rolling finishing temperature and 7
The relationship between the values was shown, and when finish rolling was completed at a temperature of 850° C. or higher, 7 was 0.8 or higher, which was good. Table 1 Components of the sample material (M relationship) Table 2 Example 2 of 7 values of finish rolling finish temperature and finished product (shown in Table 3 for the purpose of investigating the influence of finish rolling finish temperature) L, thickness with Ti additive components 100wn(7) 5
US430 series ferritic stainless steel slab 110
After heating at a temperature of 0° C. for 2 hours, it was roughly rolled to 20 ymn in 3 passes, and then finished rolled in 3 passes to obtain a hot rolled sheet of 3.7 wa. The finish rolling start temperature was 960°C in all cases, but the finish rolling end temperature was varied from 600°C to 850°C. The hot-rolled sheet thus created was cold-rolled to a thickness of 0.7 without annealing, and was heated at 840°C x 2'
The r value was measured after annealing the mln. Table 4 shows the relationship between finish rolling end temperature and 7 values, and when finish rolling was performed at a temperature of 850° C. or higher, the r value was good at 1.10 or higher. Table 3 Components of the sample material (weight) Table 4 Example 3 of 7 values of finish rolling end temperature and finished product After heating a 430 series stainless steel slab with a thickness of 200 mm with the components shown in Table 5 at 1200°C for 2 hours The sheet was roughly rolled to a thickness of 20 mm at 6 mm, and then finished to a hot rolled sheet with a thickness of 3III11 at 870°C and 700°C. Next, the hot-rolled sheet was cold-rolled to 0.7 mm without annealing, recrystallization annealed at 900° C. for 2 min, and the r value was measured. The product finished rolling at 870°C according to the method of the present invention had a good r value of 1.35, but the product finished rolling at 700°C had a low r value of 1.20, making it difficult to use for ultra-deep drawing. It was inappropriate. Table 5 Components of sample (ifl, chi) Example 4 A 430 series stainless steel slab with a thickness of 250 sheets having the components shown in Table 6 was heated at 1250°C for 2 hours, and then heated to a thickness of 2
Roughly rolled to 0mm, 6mm thick and 3mm thick. A hot rolled sheet of Oam was used. Finish hot rolling finish temperature is 900℃ and 750℃.
I went with the conditions. The hot-rolled sheet produced in this way is not annealed (cold-rolled to 0.7 + mn, 900°C x 10
A second recrystallization annealing was performed. When we measured the r (if) of the thin plate produced in this way, the material finished rolling at 900°C according to the method of the present invention had a good r value of 1.45, but the material finished rolling at 750°C had a good r value of 1.45. It was as low as 1.20. Table 6 Components of the sample material (weight) As described above, according to the present invention, a ferritic stainless steel sheet with excellent workability can be manufactured without a hot-rolled sheet annealing process. The industrial benefits are extremely large. 4. Brief explanation of the drawings Figure 1 is an afterdrop micrograph showing the effect of finish rolling temperature on the microstructure of hot rolled ferritic stainless steel sheets. When hot rolling is performed at a starting temperature of 950°C and a finishing temperature of 800°C, (B) is a finish rolling starting temperature of 95°C.
The center part of the plate thickness (cross section parallel to the rolling direction) when hot rolling is performed at 0°C and a finishing temperature of 570°C is shown.

Claims (1)

【特許請求の範囲】[Claims] 熱延板焼鈍を行うことなく冷間圧延するフェライト系ス
テンレス薄板の製造法において、熱間圧延工程での仕上
圧延終了温度を850℃以上とすることを特徴とする加
工性のすぐれたフェライト系ステンレス薄板の製造法。
A ferritic stainless steel with excellent workability, characterized in that the finish rolling end temperature in the hot rolling process is 850°C or higher, in a method for producing a thin ferritic stainless steel plate that is cold rolled without hot rolling sheet annealing. Method of manufacturing thin plates.
JP9851183A 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability Pending JPS59226119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9851183A JPS59226119A (en) 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9851183A JPS59226119A (en) 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability

Publications (1)

Publication Number Publication Date
JPS59226119A true JPS59226119A (en) 1984-12-19

Family

ID=14221669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9851183A Pending JPS59226119A (en) 1983-06-02 1983-06-02 Production of ferritic stainless steel sheet having excellent workability

Country Status (1)

Country Link
JP (1) JPS59226119A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983725A (en) * 1982-11-06 1984-05-15 Nippon Steel Corp Preparation of ferrite type stainless steel thin plate free from surface flaw and low in ridging

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983725A (en) * 1982-11-06 1984-05-15 Nippon Steel Corp Preparation of ferrite type stainless steel thin plate free from surface flaw and low in ridging

Similar Documents

Publication Publication Date Title
KR100500791B1 (en) FERRITIC Cr-CONTAINING STEEL SHEET HAVING EXCELLENT DUCTILITY, FORMABILITY, AND ANTI-RIDGING PROPERTIES, AND METHOD OF PRODUCING THE SAME
EP0120976A1 (en) Process for manufacturing cold-rolled steel for deep drawing
JPH09111354A (en) Production of ferritic stainless steel sheet
KR20180027689A (en) Method of manufacturing ferritic stainless steel having excellent formability and ridging properties
CN112872036B (en) Method for eliminating microcracks on surface of galvanized plate
JP2000144320A (en) Deformed bar steel for reinforcing bar and its production
JPS59226119A (en) Production of ferritic stainless steel sheet having excellent workability
WO1979000100A1 (en) A process for the production of sheet and strip from ferritic,stabilised,stainless chromium-molybdenum-nickel steels
JP2687841B2 (en) Low yield ratio high strength steel pipe manufacturing method
JP5534112B2 (en) Hot-rolled steel sheet for cold rolling material and manufacturing method thereof
KR102537950B1 (en) Austenitic stainless steel with improved high temperature softening resistance
JPH0368927B2 (en)
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2000119749A (en) Production of chromium-molybdenum seamless steel pipe for machine structure
JP3913088B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent deep drawability
JPS6052551A (en) Steel having high ductility and high workability and its production
RU2784908C1 (en) Method for producing hot-rolled sheet structural steel
KR20190022127A (en) Ferritic stainless steel with improved impact toughness at low temperature and method of manufacturing the same
WO1980000456A1 (en) Process for producing high-strength cold-rolled steel plate for press working
JP3844662B2 (en) Martensitic stainless steel sheet and manufacturing method thereof
JPH07118754A (en) Production of ferritic stainless steel sheet excellent in ribbing characteristic
JPH0353025A (en) Manufacture of high heat-resistant and high-corrosion resistant ferritic stainless steel sheet
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
KR20230094726A (en) Steel sheet for exhaust system with improved corrosion resistance and formability and manufacturing method therefor
JPH0320407A (en) Method for preventing oxidation of grain boundary in high strength cold-rolled steel sheet