JPS59225130A - Preparation of aromatic hydrocarbon - Google Patents

Preparation of aromatic hydrocarbon

Info

Publication number
JPS59225130A
JPS59225130A JP58099570A JP9957083A JPS59225130A JP S59225130 A JPS59225130 A JP S59225130A JP 58099570 A JP58099570 A JP 58099570A JP 9957083 A JP9957083 A JP 9957083A JP S59225130 A JPS59225130 A JP S59225130A
Authority
JP
Japan
Prior art keywords
catalyst
zinc oxide
weight
alumina
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58099570A
Other languages
Japanese (ja)
Other versions
JPH0373530B2 (en
Inventor
Hiroo Matsuoka
松岡 洋夫
Seiichi Matsuoka
誠一 松岡
Kozo Imura
晃三 井村
Makoto Inomata
誠 猪俣
Shunji Matsuo
松尾 俊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP58099570A priority Critical patent/JPS59225130A/en
Publication of JPS59225130A publication Critical patent/JPS59225130A/en
Publication of JPH0373530B2 publication Critical patent/JPH0373530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain aromatic hydrocarbons in high coversion ratio and in high selectivity, by bringing nonaromatic hydrocarbons consisting of paraffins, olefins, or naphthens having specific number of carbons into contact with a catalyst obtained by supporting zinc oxide on alumina, active carbon, silicalight, etc. CONSTITUTION:>=6C paraffin, olefin or naphthene is brought into contact with a catalyst obtained by supporting zinc oxide on a carrier selected from alumina, active carbon, silicalite, titania, titania silica, alumina boria, Y type zeolite, montmorillonite, and sepiolite, to give aromatic compounds. The content of zinc oxide is preferably 1.0-30wt%. The catalyst is prepared by immersing the carrier in an aqueous solution of soluble salt of zinc, calcining and oxidizing it, or by mechanical blending of zinc oxide and the carrier, etc. The reaction conditions are 450-650 deg.C, normal pressure-20kg/cm<2>G, and 0.1-10hr LHSV.

Description

【発明の詳細な説明】 (1」的) 本発明は炭素数6以−にの非芳香族炭化水素から芳香族
炭化水素を製造する方法に関するものであり、特に特定
の担体に酸化亜鉛を担持させた触媒を使用することを特
徴とする。
Detailed Description of the Invention (1) The present invention relates to a method for producing aromatic hydrocarbons from non-aromatic hydrocarbons having 6 or more carbon atoms, and particularly relates to a method for producing aromatic hydrocarbons from non-aromatic hydrocarbons having 6 or more carbon atoms. It is characterized by using a catalyst that has been

(先行技術) オレフィン糸物質から芳香族炭化水素を製造するのに酸
化亜鉛を触媒として使用すること【こつI7為では特公
昭46−18020号に記載かある力)、その実施例に
おける芳香族の全収量は供給原料番と対し5.1重量%
(同公報実施例20)に過きす工業触媒としての実用性
に乏しい。
(Prior Art) The use of zinc oxide as a catalyst for the production of aromatic hydrocarbons from olefin thread materials (as described in Japanese Patent Publication No. 46-18020), Total yield is 5.1% by weight based on feedstock number
(Example 20 of the same publication) has poor practicality as an industrial catalyst.

また特公昭56−42639号はZSM−5類のゼオラ
イトを触媒としてバラフインン、オレフィン及び/又は
ナフテンからなる原料から芳香族化合物を製造する方法
に関するものであるか、そのなかに助触媒として亜鉛を
添加することにより芳香族の収率が向上することが述べ
られている。
Furthermore, Japanese Patent Publication No. 56-42639 relates to a method for producing aromatic compounds from raw materials consisting of paraffin, olefin and/or naphthene using ZSM-5 class zeolite as a catalyst, or to a method in which zinc is added as a co-catalyst. It is stated that the yield of aromatics is improved by doing so.

しかしながら回公報には同時に比較例としてモルデナイ
ト、エリオナイトのような通常のセピライト類に亜鉛を
添加した触媒によっては殆ど芳香族が得られず、Z n
 −工’)オナイトの場合(同公報実施例46)原刺1
00g当りに得られた芳香族は僅か0.8重量%である
というようなデータか示されており、亜鉛を主要な活性
成分とする触媒が工業的に有用であることを示唆しては
いなQ)。
However, the publication also states as a comparative example that almost no aromatic compounds can be obtained using a catalyst in which zinc is added to ordinary sepilites such as mordenite and erionite;
-In the case of onite (Example 46 of the same publication) Original stab 1
The data shows that the amount of aromatics obtained per 00g is only 0.8% by weight, which does not suggest that catalysts containing zinc as the main active component are industrially useful. Q).

このほか一般に芳香族化合物を製造するための触媒とし
てはPtのような貴金属とかCr2O3のような重金属
醇化物とかが用いられているが、高価であるとか、健康
上有害な物質なので取り扱いや廃触媒の処理に特別の注
意を払わなければならない等の欠点を有する。
In addition, noble metals such as Pt and heavy metal liquefied materials such as Cr2O3 are generally used as catalysts for producing aromatic compounds, but they are expensive and harmful to health, so they are difficult to handle and discard. It has disadvantages such as the need to pay special attention to its treatment.

水元明治らは安価でしかも安全性が高く取り扱い易い酪
化亜鉛を触媒として芳香族炭化水素を製造する方法につ
いて鋭意研究を行った結果、特定の担体に担持させた酸
化亜鉛触媒が原料炭化水素の転化率及び芳香族選択率と
もに酸化亜鉛単独の場合に比べて著しく向−1ニするこ
とを見出し本発明を完成するに至った。
Meiji Mizumoto and his colleagues conducted extensive research into a method for producing aromatic hydrocarbons using zinc butyride, which is inexpensive, safe, and easy to handle, as a catalyst, and found that zinc oxide catalysts supported on a specific carrier can be used as feedstock hydrocarbons. The present inventors have discovered that both the conversion rate and the aromatic selectivity are significantly improved by -1 compared to the case of using zinc oxide alone, and have completed the present invention.

(発明の構成) すなわち本発明はアルミナ、活性炭、シリカライト、チ
タニア、ナタニアΦシリカ、アルミナ・ボリア、Y型ゼ
オライト、モンモリロナイト、及びセピオライトよりな
る群から選ばれる少なくとも1種の担体に酸化亜鉛を担
持した触媒に、炭素数6以上のパラフィン、オレフィン
またはナフテンよりなる非芳香族炭化水素の少なくとも
1種を接触させることよりなる芳香族炭化水素の製造法
である。
(Structure of the Invention) That is, the present invention provides zinc oxide supported on at least one carrier selected from the group consisting of alumina, activated carbon, silicalite, titania, natania Φ silica, alumina boria, Y-type zeolite, montmorillonite, and sepiolite. This is a method for producing aromatic hydrocarbons, which comprises contacting the prepared catalyst with at least one non-aromatic hydrocarbon consisting of paraffin, olefin or naphthene having 6 or more carbon atoms.

ZSM−5による芳香族化反応では、Journalo
f Catalysis  63,331(1980)
にも記載されている如く、120〜130Kj1モル以
上の強い酸点(NH3−熱計量法で測定した酸性度)を
必要条件とするが、本発明において使用する担体は必ず
しもそのような強い酸点は必要としない。アルミナ・ボ
リアのように120Kj1モル以りの強い酸点があって
も芳香族化反応を抑制することはしないが、あまり強い
酸点があると炭素析出を促進し触媒寿命が短くなる可能
性も′あるので、この点からは酸強度の弱い、あるいは
酸点が全くない担体か望ましい。上記の担体の中ではア
ルミナ、活性炭、シリカライトが特に好ましい。
In the aromatization reaction using ZSM-5, Journalo
f Catalysis 63, 331 (1980)
As described in the above, a strong acid site of 120 to 130 Kj 1 mol or more (acidity measured by NH3-calorimetric method) is a necessary condition, but the carrier used in the present invention does not necessarily have such a strong acid site. is not required. Even if there is a strong acid site of 120 Kj 1 mole or more, such as in alumina/boria, it will not inhibit the aromatization reaction, but if there is too strong an acid site, it may promote carbon precipitation and shorten the catalyst life. From this point of view, it is desirable to use a carrier with low acid strength or no acid sites at all. Among the above carriers, alumina, activated carbon, and silicalite are particularly preferred.

酸化亜鉛(ZnO)の含有量は約0.5〜75重量%−
の範囲で可能であるが通常0.5〜50重量%、好まし
くは1.0〜30重量%である。
The content of zinc oxide (ZnO) is approximately 0.5 to 75% by weight.
The amount is usually 0.5 to 50% by weight, preferably 1.0 to 30% by weight.

触媒の調製方法は亜鉛の可溶性塩の水溶液に担体を浸漬
するか真空含浸した後焼成拳酸化する方法、あるいは酸
化亜鉛と担体とを機械的に混合する方法等がある。真空
含浸の場合は担体をあらかじめ1時間程真空説気した後
に飽和含水量に相当する硝酸亜鉛水溶液を含浸させる。
The catalyst can be prepared by immersing or vacuum impregnating a carrier in an aqueous solution of a soluble salt of zinc, followed by oxidation by firing, or by mechanically mixing zinc oxide and the carrier. In the case of vacuum impregnation, the carrier is previously vacuum aerated for about one hour and then impregnated with an aqueous zinc nitrate solution corresponding to the saturated water content.

前処理は酸化雰囲気あるいは不活性ガス気流中で行う。Pretreatment is performed in an oxidizing atmosphere or an inert gas stream.

反応条件は温度か450〜650°C1圧力は常圧−2
0Kg/cm’G、LH3Vは0.1−10/時が適当
である。
The reaction conditions are temperature: 450 to 650°C, pressure: normal pressure -2
0Kg/cm'G, LH3V is suitably 0.1-10/hour.

以下実施例により更に詳細に説明するが、本発明は下記
実施例のみに限定されるものではない。
The present invention will be explained in more detail with reference to examples below, but the present invention is not limited to the following examples.

(実施例) A 触媒調製 触媒1〜3 市販の試薬特級硝酸亜鉛を水に溶解して担体の飽和含水
量に見合う硝酸亜鉛水溶液を調製する。
(Example) A Catalyst Preparation Catalysts 1 to 3 A commercially available reagent special grade zinc nitrate is dissolved in water to prepare an aqueous zinc nitrate solution suitable for the saturated water content of the carrier.

この水溶液を予め1時間真空脱気した球状(3mmφ)
のγ−アルミナ80gにスプレーにより均一に真空含浸
せしめ、さらに1時間真空脱気し水分を法発させた。こ
れを120°Cで1昼夜乾燥した後、500°Cで3時
間焼成することにより、ZnO含有量がそれぞれ2,5
.10重量%のアルミナ担持酸化亜鉛を得、これらをそ
れぞれ8〜16メンシユの大きさに粉砕したものを触媒
とした。
This aqueous solution was vacuum-degassed for 1 hour beforehand into a spherical shape (3 mmφ).
80 g of γ-alumina was uniformly impregnated in a vacuum by spraying, and further vacuum degassed for 1 hour to allow water to evaporate. After drying this at 120°C for 1 day and night, it was fired at 500°C for 3 hours to reduce the ZnO content to 2 and 5, respectively.
.. Zinc oxide supported on alumina of 10% by weight was obtained, and each of these was pulverized to a size of 8 to 16 meshes and used as a catalyst.

触媒I  ZnO含有量2重量%。Catalyst I ZnO content 2% by weight.

比表面積223 、5 rn’ / g 。Specific surface area 223, 5 rn'/g.

細孔容積0 、985 c c / g触媒2  Zn
O含有量5重量%。
Pore volume 0, 985 c c / g catalyst 2 Zn
O content 5% by weight.

比表面積222 、6 m’ / g 。Specific surface area 222, 6 m'/g.

細孔容積0.799cc/g 触媒3  ZnO含有量10重量%。Pore volume 0.799cc/g Catalyst 3 ZnO content 10% by weight.

比表面積243.4m’/g。Specific surface area 243.4 m'/g.

細孔容積0 、963 c c / g触媒4 前記と同様な方法で1時間真空脱気した活性炭担体50
gに、所要量の硝酸亜鉛水溶液を真空含浸せしめた。さ
らに触媒1〜3と同様に処理してZnO含有量が2重量
%の活性炭15」持酸化亜鉛触媒を得た。
Pore volume 0, 963 c c / g Catalyst 4 Activated carbon carrier 50 vacuum degassed for 1 hour in the same manner as above
g was vacuum impregnated with the required amount of zinc nitrate aqueous solution. Further, the catalyst was treated in the same manner as Catalysts 1 to 3 to obtain an activated carbon 15'' zinc oxide catalyst having a ZnO content of 2% by weight.

比表面積756 、1 m’ / g 。Specific surface area 756, 1 m'/g.

細孔容積0.373cc/g 触媒5 シリカライI・を以下のような方法で調製した。Pore volume 0.373cc/g catalyst 5 Silicalite I was prepared in the following manner.

塩化すl・リウム水溶液1182g (NaCi20重
量%)に水ガラス621g (Si0230重量%)と
テトラプロピルアンモニウムプロマイト溶液((C3H
7)4 ・NIIBr40.5g,濃流酸52.5g,
水540cc)を加え2時間攪拌した。このゲルをオー
トクレーブに入れ、攪拌しながら170℃、5 K g
 / c rn’ Gで48時間保持して結晶化した。
1182 g of sulfur/lium chloride aqueous solution (20 wt.% NaCi), 621 g of water glass (30 wt.% Si0) and tetrapropylammonium puromite solution ((C3H
7) 4 ・NIIBr40.5g, concentrated acid 52.5g,
540 cc of water was added and stirred for 2 hours. This gel was placed in an autoclave and heated at 170°C with stirring for 5 Kg.
/ crn' G for 48 hours to crystallize.

生成物はa過・洗浄後、乾燥Φ焼成(530°C、5時
間)した。かくして得られたシリカライトはNH3−熱
量計法による酸性質測定の結果酸点はほとんどなど、ま
た本反応条件下ではn−C6HI4の転化反応活性は無
視できた。このようなシリカライトを打錠成型した後、
触媒1〜3と同様な方法でZnO含有量が5重量%にな
るように硝酸亜鉛水溶液で真空含浸した後乾燥・焼成し
た。
The product was filtered and washed, then dried and calcined (530°C, 5 hours). The silicalite thus obtained was found to have almost no acid sites when measured by the NH3 calorimetry method, and the conversion reaction activity of n-C6HI4 was negligible under the present reaction conditions. After forming such silicalite into tablets,
In the same manner as Catalysts 1 to 3, the catalysts were vacuum impregnated with an aqueous zinc nitrate solution so that the ZnO content was 5% by weight, and then dried and calcined.

比表面積240 、2g 。Specific surface area 240, 2g.

細孔容積0.307cc/g 触媒6 触媒1〜3と同様な方法にてZnO含有量か2重量%の
チタニア(アナターゼ型)担持酸化亜鉛触媒を得た。
Pore volume: 0.307 cc/g Catalyst 6 A titania (anatase type) supported zinc oxide catalyst having a ZnO content of 2% by weight was obtained in the same manner as in Catalysts 1 to 3.

比表面積60.4tn’/g。Specific surface area 60.4tn'/g.

細孔容積0 、 2 4 2 c c / g触媒7 チタニア・シリカを以下のような方法で調製した。(C
2 Hs )4 ・SiO4 (22.6cc)を溶解
した冷水(113cc)中に、Tic交4(102.2
cc)を溶解した冷水(511cc)を添加し、さらに
これに濃塩酸200ccを加え、95°Cで1時間、加
温・攪拌する。白濁が生した後28%アンモニア水を4
50cc添加してpH=8 、5とした。さらにこれを
95℃、1時間加熱攪拌した後濾過・洗浄し、その後乾
燥・焼成(500°C、空気中、3時間)した。これを
触媒1〜3と同様な方法にて硝酸亜鉛水溶液で真空含浸
した後乾燥・焼成してZnO含有量2重量%のチタニア
・シリカ担持酸化亜鉛触媒を得た。
Pore volume 0, 2 4 2 cc/g Catalyst 7 Titania silica was prepared in the following manner. (C
2 Hs )4 ・SiO4 (22.6 cc) was dissolved in cold water (113 cc).
Add cold water (511 cc) in which cc) was dissolved, and further add 200 cc of concentrated hydrochloric acid, and heat and stir at 95°C for 1 hour. After it becomes cloudy, add 28% ammonia water for 4 hours.
50 cc was added to adjust the pH to 8.5. This was further heated and stirred at 95°C for 1 hour, filtered and washed, and then dried and calcined (500°C, in air, for 3 hours). This was vacuum impregnated with an aqueous zinc nitrate solution in the same manner as Catalysts 1 to 3, and then dried and calcined to obtain a titania-silica supported zinc oxide catalyst having a ZnO content of 2% by weight.

比表面積132.2m’/g。Specific surface area 132.2 m'/g.

細孔容積0 、 2 8 5 c c / g触りX8 アルミナ・ボリアを以下のような方法で調製した。硝酸
アルミニウム水溶液(硝酸アルミニウム280g十水8
 0 0 c c)に攪拌しながらホウ酸水溶液(ホウ
酸40g十水300cc+33%アンモニア水60cc
)を滴下した。これに33%アンモニア水80ccを添
加しpH=8.0とし、同−条件下で更に2時間熟成し
た。濾過・洗浄後、乾燥・焼成( 5 0 0 ’C、
空気中、3時間)した。これを触媒l〜3と同様な方法
にて処理してZnO含有量2重量%のアルミナ・ボリア
担持酸化亜鉛触媒を得た。
Pore volume 0, 285 cc/g touch X8 Alumina boria was prepared by the following method. Aluminum nitrate aqueous solution (aluminum nitrate 280 g 10 water 8
0 0 c c) While stirring, add a boric acid aqueous solution (40 g of boric acid, 300 cc of water + 60 cc of 33% aqueous ammonia)
) was added dropwise. 80 cc of 33% aqueous ammonia was added to this to adjust the pH to 8.0, and the mixture was further aged for 2 hours under the same conditions. After filtration and washing, drying and baking (500'C,
in air for 3 hours). This was treated in the same manner as Catalysts 1 to 3 to obtain an alumina/boria supported zinc oxide catalyst having a ZnO content of 2% by weight.

比表面積3 0 0 、 7m’/g 。Specific surface area 300, 7m'/g.

細孔容積0 、 4 4 2 c c / g触媒9 触媒1〜3と同様にしてZnO含有量2重量%のY型ゼ
オライト担持酸化亜鉛触媒を得た。
Pore volume: 0, 442 cc/g Catalyst 9 A Y-type zeolite-supported zinc oxide catalyst having a ZnO content of 2% by weight was obtained in the same manner as Catalysts 1 to 3.

比表面積484.2m’/g。Specific surface area 484.2 m'/g.

細孔容積0 、32 c c / g 触媒lO 触媒1〜3と同様にしてZnO含有量2重量%のモンモ
リロナイ) 114持酸化亜鉛触媒を得た。
Pore volume: 0, 32 cc/g Catalyst lO A Montmorillonium 114-bearing zinc oxide catalyst having a ZnO content of 2% by weight was obtained in the same manner as Catalysts 1 to 3.

触媒11 触媒1〜3と同様にしてZnO含有量5重量%のセピオ
ライト担持酸化亜鉛触媒を得た。
Catalyst 11 A sepiolite-supported zinc oxide catalyst having a ZnO content of 5% by weight was obtained in the same manner as Catalysts 1 to 3.

比較例1の触媒 触媒1〜3で用いたγーアルミナ 比較例2の触媒 硝酸斬鉛400gを純水2文に溶解し、80″Cで加熱
攪拌しながらこれに炭酸ソーダ水溶液(炭酸ソータ20
0g+純水1父)をpH=7.5になるまで添加し沈殿
せしめた。同一条件で5時間熟成後、濾過・洗浄し、そ
の後乾燥・焼成(50o ’c、空気中、3時間)した
400 g of γ-alumina used in catalysts 1 to 3 of Comparative Example 1 400 g of the catalyst of Comparative Example 2 was dissolved in two volumes of pure water, and while heating and stirring at 80"C, a sodium carbonate aqueous solution (carbonate sorter 20
0 g + 1 part of pure water) was added until pH = 7.5 to cause precipitation. After aging for 5 hours under the same conditions, it was filtered and washed, and then dried and fired (50 o'c in air for 3 hours).

B 実施例1〜11、比較例1、2 固定床型の反応器(内容積35cc)に、触媒4ccを
充填後、不活性ガスを通して約1時間11J処理し、反
応温度570 ’C(実施例8のみ500°C)、圧力
=常圧、LH3V=0.3/Hr、原料炭化水素:ヘリ
ウム=l:5の組成のガスを通して芳香族化反応を行っ
た。10時間経過後の原料炭化水素の転化率、芳香族選
択率(重量%)を第1表に示す。各実施例で用いた触媒
は実施例と同番号の前記触媒である。
B Examples 1 to 11, Comparative Examples 1 and 2 After filling a fixed bed reactor (inner volume 35 cc) with 4 cc of catalyst, inert gas was passed through the reactor for about 1 hour at 11 J, and the reaction temperature was 570'C (Example The aromatization reaction was carried out by passing a gas having a composition of raw material hydrocarbon: helium = 1:5 at 500°C), pressure = normal pressure, LH3V = 0.3/Hr. Table 1 shows the conversion rate of the raw material hydrocarbon and the aromatic selectivity (wt%) after 10 hours. The catalyst used in each example is the same numbered catalyst as in the example.

なお である。In addition It is.

実施例の1部について生成芳香族中ベンセン、)・ルエ
ン、キシレンの分布を示すと次の如くである。但し、収
率=転化率×選択率 である。
The distribution of benzene, ).luene, and xylene in the produced aromatics for a part of the example is as follows. However, yield=conversion rate×selectivity.

実施例I  ZnO−Al2’03触媒(ZnO含有率
2重量%) (1)原料:n−ヘキサン 生成全芳香族(収−v、19.2重間%)のうちヘンセ
ン    100% (2)原料:1−ヘキセン 生成全芳香族(収率47.7重量%)のうちヘンセン 
   100   % 実施例2  ZnO−Al2O3触媒 (ZnO含有率5重量%) 原料:n−へブタン 生成全芳香族(収率33.5重量%)のうちヘンセン 
      3.9% トルエン     96.1% 実施例3  ZnO−、Al2O3触媒(ZnO含有率
10重量%) 原料:メチルシクロヘキサン 生成全芳香族(収率73.2重量%)のうちベンゼン 
     3.5% トルエン     93.1% キシレン      3.4% 実施例4Zn−0−活性炭触媒 (ZnO含有率2重量%) (1)原料:n−へキサン 生成全芳香族(収率62.9重量%)のうちベンゼン 
    99  % トルエン中キシレン 1  % (2)原料1.n−=ブタン 生成全芳香族(収率、73 、7重量%)のうちベンセ
ン      4.1% トルエン     94.6% キシレン      1・3% (3)原料:1−ヘキセン 生成全芳香族(収率78.6重量%)のうちベンゼン 
    98.7% トルエン・キシレン 1.3% (4)原N :メチルシクロヘキサン 生成全芳香族(収率958重量%)のうちベンゼン  
    3.6% トルエン     93.2% キシレン      3.2% 実施例5  ZnO−シリカライト触媒(ZnO含有率
5重量%) (1)原料:n−へキサン 生成全芳香族(収率28.7重量%)のうちベンセン 
    89.7% トルエン      5.9% キシレン      4.4% (2)原料:n−へブタン 生成全芳香族(収率6o、3重量%)のうちベンゼン 
     7.1% トルエン     89.3% キシレン      3.6% (3)原料:1−ヘキセン 生成全芳香族(収率62.4重量%)のうちヘンセン 
    87.1% トルエン      7.1% キシレン      5,8% (4)原料:メチルシクロヘキサン 生成全芳香族(収:iS94 、5玉量%)のうちヘン
セン      4川% トルエン     92.7% キシレン      32% またZnO含イ4量2重量%のアルミナ担持酸化亜鉛触
媒を用いたn−ヘキサン、n−ヘプタン及、ひメチルシ
クロヘキサンの各芳香族化反応における経過時間と転化
率、芳香族選択率との関係を第1図及び第2図に示した
Example I ZnO-Al2'03 catalyst (ZnO content 2% by weight) (1) Raw material: Hensen 100% of all aromatics produced in n-hexane (yield -v, 19.2% by weight) (2) Raw material :1-hexene among all aromatics produced (yield 47.7% by weight)
100% Example 2 ZnO-Al2O3 catalyst (ZnO content 5% by weight) Raw material: Hensen of all aromatics produced in n-hebutane (yield 33.5% by weight)
3.9% Toluene 96.1% Example 3 ZnO-, Al2O3 catalyst (ZnO content 10% by weight) Raw material: Benzene among all aromatics produced in methylcyclohexane (yield 73.2% by weight)
3.5% Toluene 93.1% Xylene 3.4% Example 4 Zn-0-activated carbon catalyst (ZnO content 2% by weight) (1) Raw material: n-hexane produced wholly aromatic (yield 62.9% by weight) %) of which benzene
99% xylene in toluene 1% (2) Raw materials 1. n-=benzene 4.1% toluene 94.6% xylene 1.3% of the total aromatics produced in butane (yield, 73, 7% by weight) (3) Raw materials: total aromatics produced in 1-hexene (yield 78.6% by weight) of which benzene
98.7% Toluene/xylene 1.3% (4) Raw N: Benzene among all aromatics produced in methylcyclohexane (yield 958% by weight)
3.6% Toluene 93.2% Xylene 3.2% Example 5 ZnO-silicalite catalyst (ZnO content 5% by weight) (1) Raw material: n-hexane producing wholly aromatic (yield 28.7% by weight) %) of which benzene
89.7% Toluene 5.9% Xylene 4.4% (2) Raw materials: Benzene among all aromatics produced in n-hebutane (yield 6o, 3% by weight)
7.1% Toluene 89.3% Xylene 3.6% (3) Raw materials: 1-hexene of all aromatics produced (yield 62.4% by weight)
87.1% Toluene 7.1% Xylene 5.8% (4) Raw materials: Methyl cyclohexane produced completely aromatic (yield: iS94, 5 mass%) Hensen 4% Toluene 92.7% Xylene 32% Relationship between elapsed time, conversion rate, and aromatic selectivity in each aromatization reaction of n-hexane, n-heptane, and dimethylcyclohexane using an alumina-supported zinc oxide catalyst containing 4% by weight of ZnO. It is shown in FIGS. 1 and 2.

(効果) −1−6記の実施例及び添旧図面から明らかなように本
発明の方法は、a、芳香族炭化水素への追択率が比較的
高く、かつ安定している。b、用いる触媒が安価である
。C,M媒製造における再現性がよい。d、失活した触
媒は空気再生により容易に活性が戻る。
(Effects) As is clear from the Examples and the attached drawings in -1-6, the method of the present invention has a relatively high addition rate to aromatic hydrocarbons and is stable. b. The catalyst used is inexpensive. Good reproducibility in producing C and M media. d. The deactivated catalyst is easily reactivated by air regeneration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はZ’nO含有量2重M%のアルミナ担持酸化亜
鉛触媒を用いた場合のn−ヘキサン、■−ヘプタン及び
メチルシクロヘキサンの各芳香族化反応における経過時
間と転化率、第2図は同じく経過時間と芳香族選択率と
の関係を示すものである。 出願人  日  揮  株  式  会  社代理人 
弁理士 青 麻 昌 二 2
Figure 1 shows the elapsed time and conversion rate in each aromatization reaction of n-hexane, ■-heptane, and methylcyclohexane using an alumina-supported zinc oxide catalyst with a Z'nO content of 2% by weight, and Figure 2 shows the conversion rate. Similarly, shows the relationship between elapsed time and aromatic selectivity. Applicant JGC Co., Ltd. Company Agent
Patent Attorney Ao Asa Shoji 2

Claims (1)

【特許請求の範囲】[Claims] アルミナ、活性炭、シリカライト、チタニア、チタニア
・シリカ、アルミナ拳ボリア、Y望セオライト、モンモ
リロナイト及びセピオライトよりなる群から選ばれる少
なくとも1種の担体に酸化便船を担持した触媒に、炭素
数6以上のパラフィン、オレフィンまたはナフテンより
なる非芳香族炭化水素の少なくとも1種を接触させるこ
とよりなる芳香族炭化水素の製造法。
A catalyst having an oxidizing carrier supported on at least one carrier selected from the group consisting of alumina, activated carbon, silicalite, titania, titania/silica, alumina kenboria, Yoboseolite, montmorillonite, and sepiolite has a carbon number of 6 or more. A method for producing aromatic hydrocarbons, which comprises contacting at least one non-aromatic hydrocarbon consisting of paraffin, olefin or naphthene.
JP58099570A 1983-06-06 1983-06-06 Preparation of aromatic hydrocarbon Granted JPS59225130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58099570A JPS59225130A (en) 1983-06-06 1983-06-06 Preparation of aromatic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58099570A JPS59225130A (en) 1983-06-06 1983-06-06 Preparation of aromatic hydrocarbon

Publications (2)

Publication Number Publication Date
JPS59225130A true JPS59225130A (en) 1984-12-18
JPH0373530B2 JPH0373530B2 (en) 1991-11-22

Family

ID=14250776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58099570A Granted JPS59225130A (en) 1983-06-06 1983-06-06 Preparation of aromatic hydrocarbon

Country Status (1)

Country Link
JP (1) JPS59225130A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523025A (en) * 1975-06-23 1977-01-11 British Petroleum Co Preparation of aromatic hydrocarbons
JPS55124722A (en) * 1979-03-14 1980-09-26 Shell Int Research Manufacture of aromatic hydrocarbon and hydrogen
JPS59148728A (en) * 1983-02-15 1984-08-25 Mitsubishi Heavy Ind Ltd Conversion of hydrocarbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523025A (en) * 1975-06-23 1977-01-11 British Petroleum Co Preparation of aromatic hydrocarbons
JPS55124722A (en) * 1979-03-14 1980-09-26 Shell Int Research Manufacture of aromatic hydrocarbon and hydrogen
JPS59148728A (en) * 1983-02-15 1984-08-25 Mitsubishi Heavy Ind Ltd Conversion of hydrocarbon

Also Published As

Publication number Publication date
JPH0373530B2 (en) 1991-11-22

Similar Documents

Publication Publication Date Title
US3140253A (en) Catalytic hydrocarbon conversion with a crystalline zeolite composite catalyst
US4363718A (en) Crystalline chromosilicates and process uses
JP3253642B2 (en) Catalytic hydrodealkylation of alkylaromatic compounds
JP2969062B2 (en) Hydrotreating method for producing premium isomerized gasoline
US3775501A (en) Preparation of aromatics over zeolite catalysts
EP0649387B1 (en) Synthesis of zeolite films bonded to substrates, structures and uses thereof
US4299808A (en) Crystalline chromosilicates and process of preparation
US3923639A (en) Converting hydrocarbons with zeolite ZSM-4
JPH0214286B2 (en)
US3619412A (en) Mordenite-containing hydrocracking catalyst
JPH0675679B2 (en) Highly active and highly selective aromatization catalyst
JPH01213238A (en) Conversion of paraffin
US3669903A (en) Catalytic cracking process
US5908967A (en) Catalyst based on a mordenite zeolite modified with cerium, and its use in the isomerisation of an aromatic C8 cut
JP2905941B2 (en) Process for isomerizing normal paraffins in the presence of at least one catalyst based on a specific omega zeolite
JPH0528278B2 (en)
EP0188913A2 (en) A shape-selective group VIII metal-containing catalyst composition comprising a porous crystalline silicate
US5135898A (en) Catalysts for the aromatization of light paraffins and olefins
JPS62285987A (en) Method of converting low-boiling paraffin
US8889939B2 (en) Dehydrocyclodimerization using UZM-44 aluminosilicate zeolite
CA1202295A (en) Method of producing a zeolite containing occluded multimetalite and the product of such a method
JPH04504857A (en) Isoparaffin-olefin alkylation process
JPS59225130A (en) Preparation of aromatic hydrocarbon
JP3918048B2 (en) Method for producing lower alkene
US3280212A (en) Conversion of hydrocarbons