JPS59224812A - Optical transmitter array - Google Patents

Optical transmitter array

Info

Publication number
JPS59224812A
JPS59224812A JP10037583A JP10037583A JPS59224812A JP S59224812 A JPS59224812 A JP S59224812A JP 10037583 A JP10037583 A JP 10037583A JP 10037583 A JP10037583 A JP 10037583A JP S59224812 A JPS59224812 A JP S59224812A
Authority
JP
Japan
Prior art keywords
reference plate
spacer
grooves
array
optical transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10037583A
Other languages
Japanese (ja)
Inventor
Akira Akazawa
赤沢 旭
Shigeru Tokita
茂 戸木田
Manabu Takami
学 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP10037583A priority Critical patent/JPS59224812A/en
Publication of JPS59224812A publication Critical patent/JPS59224812A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/368Mechanical coupling means for mounting fibres to supporting carriers with pitch conversion between input and output plane, e.g. for increasing packing density
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/36642D cross sectional arrangements of the fibres
    • G02B6/3676Stacked arrangement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

PURPOSE:To array optical transmitters with extremely high precision and to obtain high resolution by foring nearly sectorial grooves in the nonparallel surface of a wedgelike plate type body, arranging the optical transmitters in those grooves, and stacking plate type bodies so that nonlinear surfaces face each other. CONSTITUTION:The optical transmitters 2 are arranged in individual grooves 15 of an upper reference plate 12 with the grooves 15 up. Then, a spacer 14 is arranged thereupon, and pins 26 are inserted into pin holes 23 and 21 to specify the relative positions of the upper reference plate 12 and spacer 14 at right angles to the pins 26. Then, those upper reference plate 12 and spacer 14 are fixed temporarily at projection parts 17 with an adhesive. Then, the optical transmitters 25 are arranged in the individual grooves 16 of a lower reference plate 13. Then, the upper reference plate 12, optical transmitters 24, and spacer 14 are inverted as shown in a figure, and the pins 26 are inserted into pin holes 22 to specify the relative positions of the upper reference plate 12, spacer 14, and lower reference plate 13 at right angles to the pins 26. Then, the upper reference plate 12, spacer 14, and lower reference plate 13 are fixed temporarily at the projection parts 17 with an adhesive.

Description

【発明の詳細な説明】 本発明は、光伝送体が複数列に配列されており、しかも
gB本体面在る物体の画像を1以外の倍率で像面上へ伝
送する光伝送体アレイに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light transmitting body array in which light transmitting bodies are arranged in a plurality of rows and transmitting an image of an object located on the surface of a gB main body onto an image plane at a magnification other than 1. It is.

第1図は、この様な光伝送体アレイの1つの従来例を示
している。この第1図に示す様に、光伝送体アレイ(1
1に於いては、円柱状を成す多数の光伝送体(2)が2
列に配列されている。光伝送体(2)は、同一列内に於
いて扇状を成すと共にこれらの扇状が互いに非平行に対
向し且つ夫々の端面(2a )(2b)が千鳥足状を成
す様に、所定の保持部材(3)によって保持されている
FIG. 1 shows one conventional example of such an optical transmission body array. As shown in Fig. 1, an optical transmitter array (1
In 1, a large number of cylindrical optical transmission bodies (2) are connected to 2
arranged in columns. The light transmitting body (2) has a predetermined holding member so that it forms a fan shape in the same row, and these fan shapes face each other in a non-parallel manner, and the respective end surfaces (2a and 2b) form a staggered shape. It is held by (3).

アレイ(1)は、個々の光伝送体(2)が像面上で作る
拡大成いは縮小された実像の一部分ずつを近傍同士で重
ね合わせることによって、二次元的な広が9を有する画
像の全体を物体面から像面へ1以外の倍率で同時に伝送
することができるので、拡大式或いは縮小式の複写機等
に適用すれは有用である0 ところで、アレイ(1)に於いては、上述の如く、個々
の光伝送体(2)か作る拡大成いは縮小された実像の一
部分ずつが近傍同士で重ね合わされるので、高い解像度
を有するアレイ(1)を得る為には、個々の実像同士を
正確に重ね合わせる必要があシ、この為には光伝送体(
2)同士を極めて高N度に配列する必要がある。
The array (1) creates an image having a two-dimensional spread 9 by superimposing portions of enlarged or reduced real images created on the image plane by the individual optical transmitters (2) in close proximity. Since the entire image can be simultaneously transmitted from the object plane to the image plane at a magnification other than 1, it is useful to apply it to enlargement or reduction type copying machines.By the way, in array (1), As mentioned above, in the enlargement created by each optical transmission body (2), parts of the reduced real image are superimposed on each other in the vicinity, so in order to obtain an array (1) with high resolution, it is necessary to It is necessary to accurately superimpose the real images, and for this purpose an optical transmission medium (
2) It is necessary to arrange them with an extremely high N degree.

光伝送体同士が互いに半行なアレイであれは、光伝送体
を単に千鳥格子状に積み上けるたけで、光軸間の距離か
一様な高精度の配列を得ることができる。
In the case of an array in which the optical transmission bodies are arranged in half rows, a highly accurate arrangement with uniform distance between the optical axes can be obtained by simply stacking the optical transmission bodies in a houndstooth pattern.

しかし、アレイ(1)では光伝送体(2)同士が互いに
非平行であるので、上述の様な構成では、第1図に示す
様な光伝送体(2)の配列を得ることはできない。この
為に、光伝送体(2)同士を極めて尚精度に配列でき、
しかも製造が非常に容易なアレイ(1)は、現在のとこ
ろ一般には知られていない。
However, in the array (1), the optical transmission bodies (2) are not parallel to each other, so with the above-described configuration, it is not possible to obtain the arrangement of the optical transmission bodies (2) as shown in FIG. For this reason, the optical transmission bodies (2) can be arranged with great precision,
Moreover, the array (1), which is very easy to manufacture, is not generally known at present.

本発明は、この様な問題点に鑑み、光伝送体同士を極め
て高精度に配列することができるので高い解像度を得る
ことができ、しかも製造が非常に容易な光伝送体アレイ
を提供することを目的としている。
In view of these problems, it is an object of the present invention to provide an optical transmission element array that can obtain high resolution by arranging optical transmission elements with extremely high precision and is also extremely easy to manufacture. It is an object.

以下、本発明の第1〜第6実施例を、第2図〜第9図を
診照しながら読明する。
Hereinafter, the first to sixth embodiments of the present invention will be read with reference to FIGS. 2 to 9.

第2図は、本発明の第1実施例を示している。FIG. 2 shows a first embodiment of the invention.

この第2図に示す様に、光伝送体アレイ圓はFRP(繊
維強化樹脂)等から成る上基準板(1艶、■基準板(1
3)及びスペーサ側を有しておシ、これらはN0加工や
射出成形等によって長方形の板状で月っ略楔状Vc、成
形されている。
As shown in Fig. 2, the optical transmitter array circle is made of FRP (fiber reinforced resin), etc. with an upper reference plate (1 gloss) and a ■ reference plate (1
3) and a spacer side, which are formed into a rectangular plate shape with a substantially wedge-shaped Vc by N0 processing, injection molding, etc.

上下の基準板(121F13)の夫々の一万の表面(1
2a)(13a)には、断面V形の多数の溝0!H1ω
が形成されている。溝(1,51(16)の内、基準板
(121(13)の長手方向の略中央に位置する1本の
溝(15) (16)は、表面(12a)(13a)を
直角に横切る方向へ延びている。そして、他の溝(15
)Qlはこの中央の溝(l■(16)に対して表面(1
2a)(13a)内で傾斜しており、この傾斜は中央の
溝(I5100から両方へ離れるに連れて徐々に大きく
なっている。つまり、これらのI (15) (16)
は、全体として夫夫扇状を成している。
10,000 surfaces (1
2a) (13a) has a large number of V-shaped grooves 0! H1ω
is formed. Among the grooves (1, 51 (16), one groove (15) (16) located approximately in the longitudinal center of the reference plate (121 (13)) crosses the surfaces (12a) (13a) at right angles. The other groove (15
) Ql is the surface (1
2a) (13a), and this slope gradually increases as one moves away from the central groove (I5100), i.e. these I (15) (16)
As a whole, it forms a fan-like shape.

スペーサ04)の長手方向の両端部には、両方の表面(
14a)(14b)に直角な方向へ突出する突出部0η
が形成されている。捷た、これらの突出部θηの夫々の
略中央部と基準板a、u31の長手方向の両端部とには
、円柱状のビン孔(231(211Hが形成されている
Both surfaces (
14a) A protrusion 0η protruding in a direction perpendicular to (14b)
is formed. Cylindrical bottle holes (231 (211H) are formed at approximately the center of each of the bent protrusions θη and at both longitudinal ends of the reference plates a and u31.

以上の様な基準板(12103)及びスペーサ0(イ)
を使用してアレイ(11)を製造するには、まず、上基
準板(12)の溝05)を上方へ向けた状態で、つま力
、第2図に比べて上基準板(I21を裏返しにした状態
で、個々の溝051内へ光伝送体(24)を配置する。
Reference plate (12103) and spacer 0 (a) as above
To manufacture the array (11) using In this state, the optical transmission body (24) is placed in each groove 051.

次いで、これらに重ねる様にスペーサ04)全配置し、
ビン孔C2?;+ f2]1ヘビンC26i %挿通し
て、このビン(26)に直角な方向への上基準板α2と
スペーサ04)との相対的な位置規制を行う。そして、
これらの上基準板(121とスペーサ04)とを、突出
部α7)に於いて接着剤で仮固定する。
Next, all the spacers 04) are arranged so as to overlap these,
Bottle hole C2? ;+f2]1 Hebin C26i% is inserted to regulate the relative position of the upper reference plate α2 and spacer 04) in the direction perpendicular to this bin (26). and,
These upper reference plates (121 and spacer 04) are temporarily fixed with adhesive at the protrusion α7).

更に、下基準板(I3)の個々の溝a、6)内へ光伝送
体(25)を配置する。次いで、上基準板(121、光
伝送体C21)及びスペーサ(14)を反転して、つま
シ、第2図の様な状態で、ビン(26+をビン孔(27
Jへも挿通して、ビン(26)に直角な方向への上基準
板(121及びスペーサ04)と下基準板Q3)との相
対的な位置規制を行う。そして、これらの上基準板(1
21及びスペーサ側と下基準板(I3)とを、突出部Q
7)に於いて接着剤で仮固定する。
Furthermore, the light transmitting body (25) is placed in each groove a, 6) of the lower reference plate (I3). Next, the upper reference plate (121, optical transmission body C21) and spacer (14) are turned over, and the bottle (26+ is inserted into the bottle hole (27) in the state shown in FIG.
J is also inserted to regulate the relative position of the upper reference plate (121 and spacer 04) and lower reference plate Q3) in the direction perpendicular to the bin (26). Then, these upper reference plates (1
21 and the spacer side and the lower reference plate (I3) at the protrusion Q.
7) Temporarily fix with adhesive.

この状態では、溝QH6)は千鳥足状に配列されており
、また基準板aa o、sの溝(15) (161とは
反対側の表面(12b) (13b)同士は互いに平行
である。
In this state, the grooves QH6) are arranged in a staggered manner, and the surfaces (12b) and (13b) of the reference plates aa o, s on the opposite side to the grooves (15) (161) are parallel to each other.

光伝送体(2(イ)■51としては、ガラスや合成樹脂
等の透明な材料で円柱状に成形され、その屈折率が軸心
位置で最大でる41)ffつ半径方向へ距離の2乗に略
比例して減少している為に、光の入出射端面か平面であ
ってもレンズ作用を有しており、光が憎心を中心として
蛇行しながら進む屈折率分布型レンズを使用する。
The optical transmission body (2 (a) ■51 is made of a transparent material such as glass or synthetic resin and is molded into a cylindrical shape, and its refractive index is maximum at the axial center position41) ff The square of the distance in the radial direction Because it decreases approximately in proportion to the angle, it has a lens effect even if it is a flat surface, and a gradient index lens is used, where the light meanders around the center of gravity. .

次いで、以上の様な状態のアレイθ1)を、第6図に示
す様に、黒色のシリコン樹脂(5)が満たされている樹
脂槽Oυ中へ浸漬する。この樹脂槽(31)は、低圧の
容器0湯内に配置されており、この低圧の為に。
Next, the array θ1) in the above state is immersed into a resin tank Oυ filled with black silicone resin (5), as shown in FIG. This resin tank (31) is placed in a low-pressure container 0 hot water, and due to this low pressure.

樹脂0′?)中の気泡は完全に除去きれる。Resin 0′? ) can be completely removed.

従って、基準板αりα3)、スペーサ04)及び光伝送
体(24)シ5)の間の間隙には樹脂(2ηが完全に充
填されるので、アレイ0])を樹脂槽l311から取り
出して樹脂(2力を硬化させると、基準板(Iりf13
1.スペーサI及び光伝送体CI!4) (251か互
いに接着固定されると共に、光伝送体e4駆珈同士のf
ilの迷光か防止される。
Therefore, the gap between the reference plate α3), the spacer 04) and the optical transmitter (24) is completely filled with resin (2η, so the array 0]) is removed from the resin tank l311. When the resin (2) is cured, the reference plate (Ir f13
1. Spacer I and optical transmission body CI! 4) (251 are adhesively fixed to each other, and the f
Il stray light is prevented.

最仮に、アレイD11を所定の形状に切断或いは研削し
、更にこのアレイαυの光の入出射端面を他層する0 第4図〜第7図は2以上の様にして製造されたアレイ旧
)を示している。これらの第4図〜第7図に示す様に、
光伝送fli−(2al (25,+は、夫々の光軸が
アレイ(II)の平面及び側面の何れに於いても扇状を
成している。また、光伝送体(2)(ハ)の一方の端面
は密な千鳥足状、他方の端面は粗な千鳥点状に夫々配列
されている。
At the very least, the array D11 is cut or ground into a predetermined shape, and the light input/output end surfaces of this array αυ are coated with another layer. It shows. As shown in these figures 4 to 7,
In the optical transmission fli-(2al (25,+), each optical axis forms a fan shape on both the plane and the side surface of the array (II). One end surface is arranged in a dense staggered pattern, and the other end surface is arranged in a rough staggered pattern.

なお、側面から見たアレイ(111の入出射面の曲率は
実際には非常に不埒いので、これらを平面とし、アレイ
圓の側面の形状を第7図Aに示す形状の代漫に第7図B
に示す形状としてもよい。
Note that the curvature of the entrance and exit surfaces of the array (111) viewed from the side is actually very undesirable, so these are taken as planes, and the shape of the side surface of the array circle is set as a substitute for the shape shown in FIG. 7A. Diagram B
It may also have the shape shown in .

第8図は、本発明の第2笑施例を示している。FIG. 8 shows a second embodiment of the invention.

この第8図に示す様に、第2実施例の光伝送体アレイθ
υは、光伝送体(24) (25)を配置する為の溝(
15) (1(ilが基準板(I21031の夫々の一
方の表面(12a)(13a)にではなくスペーサIの
両方の表面(14a)(14b) E千鳥足状に形成さ
れていることを除いて、第2図に示した第1実施例のア
レイ(11)と実質的に同様の構成であってよい。
As shown in FIG. 8, the optical transmitter array θ of the second embodiment
υ is the groove (
15) (1 (except that il is formed in a staggered manner on both surfaces (14a) (14b) of the spacer I rather than on one surface (12a) (13a) of each of the reference plate (I21031) , may have substantially the same configuration as the array (11) of the first embodiment shown in FIG.

以上の様な第2実施例の光伝送体アレイ(il)に於い
ては、光伝送体(2カの51を2列に配列する為の溝(
I5)06)を、1枚のスペーサQ4)の両方の表面(
14a)(14b)に形成している。従って、第1実施
例のアレイ(1])の様に溝09a均を別個の基準板(
12)(13)に形成しこれらの基準板1121031
同士を位置決めする場合に比べて、溝0均(1,61同
士の位置精度を更に高くすることができ、光伝送体(2
4) (25)同士を互いに更に高精度に配列すること
ができるので、更に高い解像度を得ることができる。
In the optical transmitter array (il) of the second embodiment as described above, grooves for arranging the optical transmitters (two pieces of 51 in two rows)
I5)06) on both surfaces (
14a) (14b). Therefore, as in the array (1]) of the first embodiment, the groove 09a is placed on a separate reference plate (
12) These reference plates formed in (13) 1121031
Compared to the case of positioning the grooves 0 and 61, it is possible to further improve the positional accuracy between the grooves 0 and 61, and the optical transmission body (2
4) Since (25) can be arranged with higher accuracy, higher resolution can be obtained.

第9図は、本発明の第6実施例を示している。FIG. 9 shows a sixth embodiment of the invention.

この第9図に示す様に、第6実施例の光伝送体アレイ(
11)は、光伝送体(24)を配置する為の溝崗がスペ
ーサaカの一方の六回(14a)に形成されており光伝
送体(25+を配置する為の溝α均が基準板(1りの一
方の表面(16a )に形成されていることを除いて、
第2図及び第4図に示した第1及び第2実施例のアレイ
(ll)と実質的に同様の構成であってよい。
As shown in FIG. 9, the optical transmission array of the sixth embodiment (
In 11), a groove for placing the optical transmission body (24) is formed on one side of the spacer a (14a), and a groove for placing the optical transmission body (25+) is formed on the reference plate. (Except that it is formed on one surface (16a) of
The structure may be substantially the same as the array (ll) of the first and second embodiments shown in FIGS. 2 and 4.

以上の様な第6実施例の光伝送体アレイα1)に於いて
は、光伝送体0滲(至))g:2列に配列する為の溝0
5)(1fi)を、スペーサIの上基準板圓側の表面(
14a)と、下基準板(l□□□のスペーサα荀側の表
面(13a)とに形成している。従って、光伝送体ρ4
1 t25+の溝051(161内への配置に際して上
基準板(12+やスペーサOaを反転する必要がなく、
これらの光伝送体(2段(2)8−順次に溝(16)[
1!lil内へ載置するだけでよく、第1及び第2実施
例に比べて製造が更に容易である。
In the optical transmission body array α1) of the sixth embodiment as described above, the optical transmission bodies 0 (to))g: grooves 0 for arranging in two rows.
5) (1fi) is the surface of the spacer I on the upper reference plate circle side (
14a) and the surface (13a) of the spacer α side of the lower reference plate (l□□□. Therefore, the optical transmission body ρ4
1 There is no need to invert the upper reference plate (12+ or spacer Oa when placing it in the groove 051 (161) of t25+,
These optical transmission bodies (two stages (2) 8-sequentially grooves (16) [
1! It is only necessary to place it in the lil, and manufacturing is easier than in the first and second embodiments.

以上、本発明を第1〜第6実施例に基いて説明し7たが
、本発明はこれらの実施例に限定されるものではなく、
各種の変更が可能である。
Although the present invention has been described above based on the first to sixth embodiments, the present invention is not limited to these embodiments.
Various changes are possible.

例えば、上記の実施例に於いては、光伝送体(24)(
251を2列に配列したが、6列以上の所望の数に配列
することも可能でおる。
For example, in the above embodiment, the optical transmission body (24) (
251 are arranged in two rows, but it is also possible to arrange them in a desired number of six or more rows.

t7t、上記の実施例に於いては、基準板(12(+3
)とスペーサ(14)との対向面の一方にのみ溝05)
σ6)を形成したが、これらの対向面の両方に溝+15
1(16)を形成してもよい。
t7t, in the above embodiment, the reference plate (12(+3
) and the spacer (14).
σ6), but grooves +15 were formed on both of these opposing surfaces.
1 (16) may be formed.

以上の如く、本発明による光伝送体アレイに於いては、
楔状の板状体の非平行な面に略扇状の溝を形成し、これ
らの溝に光伝送体を配置し、非平行な面同士を互いに対
向させて板状体7i:積層する様にしている。従って、
光伝送体同士を例えば樹脂のみで接着固定する場合に比
べて、光伝送体同士が極めて高精度に配列されて、高い
解像度を得ることができる。
As described above, in the optical transmission array according to the present invention,
Approximately fan-shaped grooves are formed on the non-parallel surfaces of the wedge-shaped plate-like body, and optical transmission bodies are arranged in these grooves, and the non-parallel surfaces are made to face each other so that the plate-like body 7i: is laminated. There is. Therefore,
Compared to the case where the optical transmission bodies are adhesively fixed to each other using only resin, for example, the optical transmission bodies can be arranged with extremely high precision and high resolution can be obtained.

FL本発明による光伝送体アレイに於いては。FL In the optical transmission body array according to the present invention.

上述の如く、楔状の板状体に形成されている溝に光伝送
体を配置するだけで光伝送体が配列される。
As described above, the optical transmission bodies are arranged simply by placing the optical transmission bodies in the grooves formed in the wedge-shaped plate-like body.

従って、光伝送体同士を例えば樹脂のみで接着固定する
場合に比べて、光伝送体アレイの製造か非常に容易であ
る。
Therefore, it is much easier to manufacture an array of light transmitters than in the case where the light transmitters are adhesively fixed to each other using only resin, for example.

また、本発明による光伝送体アレイに於いては、上述の
如く、楔状の板状体を積層している。従って、夫々の対
向面には溝を1列のみ形成すれはよく、それらの溝を例
えは板状体の1つの面に複数列形成する必要はないので
、溝の形成が容易であフ、このことによっても光伝送体
アレイの製造が非常に容易である。
Further, in the optical transmission body array according to the present invention, wedge-shaped plate bodies are stacked as described above. Therefore, it is sufficient to form only one row of grooves on each opposing surface, and it is not necessary to form multiple rows of grooves on one surface of the plate-like body, so that the grooves can be easily formed. This also makes it very easy to manufacture the optical transmitter array.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1つの従来例を示す概略的な斜視図、
第2図は本発明の第1実施例を示す概略的な分解斜視図
、第3図は第1実施例の製造過程の一部を示す概略的な
断面図、第4図は第1実施例の概略的な平面図、第5図
は同正面図、第6図は同背面図、第7図は同側面図、第
8図は第2実施例を示す概略的な分解斜視図、第2図は
第6実施例を示す概略的な分解斜視図である。 なお図面に用いられている符号に於いて、aυ・・・・
・・・・・・・・光伝送体アレイ(1り・・・・・・・
・・・・・上基準板03)・・・・・・・・・・・・下
基準板(14)・・・・・・・・・・・・スヘーサ(1
51(16)・・・・・・・・・溝(24X2■・・・
・・・・・・光伝送体である。
FIG. 1 is a schematic perspective view showing one conventional example of the present invention;
Fig. 2 is a schematic exploded perspective view showing the first embodiment of the present invention, Fig. 3 is a schematic sectional view showing a part of the manufacturing process of the first embodiment, and Fig. 4 is the first embodiment. 5 is a front view of the same, FIG. 6 is a rear view of the same, FIG. 7 is a side view of the same, and FIG. 8 is a schematic exploded perspective view showing the second embodiment. The figure is a schematic exploded perspective view showing a sixth embodiment. In addition, in the symbols used in the drawings, aυ...
...... Optical transmitter array (1ri...
・・・・・・Upper reference plate 03) ・・・・・・・・・Lower reference plate (14) ・・・・・・・・・Suchesa (1
51 (16)...Groove (24X2■...
...It is an optical transmission body.

Claims (1)

【特許請求の範囲】[Claims] 夫々か略楔状を成し非平行な面同士が互いに対向する様
に積層されている複数の板状体と、互いに対向している
前記面同士の内の少なくとも何れか一方に扇状に形成さ
れている複数の溝と、こjら複数の溝の夫々に配置され
ている複数の光伝送体とを夫々具備し、物体面に在る物
体の画像を1以外の倍率で像面上へ伝送する様に構成し
た光伝送体アレイ。
A plurality of plate-like bodies each having a substantially wedge shape and stacked so that their non-parallel faces face each other, and a fan-shaped member formed on at least one of the faces facing each other. a plurality of grooves, and a plurality of light transmission bodies disposed in each of the plurality of grooves, and transmits an image of an object on the object plane onto the image plane at a magnification other than 1. An optical transmitter array configured as follows.
JP10037583A 1983-06-06 1983-06-06 Optical transmitter array Pending JPS59224812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10037583A JPS59224812A (en) 1983-06-06 1983-06-06 Optical transmitter array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10037583A JPS59224812A (en) 1983-06-06 1983-06-06 Optical transmitter array

Publications (1)

Publication Number Publication Date
JPS59224812A true JPS59224812A (en) 1984-12-17

Family

ID=14272278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10037583A Pending JPS59224812A (en) 1983-06-06 1983-06-06 Optical transmitter array

Country Status (1)

Country Link
JP (1) JPS59224812A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225113A (en) * 1984-04-10 1985-11-09 ゼロツクス コーポレーシヨン Optical apparatus for image transmission
EP0194612A2 (en) * 1985-03-14 1986-09-17 Firma Carl Zeiss Wavelength multiplexer or demultiplexer
JPS63153515A (en) * 1986-08-29 1988-06-25 Mitsubishi Rayon Co Ltd Distributed index type lens array
JPS63175823A (en) * 1987-01-16 1988-07-20 Mitsubishi Rayon Co Ltd Optical transmission body array
US4786139A (en) * 1984-02-01 1988-11-22 Advance Display Technologies, Inc. Optical fiber light transfer apparatus, method and apparatus for making same
WO1988010446A1 (en) * 1987-06-25 1988-12-29 Eastman Kodak Company Photo imaging system using two-dimensional optical lens array
FR2749406A1 (en) * 1996-06-04 1997-12-05 Laniepce Sylvie Multiple optical fibre connector with fibre gap adjustment
EP1338908A2 (en) * 2002-02-02 2003-08-27 Samsung Electronics Co., Ltd. Block base having tree-structured groove array, multi-core optical fiber block having tree-structured groove arrays, and method for aligning optical fiber arrays in the same
GB2445107A (en) * 2006-12-20 2008-06-25 Boeing Co Optical cross-connect switch with wedge spacer which supports two parallel one-dimensional arrays of optical fibres
EP2427790A4 (en) * 2009-07-31 2012-10-31 Hewlett Packard Development Co Optical fiber connector
CN111217151A (en) * 2020-01-08 2020-06-02 上海向隆电子科技有限公司 Stacking processing method and stacking processing equipment for wedge-shaped light guide plate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136607A (en) * 1981-01-12 1982-08-23 Xerox Corp Assembly of optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57136607A (en) * 1981-01-12 1982-08-23 Xerox Corp Assembly of optical fiber

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786139A (en) * 1984-02-01 1988-11-22 Advance Display Technologies, Inc. Optical fiber light transfer apparatus, method and apparatus for making same
JPS60225113A (en) * 1984-04-10 1985-11-09 ゼロツクス コーポレーシヨン Optical apparatus for image transmission
EP0194612A2 (en) * 1985-03-14 1986-09-17 Firma Carl Zeiss Wavelength multiplexer or demultiplexer
EP0194612A3 (en) * 1985-03-14 1989-08-30 Firma Carl Zeiss Wavelength multiplexer or demultiplexer
JPS63153515A (en) * 1986-08-29 1988-06-25 Mitsubishi Rayon Co Ltd Distributed index type lens array
JPS63175823A (en) * 1987-01-16 1988-07-20 Mitsubishi Rayon Co Ltd Optical transmission body array
WO1988010446A1 (en) * 1987-06-25 1988-12-29 Eastman Kodak Company Photo imaging system using two-dimensional optical lens array
FR2749406A1 (en) * 1996-06-04 1997-12-05 Laniepce Sylvie Multiple optical fibre connector with fibre gap adjustment
EP1338908A2 (en) * 2002-02-02 2003-08-27 Samsung Electronics Co., Ltd. Block base having tree-structured groove array, multi-core optical fiber block having tree-structured groove arrays, and method for aligning optical fiber arrays in the same
EP1338908A3 (en) * 2002-02-02 2004-07-14 Samsung Electronics Co., Ltd. Block base having tree-structured groove array, multi-core optical fiber block having tree-structured groove arrays, and method for aligning optical fiber arrays in the same
US7103256B2 (en) 2002-02-02 2006-09-05 Samsung Electronics Co., Ltd. Block base having tree-structured groove array, multi-core optical fiber block having tree-structured groove arrays, and method for aligning optical fiber arrays in the same
GB2445107A (en) * 2006-12-20 2008-06-25 Boeing Co Optical cross-connect switch with wedge spacer which supports two parallel one-dimensional arrays of optical fibres
GB2445107B (en) * 2006-12-20 2009-10-07 Boeing Co Optical cross-connect
EP2427790A4 (en) * 2009-07-31 2012-10-31 Hewlett Packard Development Co Optical fiber connector
CN111217151A (en) * 2020-01-08 2020-06-02 上海向隆电子科技有限公司 Stacking processing method and stacking processing equipment for wedge-shaped light guide plate
CN111217151B (en) * 2020-01-08 2021-09-17 上海向隆电子科技有限公司 Stacking processing method and stacking processing equipment for wedge-shaped light guide plate

Similar Documents

Publication Publication Date Title
US4784935A (en) Method of producing a passive optical device including at least one reflection grating
US5359684A (en) Optical lensed coupler for use with a planar waveguide
TWI233510B (en) Fiber and lens grippers, optical devices and methods of manufacture
US4657354A (en) Composite optical element
US20050002105A1 (en) Lens plate, method for manufacturing the same and image transfer device
WO2001035147A1 (en) Optical lens and semiconductor laser device
JPH0611666A (en) Optical structure
JPS59224812A (en) Optical transmitter array
JPH0572444A (en) Multifiber optical connector
JPS58199318A (en) Light wavelength demultiplexer based on defraction grating theory
KR100295535B1 (en) Quadaxial gradient index lens
KR100295549B1 (en) Axially-graded index-based couplers
JP2005070073A (en) Optical fiber collimator
US4844589A (en) Lenses having plural contiguous refractive index distribution substrates and method of manufacture
JPH01261601A (en) Nonspherical micro-lens and its manufacture and optical fiber coupler, condensing optical system, optical element, semiconductor laser light source and image device utilizing nonspherical micro-lens
CN110716248B (en) Processing technology of multi-column multi-row equivalent negative refractive index flat lens
JPS5885401A (en) Optical apparatus and manufacture thereof
JPS58134613A (en) Multifiber connector
JP2004101848A (en) Microlens array, optical module using microlens array and method for positioning optical module
JPS59224813A (en) Optical transmitter array
JPS59224805A (en) Manufacture of optical transmitter array
US10088634B2 (en) Optical port-shuffling module
Nisper Injection-molded replication of binary optic structures
JP2008145796A (en) Two-dimensional optical array
JPH06118283A (en) Manufacture of optical module and its lens array