JPS59224072A - Nonaqueous electrolyte - Google Patents

Nonaqueous electrolyte

Info

Publication number
JPS59224072A
JPS59224072A JP9730483A JP9730483A JPS59224072A JP S59224072 A JPS59224072 A JP S59224072A JP 9730483 A JP9730483 A JP 9730483A JP 9730483 A JP9730483 A JP 9730483A JP S59224072 A JPS59224072 A JP S59224072A
Authority
JP
Japan
Prior art keywords
electrolyte
temperature
group
battery
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9730483A
Other languages
Japanese (ja)
Other versions
JPH0367304B2 (en
Inventor
Masashi Oi
大井 正史
Katsuhiro Mizoguchi
勝大 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9730483A priority Critical patent/JPS59224072A/en
Publication of JPS59224072A publication Critical patent/JPS59224072A/en
Publication of JPH0367304B2 publication Critical patent/JPH0367304B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To produce nonaqueous electrolyte usable under high temperature by employing electrolyte composed of metal ion of I or II group or both group and macromolecular liquid compound containing siloxane as main chain or component. CONSTITUTION:The nonaqueous electrolyte is formed with electrolyte containing ion of metal belonging to at least I or II group and macromolecular liquid compound containing siloxane as main chain or component. Said macromolecular liquid compound has preferably high solubility into electrolyte and high ion movement.

Description

【発明の詳細な説明】 本発明は非水電解液、とくに高温使用に耐えうる非水電
解液に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous electrolyte, particularly to a non-aqueous electrolyte that can withstand high-temperature use.

リチウム、マグネシウムなどの軽金属を負極活物質とし
、フッ化炭素、硫化銅クロム酸銀、二酸化マンガンなど
を正極活物質とし、非水系の有機電解液を用いる有機電
解質電池は、高エネルギー密度を有する電池として知ら
れ、なかでもリチウム電池は小型あるいは携帯用電子機
器のめざましい普及に伴って急速にその需要をのばして
いる。
Organic electrolyte batteries, which use light metals such as lithium and magnesium as negative electrode active materials, carbon fluoride, copper sulfide silver chromate, manganese dioxide, etc. as positive electrode active materials, and use a non-aqueous organic electrolyte, are batteries with high energy density. Among them, demand for lithium batteries is rapidly increasing due to the remarkable spread of small and portable electronic devices.

電子機器の普及に伴い、その使用環境や条件も多岐にわ
たシ、特殊な環境においても使用可能な電池も必要とな
っている。高温環境もそのひとつであり、エンジンやモ
ーター、あるいは熱源などの付近で使用される電子機器
が増え、これに使用される高い信頼性を有する電池が必
要となっている。
BACKGROUND ART With the spread of electronic devices, the environments and conditions in which they are used are becoming more diverse, and batteries that can be used even in special environments are becoming necessary. High-temperature environments are one of them, and as more and more electronic devices are used near engines, motors, or heat sources, there is a need for highly reliable batteries for use in these devices.

従来の有機電解質電池は他の水溶液系の電池に比べて使
用温度範囲の広いものであるが、使用される有機溶剤の
沸点の関係で一般的に温度60〜80℃が高温側の使用
限界に々っでいる3、このため従来の電池はこの限界温
度以上で使用した場合には、電池の内圧が上昇し漏液を
生じた如、電池性能の劣化を招く。さらには電池が破烈
するなど様々か障害を起し、信頼性に欠けるものであっ
た。
Conventional organic electrolyte batteries have a wider operating temperature range than other aqueous batteries, but due to the boiling point of the organic solvent used, the upper temperature range is generally 60 to 80°C. For this reason, when conventional batteries are used at temperatures above this temperature limit, the internal pressure of the battery increases, leading to deterioration in battery performance such as leakage. In addition, they suffered from various failures such as batteries exploding, making them unreliable.

また、使用温度範囲内ではあっても、高い温度側での長
期保存や長期使用は電池性能を劣化させるため、そのよ
うな使用にはあまシ適していなかった。
Furthermore, even if the temperature is within the operating temperature range, long-term storage or long-term use at high temperatures degrades battery performance, so it is not suitable for such uses.

高温で使用する電池として溶隔塩を電解質とする一連の
固体電解質電池が開発されているが、これらは高温でし
か使用することができないうえに、その使用温度が高す
ぎるため、大規模碌発電システムを要し、特殊用途以外
に広く実用化されるに至ってい力い。
A series of solid electrolyte batteries that use dispersion salt as an electrolyte have been developed as batteries for use at high temperatures, but these can only be used at high temperatures, and the operating temperature is too high, making it difficult to use them for large-scale power generation. system, and it has not been widely put into practical use other than for special purposes.

本発明の目的は、かかる従来の有機電解液および電解質
の欠点に対処する非水電解液を提供することにある。
It is an object of the present invention to provide a nonaqueous electrolyte that addresses the drawbacks of such conventional organic electrolytes and electrolytes.

本発明の非水電解液は、周期律表のI族またはlI族の
少くとも一方に槁する金属のイオンからなる電解質とシ
ロキサンを主鎖あるいは主成分とする液状の高分子化合
物からなることを%徴とする。
The nonaqueous electrolyte of the present invention is composed of an electrolyte made of ions of metals belonging to at least one of Group I or Group II of the periodic table, and a liquid polymer compound having siloxane as its main chain or main component. It is expressed as a percentage.

るととを特徴とする。It is characterized by and.

この高分子化合物の代表的なものにシリコーンオイルや
シリコーンワニスなどのシリコーン化合物があるが、耐
熱性、耐薬品性、絶縁性などに優れるものとして知られ
ている。そとで発明者らは、とのシロキサンを主鎖ある
いは主成分とする液状の高分子化合物の中に電池の電解
液の溶剤としての適用を試みた。電池の電解液の溶媒と
しての必要条件は種々あるが、とくにイオン伝導のキャ
リアーを生成するために電解質を良く溶解することとイ
オンの移動度が高いことが必要である。したがって、い
くら耐熱性、耐薬品性、絶縁性に優れていても、電解質
に対する溶解度が低かったシ、イオンの移動度が低かっ
たシすると、高いイオン導電率は得られず電解液の溶剤
には適さないことになる。発明者らはこの高分子化合物
の分子量、末端基、および官能基などを適量に変えたシ
、あるいは他の高分子化合物と共重合体を形成させたル
することによって、この高分子化合物が電解液の溶剤と
して適用可能であることを見出した。
Silicone compounds such as silicone oil and silicone varnish are typical of these polymer compounds, and are known to have excellent heat resistance, chemical resistance, insulation properties, and the like. Therefore, the inventors attempted to apply a liquid polymer compound having siloxane as a main chain or main component as a solvent for battery electrolyte. There are various requirements for a battery electrolyte to be used as a solvent, but in particular it must be able to dissolve the electrolyte well and have high ion mobility in order to generate ion-conducting carriers. Therefore, no matter how good the heat resistance, chemical resistance, and insulation properties are, if the solubility in the electrolyte is low or the ion mobility is low, high ionic conductivity cannot be obtained and the electrolyte solvent cannot be used. It will not be suitable. The inventors discovered that this polymer compound can be electrolyzed by changing its molecular weight, terminal groups, and functional groups to appropriate amounts, or by forming a copolymer with other polymer compounds. It has been found that it can be used as a solvent for liquids.

以下、本発明を実施例にて説明する。The present invention will be explained below with reference to Examples.

〔実施例1〕 末端基が水酸基で分子量が約2,000である市販のポ
リジメチルシロキサンを温度約190℃、圧力10−2
torr以下で20時間脱水処理を施した。
[Example 1] Commercially available polydimethylsiloxane with a hydroxyl group at the end and a molecular weight of about 2,000 was heated at a temperature of about 190°C and a pressure of 10-2
Dehydration treatment was performed for 20 hours at a pressure below torr.

このポリジメチルシロキサン10ccに過塩素酸リチウ
ムを適量加え、温度約120℃で5〜10時間攪拌し、
溶解した。これによってvLH質濃度が0.1〜2.O
mol/1の電解液を調製した。これらの電解液のイオ
ン導電率を白金電極を有する電導度計で測定し、その結
果を第1図のAに示した。
Add an appropriate amount of lithium perchlorate to 10 cc of this polydimethylsiloxane, stir at a temperature of about 120°C for 5 to 10 hours,
Dissolved. As a result, the vLH concentration is 0.1-2. O
An electrolytic solution of mol/1 was prepared. The ionic conductivity of these electrolytes was measured using a conductivity meter equipped with a platinum electrode, and the results are shown in A of FIG.

この電解液は電解質誼度が0,7〜1.3mol/lの
あたりでイオン導電率の最大値を示し、その値は約17
 X 10−3U/cmであツタ。
This electrolyte shows the maximum value of ionic conductivity when the electrolyte density is around 0.7 to 1.3 mol/l, and the value is about 17
Ivy at X 10-3U/cm.

次に、これらの電解液を温度150℃の恒温槽に20時
間入れ、重量、粘度、およびイオン導電率などの変化を
調べた。その結果、これらの値にはほとんど変化がなく
、電解液は加熱による変化をほとんど受けなかった。こ
のことよシ、この電解液は150℃という高温環境にお
いても安定であ如高い信頼性を有することが確認された
Next, these electrolytic solutions were placed in a constant temperature bath at a temperature of 150° C. for 20 hours, and changes in weight, viscosity, ionic conductivity, etc. were examined. As a result, there was almost no change in these values, and the electrolyte was hardly changed by heating. From this fact, it was confirmed that this electrolytic solution is stable even in a high temperature environment of 150° C. and has very high reliability.

〔実施例2〕 分子量が約1,200で約40重量部のエチレンオキサ
イドを含有するポリジメチルシロキサンとニー5= チレンオキサイドの共重合体(以下PS−,EOと記述
する)を温度約200℃、圧力10−”torr以下で
48時間減圧加熱し、さらに吸水性の強いモレキュラシ
ーブによって十分に脱水処理を施した。
[Example 2] A copolymer of polydimethylsiloxane having a molecular weight of about 1,200 and containing about 40 parts by weight of ethylene oxide and ethylene oxide (hereinafter referred to as PS-, EO) was heated at a temperature of about 200°C. The mixture was heated under reduced pressure for 48 hours at a pressure of 10-'' torr or less, and then thoroughly dehydrated using a highly water-absorbing molecular sieve.

このPS−EO]Occにチオシアン酸リチウムを適量
加え、温度120℃で5〜10時間攪拌して溶解し、電
解質濃歴が0.1〜2. Q mol/lの電解液を調
製した。これらの電解液のイオン導電率を白金電極を有
する電導度肝で測定し、その結果を第1図のBに示した
。この電解液は電解質濃度が1.0〜1.5 mol/
lのあたりでイオン導電率の最大値を示し、その値は約
7. OX ] O−’ 07cmであった。
Add an appropriate amount of lithium thiocyanate to this PS-EO]Occ, stir at a temperature of 120°C for 5 to 10 hours, and dissolve.The electrolyte concentration history is 0.1 to 2. An electrolytic solution of Q mol/l was prepared. The ionic conductivities of these electrolytes were measured using a conductivity meter equipped with a platinum electrode, and the results are shown in FIG. 1B. This electrolyte has an electrolyte concentration of 1.0 to 1.5 mol/
The maximum value of ionic conductivity is shown around 1, and the value is about 7. OX ] O-' was 07 cm.

次に実施例1同様に、温度150℃での安定性を調べた
ところ、本実施例の電解液も信頼性が高いことが確認さ
れた。
Next, as in Example 1, stability at a temperature of 150° C. was investigated, and it was confirmed that the electrolytic solution of this example also had high reliability.

〔実施例3」 本実施例では、本発明による電解液を用いた電池につい
て記述する。
[Example 3] In this example, a battery using the electrolyte according to the present invention will be described.

実施例2と同様に脱水処理されたPS−EO20ccに
過塩素酸リチウム2.1grを入れ、温度約1206− ℃で8時間攪拌し溶解させ、電解質濃度が約1.0mo
l/1の電解液を調製した。
2.1 gr of lithium perchlorate was added to 20 cc of PS-EO that had been dehydrated in the same manner as in Example 2, and stirred and dissolved at a temperature of about 1206-°C for 8 hours until the electrolyte concentration was about 1.0 mo.
A l/1 electrolyte solution was prepared.

次に、正極活物質の二酸化マンガン10重量部と導電剤
のアセチレンブラック1重1部と結着剤のデフロン粉末
11<1部と結着剤のテフロン粉末In置部を十分に混
合し、この混合物0.5grを圧力2,000 k g
/cm2で加圧吸形し、直径16mm厚さ約1.9 m
1119)ベレットを形成した。このベレットを上記の
電解液I Q CCの中に浸し48時間放置し、電解液
をベレット中に浸み込−1:ぜたものを廿極体1とした
Next, 10 parts by weight of manganese dioxide as a positive electrode active material, 1 part by weight of acetylene black as a conductive agent, 11<1 part of Deflon powder as a binder, and a portion of Teflon powder In as a binder were thoroughly mixed. 0.5 gr of mixture at 2,000 kg pressure
/cm2, and the diameter is 16 mm and the thickness is approximately 1.9 m.
1119) A pellet was formed. This pellet was immersed in the above-mentioned electrolytic solution IQ CC and left for 48 hours, and the electrolytic solution was soaked into the pellet.

隔膜2は、厚さ0.25 mmのホリプロピレン製不織
布を面位18m1llで切シ抜き、これを残シの電解液
中yc浸し24時間放置し、十分に電解液を浸み込ませ
て準備した。
The diaphragm 2 was prepared by cutting out a 0.25 mm thick polypropylene nonwoven fabric at a surface level of 18 ml, and immersing it in the remaining electrolyte solution for 24 hours to allow the electrolyte solution to fully soak in. did.

負極体3UJBjさQ、 5 mmのリチウムシートを
直径14mInに打ち抜いて準備した。
A negative electrode body was prepared by punching out a 5 mm lithium sheet to a diameter of 14 mIn.

次に内側にステンレスメツシー4を溶接した外装ケース
5.6と絶縁リング7の中に正極体1、セパレータ2、
負極体3の順に積層し、外装ケース6の端部をカシメて
密封し、第2図のような直径2Qmm、jlさ2.8 
mmのコイン型電池を作製した。
Next, a positive electrode body 1, a separator 2,
The negative electrode body 3 was stacked in this order, and the end of the outer case 6 was caulked and sealed, and the diameter was 2Q mm and the height was 2.8 as shown in Fig. 2.
A coin-type battery with a diameter of 1 mm was fabricated.

この電池な温反20℃、80℃、140℃の各恒温槽に
人ね、負荷抵抗25にΩをT4vシt」けて放電さぜた
。各々の放電特性を第3図のC,D、 Eに示フ。
This battery was placed in a constant temperature bath of 20°C, 80°C, and 140°C, and a load resistor 25 with Ω of T4V was discharged. The discharge characteristics of each are shown in C, D, and E in Figure 3.

また、温度140℃の恒温槽l/c′10日間保存した
後、室温て91荷抵抗25にΩを取り伺りて放電させた
電池の放電特性f組3図のFに示す。
Furthermore, after storing the battery in a thermostatic chamber l/c' at a temperature of 140° C. for 10 days, the discharge characteristics of the battery were measured by measuring Ω at the 91-voltage resistor 25 at room temperature, and the discharge characteristics are shown in F in Group 3 of FIG.

これらの4′での都1池は、保存中も故知1中にも破烈
や漏液がなく良好な特性を示した。l+!fに高温にな
るほど電解液のイオン導1イ距が高<fiり1判性が向
上した。!Fた、高温でイイ゛存した場合も放%1特性
の劣化がほとんど見られ力かった。
These 4' ponds showed good characteristics with no bursting or leakage during storage or during storage. l+! The higher the temperature of f, the higher the ion conduction distance of the electrolytic solution, and the better the resolution. ! Furthermore, even when the material was kept at high temperatures, there was almost no deterioration of the %1 characteristic.

本実施例では、絶縁リング7にポリプロピレン製のもの
を用いたので、高温での丈馳の際にあまり高温にしすぎ
ると絶縁リング7が軟化し電池の特性を劣化させること
が考えられた。そのため、本実施例では温度140℃ま
での評価を行にったが、絶縁リンク7にもっと高配熱の
拐料のものな使用することによシ、温度140℃以上で
も使用可能な電池が得られるものと考えられる。
In this example, since the insulating ring 7 was made of polypropylene, it was considered that if the temperature was too high during the stretching at high temperatures, the insulating ring 7 would soften and deteriorate the characteristics of the battery. Therefore, in this example, evaluation was performed at temperatures up to 140°C, but by using a material with higher heat distribution for the insulating link 7, a battery that can be used even at temperatures above 140°C can be obtained. It is considered that the

実施例1および2における電解液の調製から評価までの
工程と、実施例3における電池作製までの工程は、アル
ゴン不活性ガス雰囲気下で々された。
The steps from preparation of the electrolyte to evaluation in Examples 1 and 2 and the steps up to battery fabrication in Example 3 were carried out under an argon inert gas atmosphere.

(1)実施例1では電解質に過塩素酸リチI″7ムを用
いた場合について述だが、本実施例の溶剤はチオンつ′
ン酸すナウム、ホウ弗化リチウl1、チオシアン醇ナト
リウムかとの電解質4−pl溶であり、その電解液は良
好なイオン導電率を示17た1゜(11)同様に、実施
例2における溶剤も上述の電解質を可縮であシ、その電
解液は良好表イオン導電率を示1.穴1、 GiD  tた、実施例1および2の溶剤が齢溶の電解
質であっても、各々の溶剤の分子量や末端逓、あるいは
共1合の組成比を変えることにより、その電解質が可溶
々溶剤を得ることができ、その電解液は良好なイオン導
電率を示した。
(1) Example 1 describes the case where lithium perchlorate I''7 was used as the electrolyte, but the solvent in this example
The electrolyte was a 4-pl solution containing sodium fluoride, lithium borofluoride, and sodium thiocyanate, and the electrolyte showed good ionic conductivity. The above-mentioned electrolyte can also be compressed, and the electrolyte exhibits good surface ionic conductivity.1. Hole 1, GiD tAlso, even if the solvents used in Examples 1 and 2 are soluble electrolytes, the electrolytes can be made soluble by changing the molecular weight, terminal concentration, or composition ratio of each solvent. The electrolyte solution showed good ionic conductivity.

(φ 実施例1〜3で用いられた溶剤はいずれも絶−9
− 縁性に優れるものであシ、その電解液はほとんど電子伝
導性が非常に小さかった。同様に他の溶剤を用いた電解
液も電子伝導性が非常に小さかった。
(φ All the solvents used in Examples 1 to 3 were
- Most of the electrolytes had very low electronic conductivity. Similarly, electrolytes using other solvents also had very low electronic conductivity.

付)実施例3では、負極活物質にリチウムを、正極活物
質に二酸化マンガンを用いた電池について記述したが、
前述した他の活物質を用いた場合にも良好f!、%性を
示しだ。
Appendix) In Example 3, a battery was described in which lithium was used as the negative electrode active material and manganese dioxide was used as the positive electrode active material.
Good f! even when using other active materials mentioned above! , shows the percentage.

本発明によれば、イオン導電性が高く、高温使用が可能
であシ高温環境でも高信頼性の電池が得られる非水電解
液が得られる。
According to the present invention, a nonaqueous electrolyte is obtained that has high ionic conductivity, can be used at high temperatures, and can provide highly reliable batteries even in high-temperature environments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電解液の電解質濃度とイオン導電
率の相関図であシ、第2図は本発明による電解液を用い
たコイン型電池の断面図であり、第3図は本発明による
電解液を用いたコイン型電池の放電特性である。 A・・・・・・溶剤がポリジメチルシロキサンで電解質
が過塩素酸リチウムからなるもの、B・・・・・・溶剤
が10− ポリジメチルシロキサンとエチレンオキサイドの共重合
体で電解質がチオシアン酸リチウムのもの、C・・・・
・・温度20℃での放電特性、D・・・・・・温度80
℃での放電特性、E・・・・・・温度140℃での放電
特性、F・・・・・・温度140℃で10日間保存後の
温度20℃での放電特性、1・・・・・・正極体、2・
・・・・・隔膜、3・・・・・・負極体、4・・・・・
・ステンレスメツシュ、5および6・・・・・・外装ケ
ース、7・・・・・・絶縁リング。 11− ’jf5+図 電解質の膨襄 (=nJ’/)。
FIG. 1 is a correlation diagram between the electrolyte concentration and ionic conductivity of the electrolyte according to the present invention, FIG. 2 is a cross-sectional view of a coin-type battery using the electrolyte according to the present invention, and FIG. 3 is a diagram showing the correlation between the electrolyte concentration and ionic conductivity of the electrolyte according to the present invention. This is the discharge characteristics of a coin-type battery using an electrolyte according to A: The solvent is polydimethylsiloxane and the electrolyte is lithium perchlorate. B: The solvent is a copolymer of 10-polydimethylsiloxane and ethylene oxide and the electrolyte is lithium thiocyanate. Things, C...
...Discharge characteristics at a temperature of 20℃, D...Temperature 80
Discharge characteristics at ℃, E...Discharge characteristics at a temperature of 140℃, F...Discharge characteristics at a temperature of 20℃ after storage for 10 days at a temperature of 140℃, 1...・Positive electrode body, 2・
...Diaphragm, 3...Negative electrode body, 4...
・Stainless steel mesh, 5 and 6...Exterior case, 7...Insulation ring. 11- 'jf5+ Figure Electrolyte expansion (=nJ'/).

Claims (1)

【特許請求の範囲】[Claims] 周期律表のI族または■族の少くとも一方に属する金属
のイオンからなる電解質とシロキサンを主鎖あるいは主
成分とする液状の高分子化合物からなることを特徴とす
る非水電解液。
A non-aqueous electrolyte comprising an electrolyte made of ions of metals belonging to at least one of Group I or Group II of the periodic table, and a liquid polymer compound having siloxane as its main chain or main component.
JP9730483A 1983-06-01 1983-06-01 Nonaqueous electrolyte Granted JPS59224072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9730483A JPS59224072A (en) 1983-06-01 1983-06-01 Nonaqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9730483A JPS59224072A (en) 1983-06-01 1983-06-01 Nonaqueous electrolyte

Publications (2)

Publication Number Publication Date
JPS59224072A true JPS59224072A (en) 1984-12-15
JPH0367304B2 JPH0367304B2 (en) 1991-10-22

Family

ID=14188743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9730483A Granted JPS59224072A (en) 1983-06-01 1983-06-01 Nonaqueous electrolyte

Country Status (1)

Country Link
JP (1) JPS59224072A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906718A (en) * 1988-12-09 1990-03-06 Dow Corning Corporation Acrylate functional organosiloxane/oxyalkylene copolymers and electrically conductive compositions containing same and a solubilized lithium salt
US4990360A (en) * 1988-12-09 1991-02-05 Dow Corning Corporation Electrically conductive compositions containing acrylate functional organosiloxane/oxyalkylene copolymers and solubilized lithium salt
EP0932215A1 (en) * 1998-01-26 1999-07-28 Sony Corporation Non-aqueous electrolytic solution, and non-aqueous electrolyte cell comprising it
US6887619B2 (en) 2002-04-22 2005-05-03 Quallion Llc Cross-linked polysiloxanes
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4990360A (en) * 1988-12-09 1991-02-05 Dow Corning Corporation Electrically conductive compositions containing acrylate functional organosiloxane/oxyalkylene copolymers and solubilized lithium salt
US4906718A (en) * 1988-12-09 1990-03-06 Dow Corning Corporation Acrylate functional organosiloxane/oxyalkylene copolymers and electrically conductive compositions containing same and a solubilized lithium salt
EP0932215A1 (en) * 1998-01-26 1999-07-28 Sony Corporation Non-aqueous electrolytic solution, and non-aqueous electrolyte cell comprising it
US6124062A (en) * 1998-01-26 2000-09-26 Sony Corporation Non-aqueous electrolytic solution, and non-aqueous electrolyte cell comprising it
US7695860B2 (en) 2002-03-22 2010-04-13 Quallion Llc Nonaqueous liquid electrolyte
US7226702B2 (en) 2002-03-22 2007-06-05 Quallion Llc Solid polymer electrolyte and method of preparation
US7498102B2 (en) 2002-03-22 2009-03-03 Bookeun Oh Nonaqueous liquid electrolyte
US6887619B2 (en) 2002-04-22 2005-05-03 Quallion Llc Cross-linked polysiloxanes
US8076031B1 (en) 2003-09-10 2011-12-13 West Robert C Electrochemical device having electrolyte including disiloxane
US7473491B1 (en) 2003-09-15 2009-01-06 Quallion Llc Electrolyte for electrochemical cell
US7718321B2 (en) 2004-02-04 2010-05-18 Quallion Llc Battery having electrolyte including organoborate salt
US8076032B1 (en) 2004-02-04 2011-12-13 West Robert C Electrolyte including silane for use in electrochemical devices
US8765295B2 (en) 2004-02-04 2014-07-01 Robert C. West Electrolyte including silane for use in electrochemical devices
US9786954B2 (en) 2004-02-04 2017-10-10 Robert C. West Electrolyte including silane for use in electrochemical devices
US7588859B1 (en) 2004-02-11 2009-09-15 Bookeun Oh Electrolyte for use in electrochemical devices
US8153307B1 (en) 2004-02-11 2012-04-10 Quallion Llc Battery including electrolyte with mixed solvent
US8715863B2 (en) 2004-05-20 2014-05-06 Quallion Llc Battery having electrolyte with mixed solvent

Also Published As

Publication number Publication date
JPH0367304B2 (en) 1991-10-22

Similar Documents

Publication Publication Date Title
Gao et al. A sodium‐ion battery with a low‐cost cross‐linked gel‐polymer electrolyte
Li et al. A PEO-based gel polymer electrolyte for lithium ion batteries
Feuillade et al. Ion-conductive macromolecular gels and membranes for solid lithium cells
CN109888380B (en) Solid polymer electrolyte and application thereof in lithium metal battery
Li et al. High-performance polymeric ionic liquid–silica hybrid ionogel electrolytes for lithium metal batteries
JPS59224072A (en) Nonaqueous electrolyte
US5110694A (en) Secondary Li battery incorporating 12-Crown-4 ether
Yi et al. A high‐performance lithium metal battery with a multilayer hybrid electrolyte
US5589295A (en) Thin film polymeric gel electrolytes
Verma et al. Recent progress in electrolyte development and design strategies for next‐generation potassium‐ion batteries
Yang et al. Preparation of alkaline PVA-based polymer electrolytes for Ni–MH and Zn–air batteries
Li et al. Boosting the performance of poly (ethylene oxide)‐based solid polymer electrolytes by blending with poly (vinylidene fluoride‐co‐hexafluoropropylene) for solid‐state lithium‐ion batteries
JPS60216461A (en) Cell
Ren et al. Gel polymer electrolyte with high performances based on polyacrylonitrile composite natural polymer of lignocellulose in lithium ion battery
CN111063884B (en) Water-based ion battery negative electrode material, water-based ion battery negative electrode and preparation method thereof, and water-based ion battery
Das et al. Electrochemical stability of PEDOT: PSS as cathodic binder for Li-ion batteries
Wang et al. A Shuttle‐Free Solid‐State Cu− Li Battery Based on a Sandwich‐Structured Electrolyte
Bhuvaneswari et al. Structural, thermal and electrochemical characterization of cellulose acetate–based solid biopolymer electrolyte for zinc ion batteries
JPS60195877A (en) Positive electrode for cell
Meng et al. Reducing Concentration Polarization and Enhancing the Performance of Flexible Nickel‐Zinc Battery Using Polytetrafluoroethylene as Electrode Additive
KR100832744B1 (en) Polymer electrolyte composite materials including imidazolium salts and lithium secondary battery comprising same
Ma et al. A Superior Flame‐Resistant and Wide‐Temperature Adaptable Yarn Lithium‐Ion Battery with a Highly Conductive Ionogel Electrolyte
JPS59230058A (en) Ionic conductive solid composition
KR100402109B1 (en) Novel Na/S Battery
KR102142965B1 (en) Solid electrolyte and manufacturing method of the same