JPS59222206A - Manufacture of selective permeable porous membrane - Google Patents

Manufacture of selective permeable porous membrane

Info

Publication number
JPS59222206A
JPS59222206A JP9553183A JP9553183A JPS59222206A JP S59222206 A JPS59222206 A JP S59222206A JP 9553183 A JP9553183 A JP 9553183A JP 9553183 A JP9553183 A JP 9553183A JP S59222206 A JPS59222206 A JP S59222206A
Authority
JP
Japan
Prior art keywords
hollow
vessel
porous structure
plasma
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9553183A
Other languages
Japanese (ja)
Inventor
Tomosaku Imoto
井本 友三久
Takeshi Yanagimoto
剛 柳本
Makoto Kamemura
誠 亀村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd, Nok Corp filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP9553183A priority Critical patent/JPS59222206A/en
Publication of JPS59222206A publication Critical patent/JPS59222206A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • B29C59/142Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment of profiled articles, e.g. hollow or tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles

Abstract

PURPOSE:To increase the permeation rate of an internal porous structure such as a hollow yarn by subjecting one surface of the internal porous structure, having a minute skin layer on both surfaces, to a plasma treatment under the atmosphere of a non-polymerizable gas, and transforming the surface into a microporous layer. CONSTITUTION:The outline of the treatment with glow discharge and a batch system is shown in the figure. Rods 8 and 8' for supporting hollow yarns are provided in a vacuun vessel 1, and a group of hollow yarns 2 is stretched and kept between both supporting rods. A non-polymerizable gas is introduced from a cock 3 to regulate the pressure in the vessel to about 10<-3>-10Torr. Plasma is generated by impressing an electric power having about 0.5-200W output to an oscillating coil 5 through a high-frequency oscillator 4. Since the vacuum vessel can be separated into two parts from an O-ring 6 and 6' part, the hollow yarn can be taken in and out from the opening part of the separated vessel. An outlet 7 is connected to the vacuum pump.

Description

【発明の詳細な説明】 本発明は、選択透過性多孔質膜の製造法に関する。更に
詳しくは、一方の面側に緻密なスキン層を有し、限外口
過例などとして使用される選択透過性多孔質膜の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a permselective porous membrane. More specifically, the present invention relates to a method for producing a permselective porous membrane having a dense skin layer on one side and used as an ultrafilter.

乾湿式法によって中空糸などの内部多孔質構造体を成形
する際、芯液および紡糸浴にゲル化性の液体を使用する
と、中空糸の両面に緻密なスキン層が形成される。かか
る中空糸の内部に、限外口過処理対象液などを流し、選
択的な透過を行なう場合、中空糸内面側のスキン層を透
過し、中空糸径方向に沿って外面側に流れる透過液の流
れ抵抗は、外面側の繊密なスキン層の存在により大きく
なり、そのために大きな透過量が得られない。
When forming internal porous structures such as hollow fibers by a wet-dry method, if a gelatinous liquid is used in the core liquid and spinning bath, dense skin layers are formed on both sides of the hollow fibers. When performing selective permeation by flowing a liquid to be subjected to ultrafiltration treatment inside such hollow fibers, the permeate passes through the skin layer on the inner surface of the hollow fibers and flows toward the outer surface along the radial direction of the hollow fibers. The flow resistance is increased due to the presence of a dense skin layer on the outer surface, which prevents a large amount of permeation from being obtained.

本発明者らは、かかる外面側の緻密なスキン層を非重合
性ガス雰囲気中でプラズマ処理してそれを微細孔層に変
質せしめることにより、中空糸などの内部多孔質構造体
の選択透過量を増大させ得ることをここに見出した。
The present inventors have demonstrated the selective permeability of internal porous structures such as hollow fibers by plasma-treating the dense skin layer on the outer surface side in a non-polymerizable gas atmosphere to transform it into a microporous layer. Here we have found that it is possible to increase the

従って、本発明は選択透過性多孔質膜の製造法と係り、
該多孔質膜の製造は、両面に緻密なスキン層を有する内
部多孔質構造体の一方の面側を、非重合性ガス雰囲気中
でプラズマ処理し、該処理面ニ微細孔層を形成せしめる
ことによって行われる。
Therefore, the present invention relates to a method for producing a permselective porous membrane,
The porous membrane is manufactured by plasma treating one side of an internal porous structure having dense skin layers on both sides in a non-polymerizable gas atmosphere to form a microporous layer on the treated side. carried out by

内部多孔質構造体は、乾湿式法などによって成形され、
その形状はフィルム状であってよいが、一般には中空糸
状であることが好ましいので、以下では主として中空糸
の場合について説明する。
The internal porous structure is formed by a wet-dry method, etc.
Although the shape may be film-like, it is generally preferable to have a hollow fiber shape, so below, the case of a hollow fiber will be mainly explained.

かかる中空糸は、ポリスルホン、ポリフッ化ビニリデン
などの膜形成性重合体を溶剤、一般にはジメチルホルム
アミド、ジメチルアセトアミド、ジメチルスルホキシド
などの水溶性溶剤に溶かし、その溶液を中空環状ノズル
から押出し、その際芯液および凝固浴のそれぞれに水な
どのゲル化性の液体を用いることによって製造される。
Such hollow fibers are produced by dissolving a film-forming polymer such as polysulfone or polyvinylidene fluoride in a solvent, generally a water-soluble solvent such as dimethylformamide, dimethylacetamide, or dimethylsulfoxide, and extruding the solution through a hollow annular nozzle. It is manufactured by using a gelatinous liquid such as water as both the liquid and the coagulation bath.

このようにして乾湿式法によって得られる中空糸は、両
面に緻密なスキン層を有し、これら両面間の内部構造は
多数のフィンガースドラクチャ−状の多孔質構造を有し
ている。
The hollow fiber obtained by the dry-wet method has dense skin layers on both sides, and the internal structure between the two sides has a porous structure in the form of a large number of fingers.

このような緻密なスキン層を有する外面側をプラズマ処
理すると、そこに微細孔層が形成される。
When the outer surface side having such a dense skin layer is subjected to plasma treatment, a microporous layer is formed there.

プラズマ処理は、窒素、アルゴン、空気、酸素、水蒸気
、−酸化炭素、二酸化炭素、アンモニア、水素、ヘリウ
ム、ネオンなどの非重合性ガス雰囲気中、好ましくは空
気、酸素、窒素、アルゴン雰囲気中でのグロー放電、コ
ロナ放電などによって発生するプラズマを用い、種々の
方法によって行なうことができる。
Plasma treatment is carried out in an atmosphere of a non-polymerizable gas such as nitrogen, argon, air, oxygen, water vapor, carbon oxide, carbon dioxide, ammonia, hydrogen, helium, neon, preferably in an air, oxygen, nitrogen, argon atmosphere. This can be carried out by various methods using plasma generated by glow discharge, corona discharge, etc.

第1図に示された態様は、グロー放電、バッチ方式によ
る処理方法を示したものであり、真空容器1内に中空糸
保持棒8,8′を設置し、その保持棒間に中空糸群2を
緊張保持せしめ、容器内の圧力が約104〜10 To
rrになるように非重合性ガスをコック3から導入し、
高周波発振器(13,56MHz)4FCよって、発振
コイル5に出力約0.5〜200Wの電力を印加するこ
とにより、プラズマを発生させる。符号6,6′はO−
リングであり、このO−IJリング部分で真空容器が2
つの部分に分割し得るようになっているので、分割され
た容器の開口部分から中空糸の収容および取り出しが行
われる。なお、符号7け出口ラインで、それは真空ポン
プ(図示せず)に接続されている。
The embodiment shown in FIG. 1 shows a processing method using a glow discharge and batch method, in which hollow fiber holding rods 8 and 8' are installed in a vacuum container 1, and a group of hollow fibers 2 is placed between the holding rods. is kept under tension, and the pressure inside the container is approximately 104 to 10 To
Introduce non-polymerizable gas from cock 3 so that rr.
Plasma is generated by applying power with an output of about 0.5 to 200 W to the oscillation coil 5 using a high frequency oscillator (13.56 MHz) 4FC. Codes 6 and 6' are O-
It is a ring, and this O-IJ ring part connects the vacuum container to 2
Since the container can be divided into two parts, the hollow fibers can be accommodated and taken out from the opening of the divided container. Note that at the outlet line number 7, it is connected to a vacuum pump (not shown).

第2図に示された態様は、巻取方式によるものであり、
耐圧容器11内に一対のボビンを取り付け、一方のポビ
ン12から巻き出された中空糸13がガイドロール14
を経てガラスチューブ部15に導かれ、そこには非重合
性ガス導入口16および高周波電力印加用発振コイル1
7が設置されているので、そこでプラズマ処理が行われ
、処理された中空糸はガイドロール14′を経て他方の
ボビン12′に巻き取られる。なお、符号18は出口ラ
インで、それは真空ポンプ(図示せず)に接続されてい
る。
The embodiment shown in FIG. 2 is based on a winding method,
A pair of bobbins is installed in a pressure-resistant container 11, and the hollow fiber 13 unwound from one bobbin 12 is attached to a guide roll 14.
The non-polymerizable gas inlet 16 and the oscillation coil 1 for applying high-frequency power are introduced thereinto.
7 is installed, plasma treatment is performed there, and the treated hollow fiber is wound onto the other bobbin 12' via a guide roll 14'. Note that reference numeral 18 is an outlet line, which is connected to a vacuum pump (not shown).

また、第3図(で示された態様は、それの変形に係るも
のであり、巻き出しポビン21および巻き取りポビン2
丁間で中空糸22のプラズマ処理が直線的な状態で行わ
れており、非重合性ガス導入口23、真空ポンプ(図示
せず)にそれぞれ接続されている出口ライン24 、2
4’ 、 24// 、 24#および高周波電力印加
用発振コイル25がそれぞれ設けられているガラスチュ
ーブ部26でプラズマ処理が行われる。なお、中空糸の
保持は、ガラスチューブのっぽ寸り部分によって行われ
る。
In addition, the embodiment shown in FIG.
Plasma treatment of the hollow fibers 22 is performed in a straight line between the two, and exit lines 24 and 2 are connected to a non-polymerizable gas inlet 23 and a vacuum pump (not shown), respectively.
Plasma processing is performed in the glass tube section 26 in which the oscillation coils 4', 24//, 24# and the oscillation coil 25 for applying high-frequency power are provided. Note that the hollow fibers are held by a half-sized portion of the glass tube.

これらの各態様にあっては、いずれも高周波発振器がプ
ラズマ処理装置の外部に設置されているが、これを内部
設置方式にすることも可能である。
In each of these embodiments, the high frequency oscillator is installed outside the plasma processing apparatus, but it is also possible to install it inside the plasma processing apparatus.

このようにしてプラズマ処理された中空糸は)外面側に
微細孔層が形成されるようになり、その結果プラズマ未
処理のものと比較して、同一の分画分子量を有しながら
、約1.2〜1.4倍程度透過量を増加させており、従
って内圧型の限外口過膜などの選択透過性多孔質膜とし
て有効に使用し得ることを示している。
Hollow fibers treated with plasma in this way have a microporous layer formed on the outer surface, and as a result, compared to those that have not been plasma treated, they have the same molecular weight cut-off, but about 1 The permeation amount is increased by about .2 to 1.4 times, indicating that it can be effectively used as a permselective porous membrane such as an internal pressure type ultrafiltration membrane.

次に、実施例について本発明を説明する。Next, the present invention will be explained with reference to examples.

実施例1 ポリスルホン(UOCt社製品P−3500)20重量
%およびポリビニルピロリドン(関東化学製品PVPK
−90) 0.5重量%を含有するジメチルホルムアミ
ド溶液を、芯液および凝固浴にいずれも水を用い、中空
環状ノズルから乾湿式紡糸した。得られた内径1.01
1rm、外径1.5gnの中空糸をよく水洗した後、4
0℃のオーブン中で15時間乾燥した。
Example 1 20% by weight of polysulfone (UOCt product P-3500) and polyvinylpyrrolidone (Kanto Kagaku product PVPK)
-90) A dimethylformamide solution containing 0.5% by weight was wet-dry spun from a hollow annular nozzle using water for both the core solution and the coagulation bath. Obtained inner diameter 1.01
After thoroughly washing the hollow fiber of 1rm and outer diameter of 1.5gn with water,
It was dried in an oven at 0°C for 15 hours.

この中空糸を、前記第1図に示されたバッチ式プラズマ
処理装置内(て入れ、0.I TOrrの窒素ガス、ア
ルゴンガス寸たけ空気圧力下に、周波数13.56MJ
(z、出力50Wの高周波を10分間照射した。
This hollow fiber was placed in the batch type plasma processing apparatus shown in FIG.
(z, high frequency with an output of 50 W was irradiated for 10 minutes.

プラズマ処理された中空糸は、それを10本束ねてモジ
ュール化し、各種分子量のポリエチレングリコールの1
%を用い、操作圧力1時におけるそれの分画分子量曲線
を求め、排除率90%の分子量を分画分子量とすると共
に、脱塩水を用いてそれの純水透過係数を測定した。
The plasma-treated hollow fibers are made into a module by bundling 10 fibers, and are made of polyethylene glycol of various molecular weights.
%, the molecular weight cut-off curve at an operating pressure of 1 hour was determined, and the molecular weight at an exclusion rate of 90% was taken as the molecular weight cut-off, and the pure water permeability coefficient was measured using demineralized water.

これらの測定には、第4図に示される装置が用いられた
The apparatus shown in FIG. 4 was used for these measurements.

容器31内にポリエチレングリコールの1%水溶?&l
’32を供給液として入れ、これをポンプ33を用いて
、モジュール内の中空糸群36の中空部へ圧送する。モ
ジュールは、中空糸をその両端開口部37 、37’を
揃えて束ね、かつこの両端開口部で各中空糸の中空部を
残して各中空糸同士を接着、閉g 38 、38’させ
た中空糸群をモジュール外筒39因にこの閉塞部を内接
させるよう1て収容したものであり、両端部に(4主力
計34 、34′を備えている。
1% aqueous solution of polyethylene glycol in container 31? &l
'32 is introduced as a feed liquid, and this is pumped using the pump 33 to the hollow part of the hollow fiber group 36 in the module. The module is made by bundling hollow fibers with openings 37 and 37' at both ends aligned, and bonding and closing each hollow fiber to each other, leaving a hollow part of each hollow fiber at the openings at both ends. A group of threads is housed in the module outer cylinder 39 so that the closed part is inscribed therein, and four main forces 34 and 34' are provided at both ends.

そして、供給液圧送時の2個所の圧力計を1.0±0,
1〜とし、また供給液の中空系内流速を線速度27mル
となるように、2個所のバルブ35.35’を調節した
。中空糸膜の径方向に通過したb過液は、モジュールの
透過液出口40に集め排出される。この透過液を一定峙
間(30分間)毎にサンプリングし、透過液中のポリエ
チレングリコールを全有機炭素分析計で定量し、排除率
を次式に従って計算する。
Then, the pressure gauges at the two locations during pressure feeding of the supply liquid were set to 1.0±0,
1 to 1, and two valves 35 and 35' were adjusted so that the flow rate of the feed liquid in the hollow system was a linear velocity of 27 mL. The b filtrate that has passed through the hollow fiber membrane in the radial direction is collected at the permeate outlet 40 of the module and discharged. This permeate is sampled at regular intervals (30 minutes), polyethylene glycol in the permeate is quantified using a total organic carbon analyzer, and the rejection rate is calculated according to the following formula.

c。c.

R:排除率 00:供給液中のポリエチレングリコール濃度(fji
%)C2:透過液中のポリエチレングリフール濃度(重
量%)そして、各種分子量のポリエチレングリコールの
水溶液について排除率曲線を求め、排除率90%の点の
分子量を曲線上に求め、それを分画分子量とする。
R: Rejection rate 00: Polyethylene glycol concentration in the supply liquid (fji
%) C2: Concentration of polyethylene glycol in the permeate (wt%) Then, an exclusion rate curve is determined for aqueous solutions of polyethylene glycol of various molecular weights, the molecular weight at the point at which the exclusion rate is 90% is determined on the curve, and it is fractionated. Molecular weight.

また、純水透過係数は、分画分子量測定に用いられたも
のと同じモジュールを用い、ポリエチレングリコールの
代りに純水を供給液とし、同一運転条件で膜を透過する
純水の量をサンプリングして透過量を測定し、これを膜
面積、操作圧力および時間で除した値として算出される
In addition, the pure water permeability coefficient was measured by using the same module used for the molecular weight fraction measurement, using pure water as the feed liquid instead of polyethylene glycol, and sampling the amount of pure water that permeates through the membrane under the same operating conditions. The amount of permeation is measured and calculated as the value divided by the membrane area, operating pressure, and time.

実施例2 実施例1において、ポリスルホンの代りに、ポリフッ化
ビニIJデンが用いられ、得られた内径1.Off、外
径1.5胴の中空糸について、同様のプラズマ処理が行
われた。そして、プラズマ処理された中空糸の分画分子
量および純水透過係数が、同様に測定された。
Example 2 In Example 1, polyvinylfluoride IJden was used instead of polysulfone, and the resulting inner diameter was 1. Similar plasma treatment was performed on a hollow fiber with an outer diameter of 1.5 mm. Then, the molecular weight cutoff and pure water permeability coefficient of the plasma-treated hollow fibers were measured in the same manner.

実施例3 芳香族ホ゛リアミド(帝人製品コーネックス)15重饋
%、塩化リチウム5重量%およびジメチルアセトアミド
10重量%を含有するジメチルホルムアミド溶液を用い
て、実施例1と同様にして、乾湿式紡糸が行われた。得
られた内径1.Om+n、外径1.55 Mの中空糸に
ついてのプラズマ処理およびプラズマ処理中空糸につい
ての分画分子量および純水透過係数の測定が、実施例1
と同様にして行われた。
Example 3 Wet-dry spinning was carried out in the same manner as in Example 1 using a dimethylformamide solution containing 15% by weight of aromatic polyamide (Conex, a Teijin product), 5% by weight of lithium chloride, and 10% by weight of dimethylacetamide. It was conducted. Obtained inner diameter 1. Example 1: Om+n, plasma treatment of a hollow fiber with an outer diameter of 1.55 M, and measurement of the fractional molecular weight and pure water permeability coefficient of the plasma-treated hollow fiber.
It was done in the same way.

以上の各実竹例での測定結果は、次の表に示される。The measurement results for each of the above actual bamboo examples are shown in the following table.

表 1    窒素   80,00(14,3アルゴン 
                4.5空;、T、4
.8 なし          3.3 2   窒素   30,000    2.9アルゴ
ン                 2.9空気  
        31 なし          2.4 3   窒素    5,000    8.6アルゴ
ン                83空気    
      9・2 なし          67 これらの結果から、プラズマ処理することにより、分画
分子量を変化させることなく、透水量を約1.2〜1.
4倍桿度増加させた高性能の限外口過膜が得られること
が判る。
Table 1 Nitrogen 80,00 (14,3 Argon
4.5 empty;, T, 4
.. 8 None 3.3 2 Nitrogen 30,000 2.9 Argon 2.9 Air
31 None 2.4 3 Nitrogen 5,000 8.6 Argon 83 Air
9.2 None 67 From these results, it can be seen that by plasma treatment, the water permeability can be increased to approximately 1.2 to 1.2% without changing the molecular weight fraction.
It can be seen that a high-performance ultrafiltration membrane with a four-fold increase in rigidity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は、それぞれ本発明に係るプラズマ処理方法
を示す概略図である。また、第4図は、分画分子量およ
び純水透過係数の測定装置の概略図である。 (符号の説明) 2、13.22・・・・・・中空糸(群)3.16.2
3・・・・・・非重合性ガス導入口4・・・・・・・・
・・・・・・・・・・高周波発振器5、17.25・・
・・・・発振コイル7、18.24・・・・・・出口ラ
イン12、21・・・・・・・・・・・・ボビン代理人 弁理士  吉 ド1 俊 夫 第1図
1 to 3 are schematic diagrams each showing a plasma processing method according to the present invention. Moreover, FIG. 4 is a schematic diagram of a measuring device for the molecular weight cutoff and the pure water permeability coefficient. (Explanation of symbols) 2, 13.22...Hollow fiber (group) 3.16.2
3...Non-polymerizable gas inlet 4...
......High frequency oscillator 5, 17.25...
...Oscillation coil 7, 18.24...Exit line 12, 21...Bobbin attorney Patent attorney Yoshi Do 1 Toshio Figure 1

Claims (1)

【特許請求の範囲】 1、両面に繊密なスキン層を有する内部多孔質構造体の
一方の面側を、非重合性ガス雰凹気中でプラズマ処理し
、該処理面に微細孔層を形成せしめることを特徴とする
選択透過性多孔質膜の製造法。 2、内部多孔質構造体が中空糸である特許請求の範囲第
1項記載の選択透過性多孔質膜の製造法。 3、内部多孔質構造体が、両面をゲル化性の液体に接触
させる乾湿式法により成形された多孔質構造体である特
許請求の範囲第1項または第2項記載の選択透過性多孔
質膜の製造法。
[Claims] 1. One side of an internal porous structure having dense skin layers on both sides is subjected to plasma treatment in a non-polymerizable gas atmosphere, and a microporous layer is formed on the treated side. 1. A method for producing a permselective porous membrane, characterized by forming a permselective porous membrane. 2. The method for producing a permselective porous membrane according to claim 1, wherein the internal porous structure is a hollow fiber. 3. The permselective porous material according to claim 1 or 2, wherein the internal porous structure is a porous structure formed by a dry-wet method in which both surfaces are brought into contact with a gelling liquid. Membrane manufacturing method.
JP9553183A 1983-05-30 1983-05-30 Manufacture of selective permeable porous membrane Pending JPS59222206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9553183A JPS59222206A (en) 1983-05-30 1983-05-30 Manufacture of selective permeable porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9553183A JPS59222206A (en) 1983-05-30 1983-05-30 Manufacture of selective permeable porous membrane

Publications (1)

Publication Number Publication Date
JPS59222206A true JPS59222206A (en) 1984-12-13

Family

ID=14140134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9553183A Pending JPS59222206A (en) 1983-05-30 1983-05-30 Manufacture of selective permeable porous membrane

Country Status (1)

Country Link
JP (1) JPS59222206A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788833A1 (en) * 1996-02-12 1997-08-13 Conte S.A. Process for increasing the wettability of a porous body and device for carrying out the process
JP2002060522A (en) * 2000-06-06 2002-02-26 Matsushita Electric Works Ltd Molded article
JP2014036946A (en) * 2012-08-20 2014-02-27 Unitika Ltd Polyamide ultrafilter membrane having organic solvent resistance, and method for manufacturing the same
JP2016193430A (en) * 2016-05-13 2016-11-17 ユニチカ株式会社 Polyamide ultrafilter membrane having organic solvent resistance, and method for manufacturing the same
JP2017127864A (en) * 2017-01-31 2017-07-27 ユニチカ株式会社 Polyamide ultrafilter membrane having organic solvent tolerance and manufacturing method for the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112288A (en) * 1977-03-11 1978-09-30 Sumitomo Chem Co Ltd Controlling method for substance permeability of semipermeable membrane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112288A (en) * 1977-03-11 1978-09-30 Sumitomo Chem Co Ltd Controlling method for substance permeability of semipermeable membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788833A1 (en) * 1996-02-12 1997-08-13 Conte S.A. Process for increasing the wettability of a porous body and device for carrying out the process
FR2744649A1 (en) * 1996-02-12 1997-08-14 Conte METHOD FOR INCREASING THE WETABILITY OF A POROUS BODY AND DEVICE FOR IMPLEMENTING THE PROCESS
US6074534A (en) * 1996-02-12 2000-06-13 Conte Sa Method of increasing the wettability of a porous body
JP2002060522A (en) * 2000-06-06 2002-02-26 Matsushita Electric Works Ltd Molded article
JP4524958B2 (en) * 2000-06-06 2010-08-18 パナソニック電工株式会社 Compact
JP2014036946A (en) * 2012-08-20 2014-02-27 Unitika Ltd Polyamide ultrafilter membrane having organic solvent resistance, and method for manufacturing the same
JP2016193430A (en) * 2016-05-13 2016-11-17 ユニチカ株式会社 Polyamide ultrafilter membrane having organic solvent resistance, and method for manufacturing the same
JP2017127864A (en) * 2017-01-31 2017-07-27 ユニチカ株式会社 Polyamide ultrafilter membrane having organic solvent tolerance and manufacturing method for the same

Similar Documents

Publication Publication Date Title
AU2017373828B2 (en) Hollow fibre membrane with improved separating efficiency, and production of a hollow fibre membrane with improved separating efficiency
JP2766692B2 (en) Method for producing nitrogen from air using gas separation membrane
Gholami et al. The effect of heat-treatment on the ultrafiltration performance of polyethersulfone (PES) hollow-fiber membranes
CN108602026B (en) Virus-removing film and method for producing virus-removing film
JPS59222206A (en) Manufacture of selective permeable porous membrane
JP2001269553A (en) Gas separation membrane and separation method
JP2008018231A (en) Hollow fiber membrane and hollow fiber membrane type module for blood purification
JP2006231276A (en) Method for manufacturing hollow fiber membrane
JP3093821B2 (en) Method for producing regenerated cellulose porous hollow fiber membrane by cuprammonium method
JP2000202256A (en) Production of composite hollow fiber membrane, apparatus therefor and composite hollow fiber membrane
KR20150011819A (en) Hollow porous film
JPS62213813A (en) Method for improving water permeability of micro-porous membrane
CN113573800A (en) System and method for manufacturing hollow fiber membranes
JP4702277B2 (en) Gas separation membrane and separation method
JP2739509B2 (en) Method for producing hollow fiber membrane and tubular material used therefor
KR100418269B1 (en) Hollow fiber surface modificating method by using plasma in atmosphere
JP2000300972A (en) Manufacture of composite hollow fiber membrane, composite hollow fiber membrane manufacturing device, and composite hollow fiber membrane
JPH10165773A (en) Hollow yarn type blood treatment apparatus and its production
JPS60172309A (en) Preparation of compound film comprising hollow yarn
JPH01180206A (en) Modified polysulfone membrane and its production
JPH0714468B2 (en) Method for producing hollow fiber membrane for ultrapure water production
JP2001000843A (en) Composite semipermeable membrane and composite semipermeable membrane module
JPS61296112A (en) Cuprammonium cellulose hollow yarn membrane
JPH10174850A (en) Treatment of hollow-fiber membrane
JP2009095825A (en) Hollow fiber membrane or hollow fiber membrane module, and its manufacturing method