JPS5921991A - Condenser - Google Patents

Condenser

Info

Publication number
JPS5921991A
JPS5921991A JP13173082A JP13173082A JPS5921991A JP S5921991 A JPS5921991 A JP S5921991A JP 13173082 A JP13173082 A JP 13173082A JP 13173082 A JP13173082 A JP 13173082A JP S5921991 A JPS5921991 A JP S5921991A
Authority
JP
Japan
Prior art keywords
condensate
condenser
sintered
flow path
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13173082A
Other languages
Japanese (ja)
Inventor
Miyuki Yanagisawa
柳沢 幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13173082A priority Critical patent/JPS5921991A/en
Publication of JPS5921991A publication Critical patent/JPS5921991A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To enable to decrease the concentration of metallic impurity in the primary system of a nuclear reactor, by preventing corrosive product (C, P) produced in the condenser from flowing into the nuclear reactor, by providing sintered metallic filters in a condenser traversing over a flow path. CONSTITUTION:A filter 14 made of sintered metal is provided at least one place in the flow path 10 in a condenser. Four pieces of the sintered filter 14 are provided to each block of the condenser, that is 12 pieces in total in the condenser. The condensate from which C, P, especially in a clad, is removed by the sintered filter 14, flows out into a condensate purifier from a condensate outlet pipe via a condensate descending pipe 12. In such a manner, the condensate flowing into a hot well 9 from the condensate inlet 8, and flowing through the flow path 10 of a condenser which is partitioned by partition plates 5 to the direction of the arrow mark, is discharged from a condensate descending pipe 12. As a result, the concentration of metallic impurity in the primary system of an nuclear reactor can be decreased.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は沸騰水型原子力発電所の主蒸気を冷却凝縮させ
る復水器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a condenser for cooling and condensing main steam of a boiling water nuclear power plant.

〔発明の技術的背景〕[Technical background of the invention]

沸騰水型原子力発電所(以下、BWl′Lプラントと略
す)において、−次冷却水にはきわめて純度の高い純水
の使用が要求される。
In boiling water nuclear power plants (hereinafter abbreviated as BWl'L plants), it is required to use extremely high purity water for secondary cooling water.

これは給水とともに原子炉内に持ち込捷れる腐食生成物
(以下C,P と略す)が炉内で中性子照射を受は放射
能を持った放射性腐食生成物(以下A、C,Pと記す)
の増加を防止するだめに必要である。
This is because the corrosion products (hereinafter referred to as C and P) carried into the reactor along with the feed water are irradiated with neutrons inside the reactor and become radioactive corrosion products (hereinafter referred to as A, C and P). )
This is necessary to prevent an increase in

ここで、BWI(、プラントの概要および復水器の位置
について簡単に説明する。
Here, we will briefly explain the outline of the BWI plant and the location of the condenser.

まず原子炉圧力容器内で発生した蒸気は、タービンに流
入し発電機を回転させるが、タービンを流出した蒸気は
復水器内部において冷却器によυ冷却凝縮さ、れ復水と
なる。
First, the steam generated in the reactor pressure vessel flows into the turbine and rotates the generator, but the steam that flows out of the turbine is cooled and condensed by the cooler inside the condenser, becoming condensed water.

この復水器の下部には復水を一定の短時間だけ貯留する
ホットウェルが設けられている。
A hot well is provided at the bottom of the condenser to store condensate for a certain short period of time.

このホットウェルを流出した復水は復水浄化装置で浄化
された後、給水加熱器で所定の温IWまで加熱されポン
プにより原子炉内に送り込まれ循環使用される。
The condensate flowing out of the hot well is purified by a condensate purification device, heated to a predetermined temperature IW by a feed water heater, and sent into the reactor by a pump for circulation.

〔背景技術の問題点〕[Problems with background technology]

上記に述べた様に、BW)Lプラントにおける放射能の
発生を低減させるには原子炉内に給水とともに流、入す
るC1Pの量を低く抑える必要がある。
As mentioned above, in order to reduce the generation of radioactivity in the BW)L plant, it is necessary to keep the amount of C1P flowing into the reactor together with the feed water to a low level.

給水中に含まれるC、Pの発生源は一次冷却水が接して
いる配管の内面および機器表面である。
The sources of C and P contained in the water supply are the inner surfaces of piping and equipment surfaces that are in contact with the primary cooling water.

C,Pは大きく分けると溶解性(イオン)と不溶解性(
クラッド)に分けることができる。
C and P can be roughly divided into soluble (ions) and insoluble (
cladding).

C0Pの発生源として最も大きい置所は一次冷却水と接
触面積が大きい復水器である。
The largest source of C0P is the condenser, which has a large contact area with the primary cooling water.

復水器の構成材料、内部のサポート類および復水器の下
部に位置するホットウェルは炭素鋼で形成されているた
め、c、pの発生量は非常に多いと言われている。
Since the constituent materials of the condenser, the internal supports, and the hot well located at the bottom of the condenser are made of carbon steel, it is said that the amount of c and p generated is extremely large.

この復水器内からのC1P の発生量は年間数100ゆ
にもなる。
The amount of C1P generated from within this condenser amounts to several 100 yuan per year.

復水器の下流には復水浄化装置が設けてあシ、イオンや
クラッドの金属不純物を除去する様なシステムとなって
いる。
A condensate purification device is installed downstream of the condenser to remove metal impurities such as ions and crud.

しかしながら、粒径の非常に小さいコロイド状の金属不
純物は30〜40%位がとの復水浄化装置を通過してし
まうという欠点がある。
However, there is a drawback that about 30 to 40% of colloidal metal impurities with extremely small particle sizes pass through the condensate purification device.

このため年間約200ky程度のC8Pが給水にともな
って原子炉内に流入する。
For this reason, approximately 200 ky of C8P per year flows into the reactor along with the water supply.

そこで、C0Pの発生量とともに放射能の発生が高いレ
ベルとなれは作業員の放射)函被U#鹸が多くな9、好
ましいことではないのでC1Pを原子炉内に流入させな
いことが必要になってくる。
Therefore, if the amount of C0P generated and the amount of radioactivity generated rises to a high level, there will be a lot of radioactivity (emissions from workers)9, which is not desirable, so it is necessary to prevent C1P from flowing into the reactor. It's coming.

〔発明の目的〕[Purpose of the invention]

本発明は上記要望に対処するためにな芒れたもので、復
水器内で発生するC1Pをできるだけ下流、更には原子
炉内へ流入するのを防IEするための′復水器を提供す
ることにある。
The present invention has been developed to meet the above-mentioned needs, and provides a condenser for preventing IE from flowing C1P generated in the condenser as far downstream as possible and further into the reactor. It's about doing.

〔発明の概要〕[Summary of the invention]

本発明は原子炉−次系の金属不純物濃度を低減させてB
WI−Lプラントの放射能発生低減に寄与することに鑑
み、復水器本体の−F部に位4するホットウェルを仕切
り板により仕切って形成した復水流路内を横断して焼結
金属製フィルタを設置したことを特徴とする復水器であ
る。
The present invention reduces the concentration of metal impurities in the nuclear reactor system and
In view of contributing to the reduction of radioactivity generation in the WI-L plant, a sintered metal tube is installed across the condensate flow path formed by partitioning the hot well located at the -F section of the condenser body with a partition plate. This is a condenser characterized by having a filter installed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る復水器の一実施例を図面により説明
する。
Hereinafter, one embodiment of the condenser according to the present invention will be described with reference to the drawings.

第1図から第3図において、復水器本体1は3つのブロ
ックに大きく分かれており、それぞれの本体1の上部に
はタービンを回転した蒸気が流れ込む蒸気流入口2が接
続されている。
1 to 3, the condenser main body 1 is roughly divided into three blocks, and the upper part of each main body 1 is connected to a steam inlet 2 into which the steam that rotates the turbine flows.

この蒸気は蒸気流入口2がら流入し冷却器3内の冷却管
7内を通る海水により冷却され凝縮して復水となるg 復水器本体1の下部には復水を所定の短時間貯留して復
水中に存在している寿命の短い放射能の強度を減衰させ
るためのホットウェル9が位置している。
This steam flows in through the steam inlet 2, is cooled by seawater passing through the cooling pipe 7 in the cooler 3, and condenses to become condensed water. A hot well 9 is located therein to attenuate the intensity of short-lived radioactivity present in the condensate.

このホットウェル9は深さ1m程度で内部は仕切り板5
により復水の流れる復水流路10が形成されている。
This hot well 9 has a depth of about 1 m and has a partition plate 5 inside.
A condensate flow path 10 through which condensate flows is formed.

この復水流路10の幅は約1mであシ、ここを通過する
間に短寿命の放射性核種の放射能は所定値以下まで減衰
される。
The width of this condensate channel 10 is about 1 m, and while passing through this condensate channel 10, the radioactivity of short-lived radionuclides is attenuated to a predetermined value or less.

この復水流路10の少なくとも一箇所には焼結金属で作
製したフィルタ1/4が設けられている。
At least one portion of this condensate flow path 10 is provided with a filter 1/4 made of sintered metal.

この実施例においてはこの焼結フィルタ14を復水器の
1ブロツクに4個、復水器全体で12個、設けられてい
る。
In this embodiment, four sintered filters 14 are provided in one block of the condenser, and 12 in total are provided in the condenser.

この焼結フィルタ14により特にクラッド中のC5Pが
除去された復水は復水下降管12を経由して復水流出管
より復水浄化装置へと流出して行く。
The condensate from which C5P in the cladding has been particularly removed by the sintered filter 14 flows out through the condensate downcomer pipe 12 and from the condensate outflow pipe to the condensate purification device.

このホットウェル内での復水の流れを、更にわかりやす
く第1図のA−Aを断面図で示したものが第2図である
FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1 to make the flow of condensate in the hot well easier to understand.

この図で示す様に復水流人口8よりホットウェル9内に
流れ込んだ復水け、仕切り板5により区切られた復水流
路10を矢印の方向に沿って流れ、復水下降管12より
流れ出る。
As shown in this figure, the condensate flows into the hot well 9 from the condensate stream 8, flows through the condensate channel 10 divided by the partition plate 5 in the direction of the arrow, and flows out from the condensate downcomer 12.

第1図をB−Hの断面で示した図が第3図である。FIG. 3 is a cross-sectional view taken along line B-H of FIG. 1.

焼結フィルタ14を構成する焼結金属は金属の微細粒子
を高温にて焼結して一体化したたとえばステンレス鋼な
どの金属であυ、金属粒子間の空孔率は焼結する際の温
度、圧力により異ったものを得ることができる。
The sintered metal constituting the sintered filter 14 is a metal such as stainless steel, which is made by sintering fine metal particles at high temperature and integrating them, and the porosity between the metal particles varies depending on the temperature at the time of sintering. , you can get different results depending on the pressure.

使用する焼結体の空孔率は、不溶解性C9Pの粒径を考
慮して、不純物を捕獲した時、焼結フィルタでの差圧が
大さくなりずぎないものを選択する。
The porosity of the sintered body to be used is selected in consideration of the particle size of insoluble C9P so that the differential pressure across the sintered filter does not become too large when impurities are captured.

つぎに具体的実施例を説明する。Next, specific examples will be explained.

焼結金属粒子の材質にステンレス鋼を用い、これを焼結
させて金属粒子間の空孔の径を10〜・20μmの板状
の焼結フィルタ14を製作した。
Stainless steel was used as the material for the sintered metal particles, and was sintered to produce a plate-shaped sintered filter 14 in which the diameter of the pores between the metal particles was 10 to 20 μm.

このフィルタ14の厚さは約10 mmでホットウェル
9に設置した時の高さはホットウェル9の復水流路10
において復水の流れる部分の断面の下半分程度の面積を
さえぎる高さとしだ。
The thickness of this filter 14 is approximately 10 mm, and the height when installed in the hot well 9 is the same as that of the condensate flow path 10 of the hot well 9.
The height should be such that it blocks about the lower half of the cross section of the part where the condensate flows.

この焼結フィルタ14を復水器本体1の1ブロツク内に
4個、合計12個設置した。
Four of these sintered filters 14 were installed in one block of the condenser body 1, for a total of 12 filters.

設置場所は第2図に示したような位置で、復水流°路「
0に沿って直角に設置した。
The installation location is as shown in Figure 2, and the condensate flow path is
It was installed at right angles along 0.

第4図は焼結フィルタ14の上面図であシ、第5図は第
4図の側面図である。
4 is a top view of the sintered filter 14, and FIG. 5 is a side view of FIG. 4.

第4図は仕切り板5の間に焼結フィルタ支持具13によ
り設置した様子を示しており、焼結フィルタ11は補強
のだめの金属枠15により支えられている。
FIG. 4 shows how the sintered filter support 13 is installed between the partition plates 5, and the sintered filter 11 is supported by a metal frame 15 for reinforcement.

この金属枠15の形状は第5図に示すように格子状とな
っており、復水中のC4’、  %に不溶解性のC0P
は、この焼結フィルタ(川11により効率的に除去され
る。
The shape of this metal frame 15 is a lattice-like shape as shown in FIG.
is efficiently removed by this sintered filter (river 11).

焼結フィルタは金属枠15を介して焼結フィルタ支持具
13に取り付けられている。
The sintered filter is attached to a sintered filter support 13 via a metal frame 15.

この取υ伺けは着脱自在がtll)単な組み込み式とな
っている。
This handle is removable, but it is simply a built-in type.

このためC6Pを捕獲した焼結フィルタ11は定期点検
時において取り出し、〆h: pI9又は新品と交防す
ることが容易にできる。
Therefore, the sintered filter 11 that has captured C6P can be easily taken out during periodic inspection and replaced with a new one or a new one.

し発明の効果〕 本y+6明は復水器内に発生ずる特に不溶IIIII′
1」の0゜1)ッ1す、Ve、U3、Fe、、04 、
N iO、Cu、 IJ、 CuO等の金属酸化物を効
率良く、腹水中より除去することができる。
[Effects of the Invention] This y+6 light is particularly effective against insoluble III' generated in the condenser.
1"'s 0°1) 1su, Ve, U3, Fe,, 04,
Metal oxides such as NiO, Cu, IJ, and CuO can be efficiently removed from ascites.

、■I常常水水中不溶解性のC,Pの粒径は第6図に示
す分布である。
, ■I The particle size distribution of C and P which are insoluble in ordinary water is shown in FIG.

第6図から明らかなように小さい粒径は0.2μm程1
u−であり、大きい粒子の径ば1()μH1程助である
As is clear from Figure 6, the small particle size is about 0.2 μm.
u-, and the diameter of a large particle is 1() μH1.

そこで本発明の焼結フィルタ11の焼結金属粒子間の空
隙径は10〜20μm程度であり、このため、焼結フィ
ルタの目づまりの起こるのを防ぎ、水中の不純物を効率
良く除去することができる。
Therefore, the pore diameter between the sintered metal particles of the sintered filter 11 of the present invention is about 10 to 20 μm, which prevents the sintered filter from clogging and efficiently removes impurities in water. .

また従来の様にホットウェルの復水流路にフィルタを設
置してない場合と本発明による焼結フィルタを設iRし
た場合の伊水流出管での復水中のC9Pの濃度の測定結
果をW、7図に示す。
In addition, the measurement results of the concentration of C9P in the condensate at the Isui outflow pipe when no filter is installed in the condensate flow path of the hot well as in the past and when the sintered filter according to the present invention is installed are W. It is shown in Figure 7.

図中・印は従来例を、0印は本発明を示している。In the figure, the mark ⋅ indicates the conventional example, and the mark 0 indicates the present invention.

従来の腹水器では平均25 ppb程度であったものが
、焼結フィルタを設置した場合には平均15ppb  
程度まで低減させることができる。
Conventional ascites equipment had an average of about 25 ppb, but when a sintered filter was installed, the average was 15 ppb.
It can be reduced to a certain degree.

したがって、本発明によれば給水に伴なって原子炉内に
流入するC01)の素は従来方式より年間約80−低減
することができる。
Therefore, according to the present invention, the amount of CO1) that flows into the reactor with water supply can be reduced by about 80 points per year compared to the conventional system.

しかして本発明は原子炉内において発生する放射能も従
来の復水器より約20%低減させることができ、プラン
トの運転中、および定期点検時における従業員の放射能
被暖を大幅に低下させることができる効果がある。
Therefore, the present invention can reduce the radioactivity generated inside the nuclear reactor by approximately 20% compared to conventional condensers, significantly reducing the radiation exposure of employees during plant operation and periodic inspections. There is an effect that can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図までは本発明に係る復水器の一実施例
を説明するだめのもので、第1図は復水器を示す縦断面
図、第2図は第1図のA−A矢視方向の断面図、第3図
は第1図の13−B矢視方向の断面図、第4図は第1図
における焼結フィルタの上面図、第5図は第4図におけ
る仙1面図、第6図は復水中クラッドの粒径分布図、第
7図は従来法および本発明による復水滲出1]での腐食
生成物濃度を示す特性図である。 1 ・・・復水器本体 2・・・・・蒸気流入口 3・・・・・・冷却器 4・・・・・ホットウェル屋根板 5・・・・・・仕切り板 6・・・・・・復水流出管 7・・・・・冷却管 8・・・・復水流入口 9・・・・・ホットウェル 10・・・復水流路 11・・・焼結フィルタ而 12・・・復水下降管 13・・・焼結フィルタ支持具 14・・・焼結フィルタ 15・・・金属枠 16・・・復水器の底板 代理人 弁理士  須 山 佐 − 第3図 第4図 第 5 図 第6区 クラッドわj蚤(、IJ m ’)
1 to 5 are for explaining one embodiment of the condenser according to the present invention, and FIG. 1 is a vertical sectional view showing the condenser, and FIG. 2 is an A of FIG. 3 is a sectional view taken in the direction of arrow 13-B in FIG. 1, FIG. 4 is a top view of the sintered filter in FIG. 1, and FIG. FIG. 6 is a particle size distribution diagram of crud in condensate water, and FIG. 7 is a characteristic diagram showing the concentration of corrosion products in condensate leaching 1] according to the conventional method and the present invention. 1...Condenser body 2...Steam inlet 3...Cooler 4...Hotwell roof plate 5...Partition plate 6... ... Condensate outflow pipe 7 ... Cooling pipe 8 ... Condensate inlet 9 ... Hot well 10 ... Condensate flow path 11 ... Sintered filter 12 ... Condensate Water downcomer pipe 13...Sintered filter support 14...Sintered filter 15...Metal frame 16...Condenser bottom plate agent Patent attorney Suyama Sa - Figure 3, Figure 4, Figure 5 Figure 6th Ward Clad Waj Flea (IJ m')

Claims (2)

【特許請求の範囲】[Claims] (1)  復水器本体の下部に位置するホットウェルを
仕切シ板により仕切って形成した復水流路内を横断して
焼結金属製フィルタを設置してなることを特徴とする復
水器。
(1) A condenser characterized in that a sintered metal filter is installed across a condensate flow path formed by partitioning a hot well located at the bottom of the condenser body with a partition plate.
(2)復水器本体の蒸気流入口は沸騰水型原子炉プラン
トのタービン系に接続されることを特徴とする特許請求
の範囲第1項記載の復水器、。
(2) The condenser according to claim 1, wherein the steam inlet of the condenser body is connected to a turbine system of a boiling water reactor plant.
JP13173082A 1982-07-28 1982-07-28 Condenser Pending JPS5921991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13173082A JPS5921991A (en) 1982-07-28 1982-07-28 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13173082A JPS5921991A (en) 1982-07-28 1982-07-28 Condenser

Publications (1)

Publication Number Publication Date
JPS5921991A true JPS5921991A (en) 1984-02-04

Family

ID=15064849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13173082A Pending JPS5921991A (en) 1982-07-28 1982-07-28 Condenser

Country Status (1)

Country Link
JP (1) JPS5921991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007394A (en) * 2009-06-24 2011-01-13 Toshiba Corp Multistage pressure condenser
US10435838B2 (en) 2014-03-31 2019-10-08 Toray Industries, Inc. Dyed artificial leather and a production method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007394A (en) * 2009-06-24 2011-01-13 Toshiba Corp Multistage pressure condenser
US8505886B2 (en) 2009-06-24 2013-08-13 Kabushiki Kaisha Toshiba Multistage pressure condenser
US10435838B2 (en) 2014-03-31 2019-10-08 Toray Industries, Inc. Dyed artificial leather and a production method therefor

Similar Documents

Publication Publication Date Title
EP0078499B1 (en) Method and apparatus for purifying liquid
EP3336853B1 (en) Apparatus for filtering radioactive materials
JPS5921991A (en) Condenser
JPS6091293A (en) Ultrafiltration method and ultrafiltration device for cooling water of pressurized water type reactor
JPS629171B2 (en)
US3873447A (en) Cold trap for liquid sodium impurities collection
JP3314599B2 (en) Condenser and power plant
RU2226010C1 (en) Nuclear power plant
JP2895267B2 (en) Reactor water purification system
JPS601598A (en) Purifier for condensate
JP2544426B2 (en) Fluid purification device
JPS582255B2 (en) Impurity collection device
JPS6148798A (en) Sight bunker pool water purifying facility
JPS6190093A (en) Condensate purifier
Whirl et al. Water Technology at the Shippingport Atomic Power Station
JP2896444B2 (en) Liquid metal refining equipment
Mathur et al. Water chemistry studies VII-a general review of water conditions and water treatment in nuclear reactors
RU4182U1 (en) ENERGY CONVERSION SYSTEM OF THERMO-NUCLEAR REACTOR TYPE TOKAMAK
JPS5952576A (en) Mixed-bed desalinator for condensed water
Brandt et al. Method of and apparatus for decontamination of radioactive waste water
JPS5618290A (en) Steam condenser
Stepnewski N Reactor secondary loop contamination
JPS60183004A (en) Vapor trap for liquid metal
Freck et al. Improvements in or relating to gas cooled nuclear reactors
JPS61129087A (en) Ion exchange resin tower