JPS59219444A - Dispersion strengthened aluminum alloy - Google Patents

Dispersion strengthened aluminum alloy

Info

Publication number
JPS59219444A
JPS59219444A JP9132783A JP9132783A JPS59219444A JP S59219444 A JPS59219444 A JP S59219444A JP 9132783 A JP9132783 A JP 9132783A JP 9132783 A JP9132783 A JP 9132783A JP S59219444 A JPS59219444 A JP S59219444A
Authority
JP
Japan
Prior art keywords
fine particles
molten metal
alloy
molten
strengthening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9132783A
Other languages
Japanese (ja)
Inventor
Masaaki Tokui
徳井 雅昭
Toshika Masaoka
正岡 利鹿
Atsushi Oota
厚 太田
Masahiro Taguchi
田口 正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9132783A priority Critical patent/JPS59219444A/en
Publication of JPS59219444A publication Critical patent/JPS59219444A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the strength and toughness of an Al casting by the synergistic effect of the dispersion strengthening of specific fine particles for strengthening and the precipitate formed by a heat treatment by dispersing said particles in molten Al and casting the molten Al. CONSTITUTION:Fine particles for strengthening such as SiC or others of <=10mu are added and dispersed in molten Al or Al alloy at <=20% volume ratio at intervals within 10mu. Such molten metal 12 is admitted through a charging port 10 into a plunger sleeve 4, and a counter chip 8 is gradually lowered to introduce the molten metal through a gate 9 into a casting cavity 3 for product formed of upper and lower dies 1, 2 to 1/4-1/3 of the space is said cavity. A pressurizing plunger 5 is thereafter screwed down to force the molten metal in the sleeve 4 into the cavity 3 and to solidify the molten metal. After the molten metal is held for 8hrs at 515 deg.C, the metal is hardened in water and is then tempered at 170 deg.C. The disperison strengthened Al alloy which is uniformly dispersed with the fine particles for strengthening, is dispersed with the fine particles in dendrite as well and has excellent strength with the precipitation of the resulting product of the heat treatment is obtd.

Description

【発明の詳細な説明】 本発明は分散強化型アルミニウム合金に関する。[Detailed description of the invention] The present invention relates to dispersion strengthened aluminum alloys.

金属マトリックス中に高温でも安定な硬(微細な粒子を
分散・複合させた分散強化型合金は公知である。例えば
、アルミニウムをマトリックスとするものではSΔP 
(Sintered Aluminum Powder
)がよ(知られている。この分散強化型合金は分散微粒
子の量が多いほど、また粒子間隔が狭いほど強度が向上
する。
Dispersion-strengthened alloys in which hard (fine particles) are dispersed and composited in a metal matrix are known to be stable even at high temperatures.
(Sintered Aluminum Powder
) is known. The strength of this dispersion-strengthened alloy increases as the amount of dispersed fine particles increases and as the particle spacing becomes narrower.

一方、アルミニウム合金(以下、A1合金と略す)には
、デンドライトが晶出し、このデンドライトの形状、大
きさが合金の強度に影響することがよく知られている。
On the other hand, it is well known that dendrites crystallize in aluminum alloys (hereinafter abbreviated as A1 alloys), and the shape and size of these dendrites affect the strength of the alloy.

しかしながら、従来の分散強化型合金は一般に強化用の
微粒子の粒径が大きく、十分な強度・耐摩耗性を得るに
は至っていない。また、A1合金のデンドライトも大き
なものがほとんどで、十分な強度が得られていない。
However, in conventional dispersion-strengthened alloys, the particle size of reinforcing particles is generally large, and sufficient strength and wear resistance have not been achieved. Furthermore, most of the dendrites of the A1 alloy are large and do not have sufficient strength.

特に、■合金を強化用の微粒子を分散させることにより
強化する場合には、微粒子はデンドライトとアルミニウ
ムマトリックスの界面に集まり、デンドライトの中には
充分入っていなかったため十分な強度を得ることは困難
であった。
In particular, when strengthening an alloy by dispersing reinforcing fine particles, it is difficult to obtain sufficient strength because the fine particles gather at the interface between the dendrite and the aluminum matrix and do not enter the dendrite sufficiently. there were.

本発明は、上記従来技術の不具合を解消するためになさ
れたもので、強度および靭性に優れた分散強化型A1合
金を提供することを目的とする。
The present invention was made in order to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a dispersion-strengthened A1 alloy having excellent strength and toughness.

かかる目的は、本発明の^1合金によれば9、アルミニ
ウムの71−リソラス中に強化用の微粒子を分散させ、
この微粒子を微細なデンドライトの中にも分散さゼると
ともに、アルミニウムのマトリックス中に熱処理により
析出物を析出させることによって達成される。ここで、
プントライ1〜の大きさば20 tt以下とし、強化用
の微粒子はその粒径が0.5μ以下で粒子間距離10μ
以下、体積比20%以下とする必要がある。このように
、プントライ1−が微細化されるとともに、強化用の微
粒子が微細とされ、かつ、デンドライトにも分散してい
ることにより、強化用微粒子の分散強化が有効に機能し
、転移の移動が妨げられる。また、熱処理によって析出
した析出物をによっても転移の移動が妨げられる。この
強化用微粒子の分散強化と熱処理析出物の析出効果の相
乗効果として、A1合金の強度が大幅に向上する。
According to the ^1 alloy of the present invention, 9, reinforcing fine particles are dispersed in the 71-litholath of aluminum,
This is achieved by dispersing the fine particles in fine dendrites and precipitating the precipitates in the aluminum matrix by heat treatment. here,
The size of Puntorai 1~ is 20 tt or less, and the reinforcing fine particles have a particle size of 0.5μ or less and a distance between particles of 10μ.
Below, the volume ratio needs to be 20% or less. In this way, as Puntorai 1- is made finer and the reinforcing fine particles are made finer and also dispersed in the dendrites, the dispersion strengthening of the reinforcing fine particles functions effectively, and the movement of dislocations. is hindered. In addition, the movement of dislocation is also hindered by precipitates deposited by heat treatment. As a synergistic effect of the dispersion strengthening of the reinforcing fine particles and the precipitation effect of the heat treatment precipitates, the strength of the A1 alloy is significantly improved.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明を適用できるアルミニウム合金は、熱処理により
強度をあげることができるものであればどんなものでも
よい。例えば、JIS  八C1,A。
Any aluminum alloy to which the present invention can be applied may be used as long as its strength can be increased by heat treatment. For example, JIS 8C1,A.

AC2AXA02B、AC4AXAC4C,へC8A等
に適用できる。
Applicable to AC2AXA02B, AC4AXAC4C, C8A, etc.

本発明において、デンドライトの大きさは小さい程強度
、靭性が向上するため望ましく、少なくとも20μ以下
であることが必要である。また、18μ以下であれば更
に望ましい。
In the present invention, the smaller the size of the dendrite, the better the strength and toughness, so it is preferable that the size of the dendrite is at least 20 μm or less. Further, it is more desirable that the thickness be 18μ or less.

強化用の微粒子としては、高温でアルミニウムマドワッ
クス中に安定に存在し、強度低下の原因となる成長や粗
大化が生じないことが必要である。
The reinforcing fine particles must stably exist in the aluminum mudwax at high temperatures and do not grow or coarsen, which would cause a decrease in strength.

この条件を備える微粒子とし7ては金属酸化物・セラミ
ック等がある。具体的には、SiC、Tic、ZrC,
、WC,、NbC,、TiN−B N、、、Si s 
N 4、八I20+  、 MgO1SiO2、ZrO
2、Fe、0 3 、CuO2黒鉛等を使用することが
できる。
Examples of fine particles 7 that meet this condition include metal oxides and ceramics. Specifically, SiC, Tic, ZrC,
,WC,,NbC,,TiN-B N,,,Si s
N4, 8I20+, MgO1SiO2, ZrO
2, Fe, 0 3 , CuO2 graphite, etc. can be used.

この微粒子の粒径は、十分な分散強化を得るためには0
.5μ以下であることが必要であり、0.05μ以下で
あればより望ましい。
The particle size of these fine particles must be 0 to obtain sufficient dispersion strengthening.
.. It is necessary that the thickness is 5μ or less, and more preferably 0.05μ or less.

微粒子の粒子間距離は小さい程よい。本発明においては
10μ以下であることが必要であり、5μ以下であれば
更に望ましい。
The smaller the distance between the fine particles, the better. In the present invention, it is necessary that the thickness be 10μ or less, and more preferably 5μ or less.

この微粒子の量は多い程よく、体積比で20%までは十
分な分散強化が期待できる。
The larger the amount of these fine particles, the better, and sufficient dispersion reinforcement can be expected up to 20% by volume.

また、本発明においては、アルミニウムのマトリックス
中に熱処理による析出物が析出している。
Further, in the present invention, precipitates are deposited in the aluminum matrix due to heat treatment.

この析出物は、アルミニウム合金の化学組成により異な
る。例えば、Al−Mg−3t系合金ではMg2Siが
析出する。
This precipitate varies depending on the chemical composition of the aluminum alloy. For example, in an Al-Mg-3t alloy, Mg2Si precipitates.

本発明の分散強化型A1合金を製造するには、強化用微
粒子をAI合金熔溶湯攪拌等の適宜手段により均一に分
散させた後、加圧しかつ急冷することが必要である。こ
こで、冷却速度としては100〜b その後、熱処理を施すことにより本発明の分散強化型A
1合金が得られる。この熱処理としては、T6処理が一
般的である。
In order to manufacture the dispersion-strengthened A1 alloy of the present invention, it is necessary to uniformly disperse the reinforcing fine particles by an appropriate means such as stirring the molten AI alloy, and then pressurize and rapidly cool it. Here, the cooling rate is 100~b. Then, by performing heat treatment, the dispersion strengthened type A of the present invention
1 alloy is obtained. This heat treatment is generally T6 treatment.

次に、本発明の実施例を図面を参考にして説明する。Next, embodiments of the present invention will be described with reference to the drawings.

実施例 本実施例においては、マトリックス合金とじてアルミニ
ウム合金(JIS  AC8A;重量%でCu:0.9
%、Si:11.5%、Mg:1.2%、Fe:0゜2
%、Ni:1.3%、Δl:残部)を用い、分散強化用
の微粒子として平均粒径0.05μのSiCを使用して
ロッカーアームを製造した。このとき、鋳造法として、
溶湯の急冷が可能で、溶湯への圧力伝達のよい竪型加圧
鋳造法を用いた。
Example In this example, the matrix alloy was an aluminum alloy (JIS AC8A; Cu: 0.9% by weight).
%, Si: 11.5%, Mg: 1.2%, Fe: 0°2
%, Ni: 1.3%, Δl: remainder), and SiC with an average particle size of 0.05 μm was used as fine particles for dispersion reinforcement to manufacture a rocker arm. At this time, as a casting method,
We used a vertical pressure casting method that allows rapid cooling of the molten metal and good pressure transmission to the molten metal.

最初に、アルミニウム合金原料を溶解炉に投入して溶融
させた後、溶湯を攪拌しつつSiC微粒子を不活性ガス
をキャリヤとして溶湯中に混入した。
First, an aluminum alloy raw material was put into a melting furnace and melted, and then SiC fine particles were mixed into the molten metal using an inert gas as a carrier while stirring the molten metal.

このようにして調整した溶湯を、図面に示す竪型加圧鋳
造装置に注ぎロッカーアームを製造した。
The molten metal thus prepared was poured into a vertical pressure casting apparatus shown in the drawings to manufacture a rocker arm.

図は竪型加圧鋳造装置の要部…i面図であり、1は上型
、2ば下型である。この」二型1と下型2によりロッカ
ーアーム形状の製品ギャビテイ3が郭定される。型1.
2の中央にはプランジャスリーブ4が設けられており、
このプランジャスリーブ4内には加圧プランジャ5とカ
ウンクプランジャ6が摺動自在に嵌挿されている。この
両方のプランジャ5.6の先端には、それぞれ加圧チン
プ7とカウンタチップ8が装着されている。また、製品
キャビティ3とプランジャスリーブ4はゲート9を介し
て連通されている。なお、10ば注湯口であり、11は
押出しピンである。
The figure is an i-side view of the main parts of a vertical pressure casting apparatus, where 1 is an upper mold and 2 is a lower mold. A rocker arm-shaped product gap 3 is defined by the second mold 1 and the lower mold 2. Type 1.
A plunger sleeve 4 is provided in the center of 2,
A pressure plunger 5 and a counter plunger 6 are slidably inserted into the plunger sleeve 4. A pressure chimp 7 and a counter tip 8 are attached to the tips of both plungers 5.6, respectively. Further, the product cavity 3 and the plunger sleeve 4 are communicated via a gate 9. Note that numeral 10 is a spout, and numeral 11 is an ejector pin.

次に作動を説明する。Next, the operation will be explained.

型締めを行い、カウンタチップ8によりゲート9を閉じ
、加圧プランジャ5を引き上げて図に示す状態とした。
The mold was clamped, the gate 9 was closed by the counter chip 8, and the pressure plunger 5 was pulled up to the state shown in the figure.

次いで、注湯口1oがらSiC微粒子を混入したアルミ
ニウム合金溶湯12を注いだ。
Next, molten aluminum alloy 12 mixed with SiC fine particles was poured through pouring port 1o.

その後、カウンタチップ8を徐々に下げ、静かに溶湯1
2を製品キャビティ3に導入した6製品キャビティ内に
1/4〜1/3溶湯が導入されたとき、加圧プランジャ
5により溶湯12を加圧し、急速に溶湯12を製品キャ
ビティ3に充填した。
After that, gradually lower the counter chip 8 and gently lower the molten metal 1.
When 1/4 to 1/3 of the molten metal was introduced into the product cavity 3, the molten metal 12 was pressurized by the pressure plunger 5, and the molten metal 12 was rapidly filled into the product cavity 3.

凝固後、型を開き、押出しピン11により製品を取り出
した。
After solidification, the mold was opened and the product was taken out using the extrusion pins 11.

その後、この製品に熱処理を施した。ずなわら、この製
品を約515℃の温度に8時間維持した後、80℃の水
中に投入して焼入れし、次いで約170℃で15時間焼
もどずことによりT6処理を行った。
This product was then subjected to heat treatment. After maintaining this product at a temperature of about 515° C. for 8 hours, it was quenched by being placed in water at 80° C., and then subjected to T6 treatment by tempering at about 170° C. for 15 hours.

このロッカーアームの製造をSiCの分散量をかえて行
った。
This rocker arm was manufactured by changing the amount of SiC dispersed.

この結果、ロッカーアームの表面部近傍のデンドライト
の大きさは2μ、中心部で12μ程度であった。また、
SiCの微粒子がデンドライト内に混在しているのが確
かめられた。
As a result, the size of dendrites near the surface of the rocker arm was 2 μm, and the size of the dendrites at the center was about 12 μm. Also,
It was confirmed that SiC fine particles were mixed within the dendrite.

本実施例において、強度を調べるために引張り試験を行
った。この結果を第1表に示す。
In this example, a tensile test was conducted to examine the strength. The results are shown in Table 1.

第1表 第1表より、本発明の分散強化型A1合金は強度が著し
く向上しているのが判る。
From Table 1, it can be seen that the strength of the dispersion strengthened A1 alloy of the present invention is significantly improved.

また、本発明の分散強化型A1合金は、靭性も向上して
いることが確認された。
Furthermore, it was confirmed that the dispersion-strengthened A1 alloy of the present invention also has improved toughness.

以上述べた如く、本発明に係る分散強化型A1合金は、
従来のA1合金に比べ強度が格段に向上するため、軽量
で強度を要求される部品、例えば、コンロッド、ホイー
ル、ナックルアーム等の自動車部品に適用することがで
きる。
As mentioned above, the dispersion strengthened A1 alloy according to the present invention is
Since the strength is significantly improved compared to the conventional A1 alloy, it can be applied to parts that require light weight and strength, such as automobile parts such as connecting rods, wheels, and knuckle arms.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に使用した竪型加圧鋳造装置の要
部断面図である。 ■−・−上型 2−−−−−一下型 3−−−−−一製品キャビティ 4−−−−−プランジャスリーブ 5−−−−−加圧プランジャ 6−−カウンタプランジヤ 7−−−−−加圧チツプ 8−−−一カウンタチップ 9・・−−−−ゲート 10−・−・注湯口 11−一一一・−押出しピン 12−−−−−一溶湯 出願人 I・ヨタ自動車株入会社
The drawing is a sectional view of a main part of a vertical pressure casting apparatus used in an embodiment of the present invention. ■-・- Upper mold 2 --- Lower mold 3 --- Product cavity 4 --- Plunger sleeve 5 --- Pressurizing plunger 6 --- Counter plunger 7 --- - Pressure chip 8 - - - Counter chip 9 - - Gate 10 - - - Pour spout 11 - - Push pin 12 - - Molten metal applicant I. Yota Automotive Co., Ltd. Joining the company

Claims (1)

【特許請求の範囲】[Claims] (11アルミニウムのマトリックス中に強化用の微粒子
が分散され、かつ、デンドライトが晶出している分散強
化型アルミニウム合金であって、前記微粒子ば粒径0.
5μ以下で粒子間距離10μ以下であり、体積比で20
%以下分散されており、かつ、デンドライトの大きさは
20μ以下であり、このデンドライトの中にも前記微粒
子が分散しており、更に、アルミニウムのマトリックス
中に熱処理析出物が析出していることを特徴とする分散
強化型アルミニウム合金。
(A dispersion-strengthened aluminum alloy in which reinforcing fine particles are dispersed in a matrix of aluminum 11 and dendrites are crystallized, and the fine particles have a particle size of 0.
The distance between particles is 5 μ or less, the distance between particles is 10 μ or less, and the volume ratio is 20
% or less, and the size of the dendrites is 20μ or less, and the above-mentioned fine particles are also dispersed in the dendrites, and furthermore, heat treatment precipitates are precipitated in the aluminum matrix. A dispersion-strengthened aluminum alloy with special features.
JP9132783A 1983-05-24 1983-05-24 Dispersion strengthened aluminum alloy Pending JPS59219444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9132783A JPS59219444A (en) 1983-05-24 1983-05-24 Dispersion strengthened aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9132783A JPS59219444A (en) 1983-05-24 1983-05-24 Dispersion strengthened aluminum alloy

Publications (1)

Publication Number Publication Date
JPS59219444A true JPS59219444A (en) 1984-12-10

Family

ID=14023353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9132783A Pending JPS59219444A (en) 1983-05-24 1983-05-24 Dispersion strengthened aluminum alloy

Country Status (1)

Country Link
JP (1) JPS59219444A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210236A (en) * 1985-07-09 1987-01-19 Teikoku Piston Ring Co Ltd Aluminum alloy cylinder
JPS6220847A (en) * 1985-07-18 1987-01-29 Hitachi Ltd Metallic material having fine crystal grain and its production
JPS6240339A (en) * 1985-08-13 1987-02-21 Showa Alum Corp Aluminum-base composite material excellent in cutting tool life
JPS6241470A (en) * 1985-08-13 1987-02-23 Kawasaki Heavy Ind Ltd Pressure vessel
US4916030A (en) * 1984-10-19 1990-04-10 Martin Marietta Corporation Metal-second phase composites
US4917964A (en) * 1984-10-19 1990-04-17 Martin Marietta Corporation Porous metal-second phase composites
US4985202A (en) * 1984-10-19 1991-01-15 Martin Marietta Corporation Process for forming porous metal-second phase composites
GB2477744A (en) * 2010-02-10 2011-08-17 Aeromet Internat Plc An aluminium-copper-titanium alloy comprising insoluble particles
CN102634746A (en) * 2012-05-07 2012-08-15 东莞市闻誉实业有限公司 Manufacturing method for enhanced type aluminum, titanium and carbon alloy wire
CN109280816A (en) * 2018-10-31 2019-01-29 宁波汇通机械联接件有限公司 A kind of aluminium screw joint
CN112267038A (en) * 2020-09-30 2021-01-26 哈尔滨工业大学 Preparation method of BN nanosheet/aluminum-based composite material

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4916030A (en) * 1984-10-19 1990-04-10 Martin Marietta Corporation Metal-second phase composites
US4985202A (en) * 1984-10-19 1991-01-15 Martin Marietta Corporation Process for forming porous metal-second phase composites
US4917964A (en) * 1984-10-19 1990-04-17 Martin Marietta Corporation Porous metal-second phase composites
JPH0119456B2 (en) * 1985-07-09 1989-04-11 Teikoku Pisutonringu Kk
JPS6210236A (en) * 1985-07-09 1987-01-19 Teikoku Piston Ring Co Ltd Aluminum alloy cylinder
JPS6220847A (en) * 1985-07-18 1987-01-29 Hitachi Ltd Metallic material having fine crystal grain and its production
JPH0138858B2 (en) * 1985-08-13 1989-08-16 Showa Aluminium Co Ltd
JPS6241470A (en) * 1985-08-13 1987-02-23 Kawasaki Heavy Ind Ltd Pressure vessel
JPS6240339A (en) * 1985-08-13 1987-02-21 Showa Alum Corp Aluminum-base composite material excellent in cutting tool life
JPH036392B2 (en) * 1985-08-13 1991-01-29 Kawasaki Heavy Ind Ltd
GB2477744A (en) * 2010-02-10 2011-08-17 Aeromet Internat Plc An aluminium-copper-titanium alloy comprising insoluble particles
GB2477744B (en) * 2010-02-10 2014-06-04 Aeromet Internat Plc Aluminium-copper alloy for casting
US9033025B2 (en) 2010-02-10 2015-05-19 Aeromet International Plc Aluminium-copper alloy for casting
CN102634746A (en) * 2012-05-07 2012-08-15 东莞市闻誉实业有限公司 Manufacturing method for enhanced type aluminum, titanium and carbon alloy wire
CN109280816A (en) * 2018-10-31 2019-01-29 宁波汇通机械联接件有限公司 A kind of aluminium screw joint
CN112267038A (en) * 2020-09-30 2021-01-26 哈尔滨工业大学 Preparation method of BN nanosheet/aluminum-based composite material

Similar Documents

Publication Publication Date Title
US4753690A (en) Method for producing composite material having an aluminum alloy matrix with a silicon carbide reinforcement
US4473103A (en) Continuous production of metal alloy composites
US4923532A (en) Heat treatment for aluminum-lithium based metal matrix composites
EP0575796B1 (en) Method for production of thixotropic magnesium alloys
EP0295008B1 (en) Aluminium alloy composites
US4832112A (en) Method of forming a fine-grained equiaxed casting
EP0701002A1 (en) Process for moulding aluminium- or magnesiumalloys in semi-solidified state
CN102869799A (en) Aluminium die casting alloy
JPS59219444A (en) Dispersion strengthened aluminum alloy
CN109487134A (en) A kind of electronic product appearance member high-strength aluminum alloy and preparation method thereof
CN110157935A (en) Cast Al-Si alloy Al-V-B fining agent, preparation method and application
US5402843A (en) Stepped alloying in the production of cast composite materials
FR2604185A1 (en) ALUMINUM-TITANIUM MASTER ALLOYS CONTAINING ADDITIONS OF A THIRD ELEMENT, USEFUL FOR THE REFINING OF ALUMINUM GRAIN
US4557605A (en) Apparatus for the continuous production of metal alloy composites
JP3467824B2 (en) Manufacturing method of magnesium alloy member
EP0233828B1 (en) A method of forming dense ingots having a fine equiaxed grain structure
Abis Characteristics of an aluminium alloy/alumina metal matrix composite
JPS59208042A (en) Dispersion strengthened magnesium alloy
JPS59208039A (en) Dispersion strengthened hypereutectic aluminum silicon alloy
CN112662918A (en) Al2O3-TiC particle reinforced aluminum matrix composite material and preparation method thereof
JPS59208040A (en) Dispersion strengthened eutectic aluminum alloy
JPH0681068A (en) Method for casting heat resistant mg alloy
EP0539417B1 (en) Cast composite materials
CN115786785B (en) High-strength and high-toughness heat-treatment-free die-casting aluminum magnesium alloy, and preparation method and application thereof
JPH1150172A (en) Carbide-dispersion strengthened copper alloy material