JPS59218964A - Magneto-optics device - Google Patents

Magneto-optics device

Info

Publication number
JPS59218964A
JPS59218964A JP58092492A JP9249283A JPS59218964A JP S59218964 A JPS59218964 A JP S59218964A JP 58092492 A JP58092492 A JP 58092492A JP 9249283 A JP9249283 A JP 9249283A JP S59218964 A JPS59218964 A JP S59218964A
Authority
JP
Japan
Prior art keywords
light
signal
effect element
faraday effect
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58092492A
Other languages
Japanese (ja)
Inventor
Hideto Iwaoka
秀人 岩岡
Koji Akiyama
浩二 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Hokushin Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Hokushin Electric Corp filed Critical Yokogawa Hokushin Electric Corp
Priority to JP58092492A priority Critical patent/JPS59218964A/en
Publication of JPS59218964A publication Critical patent/JPS59218964A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To measure a current, magnetic flux, etc. with high resolution by dispersing the light projected from a Faraday effect element into two directions, receiving each separated light through an analyser and processing a signal from the photodetector. CONSTITUTION:The light from a laser light source 1 is turned to straight polarized light through a polarizing plate 2 and is made incident to the Faraday effect element 3. The light outputted from the element 3 is separated into two directions by half mirrors 71, 72 respectively and the separated light rays are transduced into electric signals e3, e1, e2 by photodetectors 51, 52 respectively through a photodetector 53 and analysers 41, 42. The signal e3 from the photodetector 53 corresponds to the intensity of the laser light source 1 or the change of the transmission efficiency of an optical transmission line. If the signal e3 is reduced less than said signals e1, e2 by subtracting circuits 81, 82, the influence due to the change of the laser light source 1 or the like is removed. An operation circuit 90 calculates the size of the current I. Thus, the current, magnetic flux, etc. can be measured with high resolution without the affect due to the variation of laser light source power.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、磁気を加えることによって光の偏波面が回転
するファラデー効果素子を用いて、電流や磁束等を測定
する磁気光学装置に関するものである。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a magneto-optical device that measures current, magnetic flux, etc. using a Faraday effect element in which the plane of polarization of light is rotated by applying magnetism. be.

〔従来技術の説明〕[Description of prior art]

第1図は従来のこの種の装置の一例を示す構成説明図で
ある。ここでは電流測定のための装置を示す。この装置
は、レーザ光源1からの光を偏光板2によって直線偏光
とし、これを例えば重鉛ガラスのようなファラデー効果
素子3に入れる。このファラデー効果素子3から出た出
射光は、入射偏光角と45°傾いた検光子4を通って受
光器5で検出される。
FIG. 1 is a configuration explanatory diagram showing an example of a conventional device of this type. Here, a device for current measurement is shown. This device converts light from a laser light source 1 into linearly polarized light using a polarizing plate 2, and inputs this into a Faraday effect element 3 such as heavy lead glass. The light emitted from the Faraday effect element 3 passes through an analyzer 4 tilted by 45° with respect to the incident polarization angle and is detected by a light receiver 5.

ファラデー効果素子3には、被測定電流工が流れるコイ
ル6が巻いてあり、この電流Iによる磁束によって、フ
ァラデー効果素子3内の光の偏波面が回転するもので、
受光器5で受光する光の強度から、電流工の大きさを知
ることができる。
A coil 6 through which a current to be measured flows is wound around the Faraday effect element 3, and the magnetic flux caused by this current I rotates the plane of polarization of light within the Faraday effect element 3.
The size of the electrician can be determined from the intensity of the light received by the light receiver 5.

ところで、このような構成の装置は、レーザ光源1のパ
ワーや光伝送路の伝送効率等が変化すると、受光器5で
受光する光強度が変化し、正確な電流測定ができなくな
る。
However, in a device having such a configuration, if the power of the laser light source 1 or the transmission efficiency of the optical transmission line changes, the intensity of light received by the light receiver 5 changes, making it impossible to accurately measure current.

〔本発明の目的〕[Object of the present invention]

ここにおいて、本発明はこのような従来技術における問
題点に鑑みてなされたもので、簡単な構成で・レーザ光
源パワーの変動の影響を受けないこの種の装置を実現し
ようとするものである。
The present invention has been made in view of the problems in the prior art, and aims to realize this type of device with a simple configuration and unaffected by fluctuations in laser light source power.

〔本発明の概要〕[Summary of the invention]

本発明に係る装置は、ファラデー効果素子からの出射光
を2方向に分離するとともに1分離した各党を、偏光方
向が互いに45°回転させて設置した検光子を介してそ
れぞれ受光し、受光器からの各信号の自乗和の平方根に
関連した信号を基準信号として、いずれか一方の受光器
からの信号を演算処理し、ファラデー効果に与えられる
磁束あるいはコイルに与えられる電流を知るようにした
ものである。
The device according to the present invention separates the emitted light from the Faraday effect element into two directions, receives each separated part through an analyzer installed with the polarization direction rotated by 45 degrees, and sends the light from the light receiver. The signal related to the square root of the sum of the squares of each signal is used as a reference signal, and the signal from either receiver is processed to determine the magnetic flux given to the Faraday effect or the current given to the coil. be.

〔実施例の説明〕[Explanation of Examples]

第2図は本発明に係る装置の一例を示す構成ブ1’ツタ
図である。図において、1はレーザ光源。
FIG. 2 is a block 1' diagram showing an example of the apparatus according to the present invention. In the figure, 1 is a laser light source.

2はレーザ光源1からの光を直線偏光とする偏光孜、5
はファラデー効果素子で、これ釦は測定丁べき電流■が
流れるコイル6が巻回されている。
2 is a polarizer that makes the light from the laser light source 1 linearly polarized; 5
is a Faraday effect element, and this button is wound with a coil 6 through which the current to be measured flows.

71.72はハーフミラ−で、ファラデー効果素子3か
ら出射した出射光を2方向に分離する。41.42はハ
ーフミラ−72で2方向に分離した光が入射する検光子
である。
71 and 72 are half mirrors that separate the light emitted from the Faraday effect element 3 into two directions. Reference numerals 41 and 42 designate analyzers into which light separated into two directions by a half mirror 72 is incident.

第3図は、各検光子41.42及び偏光板2の偏光方向
の関係を示した説明図である。検光子41の偏向方向は
、偏光板2の偏光方向と同じであり、検光子41と42
とは、偏光方向が互いに45″回転した関係となるよう
に設置されている。
FIG. 3 is an explanatory diagram showing the relationship between the polarization directions of each analyzer 41, 42 and the polarizing plate 2. The polarization direction of the analyzer 41 is the same as the polarization direction of the polarizing plate 2, and the polarization direction of the analyzer 41 and 42 is the same as that of the polarizing plate 2.
are arranged so that their polarization directions are rotated 45'' from each other.

第2図に戻り、51は検光子41を介して照射される光
を受光する受光素子、52は検光子42を介して照射さ
れる光を受光する受光素子、56はハーフミラ−71で
反射した光を受光する受光素子、81.82は減算回路
、85.84.85はアンプ% 86.87は自乗回路
、88は加算回路、89は平方根を求める平方根回路で
ある。自乗回路86は、7ンプ83から出力される受光
素子51からの信号と受光素子5Sからの信号の差信号
の自乗を演算する。また、自乗回路87は。
Returning to FIG. 2, 51 is a light receiving element that receives the light irradiated through the analyzer 41, 52 is a light receiving element that receives the light irradiated through the analyzer 42, and 56 is the light that is reflected by the half mirror 71. A light receiving element receives light, 81.82 is a subtraction circuit, 85.84.85 is an amplifier %, 86.87 is a square circuit, 88 is an addition circuit, and 89 is a square root circuit for calculating a square root. The square circuit 86 calculates the square of the difference signal between the signal from the light-receiving element 51 and the signal from the light-receiving element 5S output from the seventh amplifier 83. Moreover, the square circuit 87 is.

アンプ84かも出力される受光素子52と受光素子53
からの信号の差信号の自乗を演算する。なお、ここで、
ハーフミラ−71、受光素子534 アンプ85及び減
算回路81.82は、レーザ光源1の強さ等の変化によ
る影響を除外することを目的として設けられたものであ
り、レーザ光源1に安定なものを使用する場合には、こ
わらは必ずしも必要でない。
The light receiving element 52 and the light receiving element 53 output from the amplifier 84
Calculate the square of the difference signal between the signals from. Furthermore, here,
The half mirror 71, the light receiving element 534, the amplifier 85, and the subtracting circuits 81 and 82 are provided for the purpose of excluding the influence of changes in the intensity of the laser light source 1, and are designed to provide a stable laser light source 1. If used, stiffening is not necessary.

91.92はA/D変換器、90はマイクロプロセッサ
のような演算回路、93は演算回路90での演算結果を
表示する表示器、94は比較信号処理回路、95はアッ
プダウンカウンタである。A/D変換器91は、平方根
回路89からの信号を基準電圧とし、アンプ83からの
信号E1をに/I)変換し、演舞−回路90は、各A/
D変換器91,92.必要に応じてアップダウンカウン
タ95からの信号を入力し、所定の演算を行なって電流
又は磁束量を表示器93に表示させる。
Reference numerals 91 and 92 are an A/D converter, 90 is an arithmetic circuit such as a microprocessor, 93 is a display that displays the result of the arithmetic operation in the arithmetic circuit 90, 94 is a comparison signal processing circuit, and 95 is an up/down counter. The A/D converter 91 uses the signal from the square root circuit 89 as a reference voltage and converts the signal E1 from the amplifier 83 into /I).
D converters 91, 92. A signal from the up/down counter 95 is input as necessary, a predetermined calculation is performed, and the current or magnetic flux amount is displayed on the display 93.

この様に構成した装置の動作は次の通りである。The operation of the device configured in this way is as follows.

レーザ光源1からの光は、偏光板2を通って直線偏光と
なり、ファラデー効果素子3に入射する。
Light from a laser light source 1 passes through a polarizing plate 2 to become linearly polarized light, and enters a Faraday effect element 3.

ファラデー効果素子3内には、コイル6に流れる電流工
に対応した昏界が生じており、入射したレーザ光の偏波
面はt流工に応じて回転する。ファラデー効果素子3を
出た光は、ハーフミラ−71゜72でそれぞれ2方向に
分離し、受光素子53%検光子41.42を介して受光
素子51.52でそれぞれ電気信号e3+ ei+ 6
2に変換される。
Inside the Faraday effect element 3, a coma field corresponding to the electric current flowing through the coil 6 is generated, and the plane of polarization of the incident laser light rotates according to the electric current flowing through the coil 6. The light emitted from the Faraday effect element 3 is separated into two directions by half mirrors 71 and 72, passed through a light receiving element 53% analyzer 41.42, and then converted into electric signals e3+ ei+ 6 by the light receiving element 51.52.
Converted to 2.

ここで、受光素子51.52に照射される光は、レーザ
光がファラデー効果素子3内で電流工に応じて回転する
こと、検光子41と42とがその偏光面が45″回転し
た関係で設置されていることから、電流■に応じて互い
に900位相差をもって正弦波状に変化するものとなる
Here, the light irradiated onto the light receiving elements 51 and 52 is determined by the fact that the laser beam is rotated in accordance with the electric current within the Faraday effect element 3, and that the plane of polarization of the analyzers 41 and 42 is rotated by 45''. Because they are installed, the current changes sinusoidally with a phase difference of 900 degrees depending on the current.

第4図は、電流Iと、各受光素子51.52から得られ
る各信号Q1.e2の関係を示した線図である。
FIG. 4 shows the current I and each signal Q1.52 obtained from each light receiving element 51.52. It is a diagram showing the relationship of e2.

(8)は、ファラデー素子6に巻回するコイル6の巻数
を少なくした場合であlハ(blはコイル60巻数を多
くした場合で、いずれも、電流工に応じて。
(8) is the case where the number of turns of the coil 6 wound around the Faraday element 6 is reduced (1) (bl is the case where the number of turns of the coil 60 is increased, depending on the electrician.

e(、C7は90°位相差を保ちつつ正弦波状に変化す
る。
e(, C7 changes sinusoidally while maintaining a 90° phase difference.

また、(C)はコイル6の巻数を更に多くするとともに
、電流Iを大きくした場合である。
Moreover, (C) is a case where the number of turns of the coil 6 is further increased and the current I is increased.

受光素子53かもの信号e5は、レーザ光源の強さや、
光伝送路の伝送効率の変化等に対応してお+7゜減算回
路81.82において、各信号e1.・C2よlJ 6
sを減することによって、レーザ光源等の変化による影
響を除去する。
The signal e5 from the light receiving element 53 depends on the intensity of the laser light source,
In response to changes in transmission efficiency of the optical transmission line, etc., each signal e1.・C2 yo lJ 6
By reducing s, the influence of changes in the laser light source, etc. is removed.

各自乗回路B6.87は、アンプ83.84からの出力
EIJ2を自乗し、これが加算回路88で加算され、そ
の平方根が平方根回路89で演算される。
Each squaring circuit B6.87 squares the output EIJ2 from the amplifier 83.84, which is added in an adder circuit 88, and the square root of the sum is calculated in a square root circuit 89.

いま、アンプ85の出力B1tアンプ84の出力E2を
それぞれ(1)式、(2)式で表わすものと丁れば、平
方根回路89の出力1Bは、(5)式で示すことができ
、電流Iによる偏波面の回転角θによらず、常に振幅値
Aとなる。
Now, if the output B1 of the amplifier 85 and the output E2 of the amplifier 84 are expressed by equations (1) and (2), respectively, then the output 1B of the square root circuit 89 can be expressed by equation (5), and the current Regardless of the rotation angle θ of the polarization plane due to I, the amplitude value is always A.

E+ =A sin Iθ(1)・・・叩・曲(1)B
2 =A cos ′θ(I)         ・・
・・・・・・・・・・(2)Es=Qτコ1P− =A25in217  A2 cos2 a=A   
         ・・・・・・・・・・・・(5)A
/D変換器91は、平方根回路89からの信号Esを基
準電圧として、アンプ83の出力B1をA/D変換する
。これによって、A/D変換された信号E1は、振幅値
Aの影響を受けず、正確に分割されたものとなる。なお
、A/D変換器92は、アンプ85の出力E1の大きさ
が適当でない場合(感度が十分でない場合)、アンプ8
4の出力E2を同様にA/D変換するもので、演算回路
90は、 A/D変換器91.92のうち。
E+ =A sin Iθ(1)...Strike/song (1)B
2 = A cos ′θ(I)...
・・・・・・・・・・・・(2) Es=Qτko1P−=A25in217 A2 cos2 a=A
・・・・・・・・・・・・(5)A
The /D converter 91 A/D converts the output B1 of the amplifier 83 using the signal Es from the square root circuit 89 as a reference voltage. As a result, the A/D converted signal E1 is not affected by the amplitude value A and is accurately divided. Note that if the magnitude of the output E1 of the amplifier 85 is not appropriate (if the sensitivity is not sufficient), the A/D converter 92
The arithmetic circuit 90 is one of the A/D converters 91 and 92.

大きさが適当な方のディジタル信号を入力し、偏波面の
回転角toから電流工の大きさを求めるための所定の演
算を行ない、その演算結果を表示器93に表示させる。
A digital signal having an appropriate magnitude is input, a predetermined calculation is performed to determine the magnitude of the current flow from the rotation angle to of the plane of polarization, and the result of the calculation is displayed on the display 93.

比較、信号処理回路94は、アンプ83又はアンプ84
の出力のいずれかを入力し、この信号の正弦波の山の数
を検出し、アップダウンカウンタ95にこれを計数させ
る。これらの回路は、コイル6に流れる電流■が大きく
、信号e4.e、;が第4図(C1に示すように変化1
石場合において使用されるもので、この場合、演算回1
1G90は、アップダウンカウンタ95の計数値をも入
力し、この計数値と偏光角θとから電流Iの大きさを演
W、jることとなる。
The comparison and signal processing circuit 94 includes the amplifier 83 or the amplifier 84.
, the number of peaks of the sine wave of this signal is detected, and the up/down counter 95 is made to count this. In these circuits, the current ■ flowing through the coil 6 is large, and the signal e4. e, ; is change 1 as shown in Figure 4 (C1).
This is used in the stone case, and in this case, the number of calculations is 1.
The 1G90 also inputs the count value of the up/down counter 95, and calculates the magnitude of the current I from this count value and the polarization angle θ.

なお、人/D変換器92.比較信号処理回路94及びア
ップダウンカウンタ95は、測足丁べきt流■の大きさ
に応じて設ゆられるもので、必ずしも必要としない。
Note that the human/D converter 92. The comparison signal processing circuit 94 and the up/down counter 95 are provided depending on the magnitude of the measurement current t, and are not necessarily required.

なお、上記の説明では、ファラデー効果素子5にコイル
6を巻回して電流Ift測定するようにしたものである
が、コイル6をなくシ、ここに磁束を与えるように丁れ
ば、磁束測足な行なうことカーできる。また、ここでは
A/D変換2)を用(・ディジタル演算を行なうことを
想足したものであるカ;、これらの回路は、El又はB
2を平方根回路89の出力E8で例えばbl −’ s
in Oのような割算演算し、振E8     A 幅Aを消去するような回路であれば、他の回路構成のも
のであってもよい。
In the above explanation, the current Ift is measured by winding the coil 6 around the Faraday effect element 5. However, if the coil 6 is omitted and the magnetic flux is applied here, the magnetic flux can be measured. You can do anything. In addition, here, A/D conversion 2) is used (and is considered to perform digital calculations); these circuits are connected to El or B.
2 at the output E8 of the square root circuit 89, for example, bl −' s
Other circuit configurations may be used as long as the circuit performs a division operation such as in O and erases the amplitude E8 A width A.

〔本発明の効果〕[Effects of the present invention]

以上説明したように、本発明によれば、簡単な構成で、
レーザ光源パワーの変動や、光伝送路の伝送効率の変化
による影響を受けず、高分屏能で電流や磁束等を測足す
ることのできる磁気光学装置が実現できる。
As explained above, according to the present invention, with a simple configuration,
It is possible to realize a magneto-optical device that can measure current, magnetic flux, etc. with high resolution without being affected by fluctuations in laser light source power or changes in transmission efficiency of an optical transmission line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術の説明図、第2図は本発明に係る装置
の一例を示す構成プRツタ図、第3図は第2図装置にお
ける偏光板及び各検光子の偏光方向の関係を示した説明
図、第4図は動作を説明するだめの線図である。 1・・・光源、2,4・・・偏光板、5・・・ファラデ
ー効果素子、41.42・・・検光子、5,51〜55
  ・・・受光素子、6・・・コイル、71.72・・
・ハーフミラ−、85,84,85・・・増幅器、86
.87・・・自乗回路%88・・・加算回路、89・・
・平方根回路、91.92・・・、A/D変換器、90
・・・演算回路、93・・・表示回路、14・・・比較
回路、95・・・7ツプタ゛ウンカウンタ。 篤1図
Fig. 1 is an explanatory diagram of the prior art, Fig. 2 is a configuration diagram showing an example of the device according to the present invention, and Fig. 3 shows the relationship between the polarizing direction of the polarizing plate and each analyzer in the device shown in Fig. 2. The illustrated diagram, FIG. 4, is a diagram for explaining the operation. 1... Light source, 2, 4... Polarizing plate, 5... Faraday effect element, 41.42... Analyzer, 5, 51-55
... Light receiving element, 6... Coil, 71.72...
・Half mirror, 85, 84, 85...Amplifier, 86
.. 87... Square circuit %88... Addition circuit, 89...
・Square root circuit, 91.92..., A/D converter, 90
... Arithmetic circuit, 93... Display circuit, 14... Comparison circuit, 95... 7-step counter. Atsushi 1 diagram

Claims (3)

【特許請求の範囲】[Claims] (1)  光源と、この光源からの光を直線偏光とする
偏光板と、直線偏光となった光が入射するファラデー効
果素子と、このファラデー効果素子から出射した光を2
方向に分離する手段と、2方向に分離した各党が入射し
偏光方向が互いに45@回転させて設置した2個の検光
子と、各検光子から出射した光を受光する2個の受光素
子と、これら2個の受光素子からの各信号の自乗和の平
方根に関連した信号を得る回路と、前記2個の受光素子
の少なくとも一方からの信号と前記各信号の自乗和の平
方根に関連した信号を入力し所足の演算を行なって前記
ファラデー効果素子内の磁束に関連した信号を得る演算
回路とを具備した磁気光学装置。
(1) A light source, a polarizing plate that converts the light from the light source into linearly polarized light, a Faraday effect element into which the linearly polarized light enters, and a Faraday effect element that converts the light emitted from the Faraday effect element into two.
a means for separating light in two directions, two analyzers installed with the polarization directions rotated by 45 degrees each other, and two light-receiving elements receiving light emitted from each analyzer; , a circuit for obtaining a signal related to the square root of the sum of squares of each signal from these two light receiving elements, and a signal related to a signal from at least one of the two light receiving elements and the square root of the sum of squares of each of the signals. and an arithmetic circuit that receives a signal and performs necessary arithmetic operations to obtain a signal related to the magnetic flux within the Faraday effect element.
(2)  ファラデー効果素子にはコイルが巻回され、
このコイルに流れる電流に対応した磁束が当該ファラデ
ー効果素子に与えられる特許請求の範囲第1項記載の磁
気光学装置。
(2) A coil is wound around the Faraday effect element,
2. The magneto-optical device according to claim 1, wherein a magnetic flux corresponding to the current flowing through the coil is applied to the Faraday effect element.
(3)演算回路は、2個の受光素子の少なくとも一方か
らの信号を入力しこの信号の正弦波の山の数を計数する
手段を含む特許請求の範囲第1項記載の磁気光学装置。
(3) The magneto-optical device according to claim 1, wherein the arithmetic circuit includes means for inputting a signal from at least one of the two light-receiving elements and counting the number of peaks of the sine wave of this signal.
JP58092492A 1983-05-27 1983-05-27 Magneto-optics device Pending JPS59218964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58092492A JPS59218964A (en) 1983-05-27 1983-05-27 Magneto-optics device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58092492A JPS59218964A (en) 1983-05-27 1983-05-27 Magneto-optics device

Publications (1)

Publication Number Publication Date
JPS59218964A true JPS59218964A (en) 1984-12-10

Family

ID=14055792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58092492A Pending JPS59218964A (en) 1983-05-27 1983-05-27 Magneto-optics device

Country Status (1)

Country Link
JP (1) JPS59218964A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202081U (en) * 1985-06-08 1986-12-18

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171271A (en) * 1981-04-15 1982-10-21 Yokogawa Hokushin Electric Corp Measuring device for quantity of electricity
JPS5938663A (en) * 1982-08-27 1984-03-02 Hitachi Cable Ltd Current measuring apparatus using optical fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171271A (en) * 1981-04-15 1982-10-21 Yokogawa Hokushin Electric Corp Measuring device for quantity of electricity
JPS5938663A (en) * 1982-08-27 1984-03-02 Hitachi Cable Ltd Current measuring apparatus using optical fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61202081U (en) * 1985-06-08 1986-12-18
JPH0435811Y2 (en) * 1985-06-08 1992-08-25

Similar Documents

Publication Publication Date Title
JPS62285081A (en) Magneto-optic current transformer device
CN110007125A (en) Double light path optical current sensor
JPS59218964A (en) Magneto-optics device
JPS6356924B2 (en)
JP3300184B2 (en) Optical fiber type measuring device and measuring method
JP2996775B2 (en) Optical magnetic field sensor
JPS59107273A (en) Photocurrent and magnetic field sensor
JP3041637B2 (en) Optical applied DC current transformer
JPS59159076A (en) Optical type magnetic field sensor
JP2705543B2 (en) Method for measuring magnetic field strength and optical magnetic field sensor using the same
SU789686A1 (en) Density meter
JPH07306095A (en) Polarization-analysis evaluation method of polarization modulation optical signal
JPH05264687A (en) Optical magnetic field sensor
JPS62105067A (en) Optical measuring instrument
JP4065243B2 (en) Optical CT with failure judgment function
SU1262392A1 (en) Magnetooptical method for measuring current and device for effecting same
JPS5935156A (en) Optical current transformer
SU1674024A1 (en) Method for measuring parameters of solar plasma
JPH0720158A (en) Optical current transformer
JPH0743397B2 (en) Optical DC transformer
SU1432334A1 (en) Device for measuring lateral displacements
JP2624977B2 (en) Optical magnetic field measurement method
JP3011244B2 (en) Optical applied DC current transformer
JPS62105068A (en) Optical measuring instrument
JPS61153576A (en) Measuring instrument for magnetic field