JPS59218903A - Optical measuring device - Google Patents

Optical measuring device

Info

Publication number
JPS59218903A
JPS59218903A JP58094741A JP9474183A JPS59218903A JP S59218903 A JPS59218903 A JP S59218903A JP 58094741 A JP58094741 A JP 58094741A JP 9474183 A JP9474183 A JP 9474183A JP S59218903 A JPS59218903 A JP S59218903A
Authority
JP
Japan
Prior art keywords
optical system
light source
measuring
wavelength
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58094741A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nishiwaki
西脇 由和
Yozo Nishiura
洋三 西浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58094741A priority Critical patent/JPS59218903A/en
Publication of JPS59218903A publication Critical patent/JPS59218903A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To reduce a measuring error induced by the wavelength variation of a light source by measuring the wavelenght variation of the light source by a reference optical system. CONSTITUTION:Light projected from the light source, e.g. a semiconductor laser L. D., is divided by a half mirror H.M.1, one is guided to a measuring interference optical system 21 and the other is guided to the reference optical system 22 constituted of a half mirror H.M.2, mirrors M1, M2, and a photodetector, e.g. a photodiode P. D. The ligh incident to the reference optical system 22 is divided into two optical pathes H.M.2-M1-H.M.2-M2-H.M.2 and synthesized again by the H.M.2 and the synthesized light is made incident ot the P. D. In said constitution, the output of the P. D. is output as a signal V3 indicating the quantity of wavelength variation through a wavelength variation measuring circuit 23. Thus, a measuring error due to the wavelength variation included in an output V2 of the measuring interference optical system 21 can be compensated by using the signal V3.

Description

【発明の詳細な説明】 (1)技術分野 本発明は光の干渉を利用した精密測定(回転、振動、変
位、温度、圧力等)をする装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a device for precision measurement (rotation, vibration, displacement, temperature, pressure, etc.) using optical interference.

(2)従来技術とその問題点 従来から、光の干渉を利用した計測装置は、種々考案さ
れてきており、代表的なものに光ファイバ、ジャイロ、
光ファイバ、ハイドロフオン等がある。これらの計測装
置は、一般に測定対象物理量によって起こる測定光路に
おける光路長の変化を位相の変化として検出している。
(2) Prior art and its problems Various measurement devices that utilize optical interference have been devised in the past, and representative ones include optical fibers, gyros,
There are optical fibers, hydrophons, etc. These measuring devices generally detect a change in optical path length in a measurement optical path caused by a physical quantity to be measured as a change in phase.

例えば、光ファイバ、ジャイロにおいては、第1図に示
すように、レーザ1からの光はビーム・スプリッタ2に
よって2つに分岐され、それぞれのレーザ光はループ状
の単一モード光ファイバ3の両端に送り込まれ、ビーム
スプリッタ2を通過して、受光器4.に送り込まれるよ
うにしである。
For example, in an optical fiber gyro, as shown in FIG. , passes through the beam splitter 2, and enters the receiver 4. This is so that it will be sent to

ここで、同一光路中の右回り光と左回り光の回転時をζ
生じる位相の差を検出しているが、両光間に光路差が存
在すると、位相差は(1〕式で表わされる。
Here, the rotation time of clockwise light and counterclockwise light in the same optical path is ζ
The resulting phase difference is detected, but if there is an optical path difference between the two lights, the phase difference is expressed by equation (1).

(1)式において第一項はサグナック効果による位相差
、第二項は光路差による位相差である(L;ファイバ長
、a;ループ半径、c;光速、λ;波長、Ω;回転角速
度、Δl;光路差、n;屈折率)。
In equation (1), the first term is the phase difference due to the Sagnac effect, and the second term is the phase difference due to the optical path difference (L: fiber length, a: loop radius, c: speed of light, λ: wavelength, Ω: rotational angular velocity, Δl: optical path difference, n: refractive index).

(1)式より、波長がdA 変動すると、位相差は d
4変動する。
From equation (1), when the wavelength changes by dA, the phase difference is d
4 fluctuates.

一例として、λ=(18×IQ−6m  c=3X10
Bm/s、 L == 200m、 a = 0.1 
m、  n = 1.5  とすると、(2)式は、 dO= −(1,31x 1oan+1.47 x 1
018△77) dA・−(3)静止(Ω=0)の場合
、△J=1μmとすると、(3)式は、 dθ= −1,47X 107 dA ・・・・“・・
・・・・・・・・・・ (4)航空機等の慣性航法の用
に供するためには、θとして、10−5 rood、程
度のθの変化を検出する必要があるため、dθ<10−
5  でなければならない。こdA<6.8 x 10
−18 (m)= 6.8 x 10−8 (X)  
”・(5)光源として、半導体レーザを使用すると、一
般にその波長は温度と共に変化し、 dλ/dT−4〜5λ/℃・・・・・・・・・・・・・
・・・・・(6)チェ素子等が使われていたが、熱設計
が複雑で、装置が大型となり、また消費電力が非常に大
きい等、実用的な問題が多い。
As an example, λ=(18×IQ-6m c=3X10
Bm/s, L == 200m, a = 0.1
m, n = 1.5, equation (2) is dO = - (1,31x 1oan + 1.47 x 1
018△77) dA・-(3) In the case of stationary (Ω=0), if △J=1 μm, equation (3) is, dθ= −1,47X 107 dA ・・・・“・・
(4) In order to use it for inertial navigation of aircraft, etc., it is necessary to detect a change in θ of the order of 10-5 rood, so dθ<10 −
Must be 5. dA<6.8 x 10
-18 (m) = 6.8 x 10-8 (X)
(5) When a semiconductor laser is used as a light source, its wavelength generally changes with temperature, and is dλ/dT-4~5λ/℃.
(6) Che elements have been used, but there are many practical problems such as complicated thermal design, large device size, and extremely high power consumption.

(3)発明の構成 本発明は、上記の従来の光フアイバジャイロの欠点を改
善する新たな装置を提供することを目的とするものであ
る。
(3) Structure of the Invention The object of the present invention is to provide a new device that improves the drawbacks of the above-mentioned conventional optical fiber gyros.

本発明は、光源の波長変動によって引起される測定誤差
を小さくすることを目的とする。
The present invention aims to reduce measurement errors caused by wavelength fluctuations of a light source.

以下、本発明を第2図において説明する。The present invention will be explained below with reference to FIG.

第2図において、光源、例えば半導体レーザ(L、D、
 )から出た光は、ハーフ・ミラーH,M、1によって
二分され、一方は測定用干渉光学系21に、他方は、ハ
ーフ・ミラーH,M、2.ミラーM1+  ミラーM2
  受光素子(例えば、フォトダイオード(P。
In FIG. 2, a light source, for example a semiconductor laser (L, D,
) is split into two by the half mirrors H, M, 1, one of which is sent to the measurement interference optical system 21, and the other is sent to the half mirrors H, M, 2. Mirror M1+ Mirror M2
A light receiving element (for example, a photodiode (P.

D))νζよって構成される参照光学系22に導かれる
。参照光学系22として、図ではマイケルソン干渉系を
示しであるが、マツハ・ツエンダ−干渉系、ファプリー
・ペロー干渉系等でも可能である。参照光学系22に入
った光は1.H,M、2で、HoM、2−Mi  H,
M、2  と、H,M、 2−M2−H,M、 2  
の二つの光路に分かれて伝搬した後、再びH,M、2で
合成され、P、D、  に入射する。
D)) is guided to a reference optical system 22 configured by νζ. Although a Michelson interference system is shown in the figure as the reference optical system 22, a Matsuha-Zehnder interference system, a Fapley-Perot interference system, etc. may also be used. The light entering the reference optical system 22 is 1. H, M, 2, HoM, 2-Mi H,
M, 2 and H, M, 2-M2-H, M, 2
After being split into two optical paths and propagating, it is combined again into H, M, 2, and enters P, D,.

なお、第2図のものに、第1図の光フアイバジャイロを
適用すると、L、D、には1が、H,M、1には2が、
21には3が対応している。
Furthermore, if the optical fiber gyro shown in Fig. 1 is applied to the one shown in Fig. 2, 1 is set for L, D, 2 is set for H, M, 1, and so on.
3 corresponds to 21.

このような構成においては、P、D、  の受光面上で
干渉するときの位相差θ′は二元間の光路差を△l′と
すると、(1)式第二項に対応して、測定物理量の影響
を受けないため、第一項は消えて、次式(7)となる。
In such a configuration, the phase difference θ' when P, D, interfere on the light-receiving surface corresponds to the second term of equation (1), where the optical path difference between the two elements is Δl'. Since it is not affected by the measured physical quantity, the first term disappears and becomes the following equation (7).

また、波長変動による、θ′の変化は、次式(8)で表
わされる。
Further, the change in θ' due to wavelength fluctuation is expressed by the following equation (8).

この場合、dθ′はP、D、の出力変化として現われ、
波長変化を測定することが可能である。Δl′はMlま
たはM2  の位置を変えることによって、任意の値を
選べ、dA の測定感度を向上させることが容易となる
。またP、D、  出力は波長変化測定回路23を通り
、波長変化量を表す信号V8  として出力される。こ
の信号V8  を持って、光源駆動回路24の入力V1
  に帰還することによって、光源の波長を一定に保つ
ことができる。例えば、半導体レーザの場合、注入電流
を変化させれば、波長は変化する。さらに、V3によっ
て、測定用干渉光学系の出力Vi1  に含まれている
、波長変動を原因とする測定誤差を補正することも可能
である。
In this case, dθ' appears as the output change of P, D,
It is possible to measure wavelength changes. Any value can be selected for Δl' by changing the position of Ml or M2, making it easy to improve the measurement sensitivity of dA. Further, the P, D and outputs pass through the wavelength change measuring circuit 23 and are output as a signal V8 representing the amount of wavelength change. With this signal V8, the input V1 of the light source drive circuit 24 is
By feeding back the light, the wavelength of the light source can be kept constant. For example, in the case of a semiconductor laser, changing the injection current changes the wavelength. Furthermore, by using V3, it is also possible to correct measurement errors caused by wavelength fluctuations included in the output Vi1 of the measurement interference optical system.

(4)発明の効果 本発明によって、従来の干渉光学系を利用した精密測定
装置における光源の波長変動に起因する測定誤差の問題
は全て解決される。特に光源の温度制御等を必要としな
いため、安価、小型、かつ高精度の測定装置が実現され
る。
(4) Effects of the Invention The present invention solves all problems of measurement errors caused by wavelength fluctuations of the light source in conventional precision measurement devices using interference optical systems. Since there is no need to particularly control the temperature of the light source, an inexpensive, compact, and highly accurate measuring device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の光フアイバジャイロの構成を示すため
の図であり、第2図は、本発明の詳細な説明するための
図である。 1 ・・・レーザ 2・・・ビーム・スプリッタ 3・・・単一モート光フアイバループ 4・・・受光器 2工・・・測定用干渉光学系 22・・・参照光学系 23・・・波長変化測定回路 24・・・光源駆動回路 代理人 弁理士  上 代 哲 司 イニ゛・雪う・謁
15・γ
FIG. 1 is a diagram showing the configuration of a conventional optical fiber gyro, and FIG. 2 is a diagram for explaining the present invention in detail. 1...Laser 2...Beam splitter 3...Single mode optical fiber loop 4...Photo receiver 2...Measurement interference optical system 22...Reference optical system 23...Wavelength Change measurement circuit 24...Light source drive circuit agent Patent attorney Tetsuji Kashiro Ini, Yuki, Audience 15, γ

Claims (3)

【特許請求の範囲】[Claims] (1)光の干渉を利用した物理量(回転、振動、変位、
温度等)の測定装置において、測定用光学系と同一の光
源からの光の一部を分離して作られた測定対象物理量の
影響を受けない(あるいは影響が小さいン別の干渉系(
以下「参照光学系」と呼ぶ)を有し、この干渉系におい
て光源の波長変化を測定することを特徴とする光学計測
装置。
(1) Physical quantities using light interference (rotation, vibration, displacement,
In measuring equipment (such as temperature,
An optical measurement device characterized by having a reference optical system (hereinafter referred to as a "reference optical system"), and measuring changes in the wavelength of a light source in this interference system.
(2)測定した波長変化が常に最小になるように光源の
発振状態を制御することを特徴とする特許請求の範囲第
1項に記載の光学計測装置。
(2) The optical measuring device according to claim 1, wherein the oscillation state of the light source is controlled so that the measured wavelength change is always minimized.
(3)測定用光学系の出力信号における光源の波長変動
による測定誤差を、参照光学系で測定した波長変動で、
補正することを特徴とする特許請求の範囲第1項に記載
の光学計測装置。
(3) Measurement errors due to wavelength fluctuations of the light source in the output signal of the measurement optical system can be calculated using the wavelength fluctuations measured by the reference optical system.
The optical measurement device according to claim 1, wherein the optical measurement device performs correction.
JP58094741A 1983-05-27 1983-05-27 Optical measuring device Pending JPS59218903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094741A JPS59218903A (en) 1983-05-27 1983-05-27 Optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094741A JPS59218903A (en) 1983-05-27 1983-05-27 Optical measuring device

Publications (1)

Publication Number Publication Date
JPS59218903A true JPS59218903A (en) 1984-12-10

Family

ID=14118540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094741A Pending JPS59218903A (en) 1983-05-27 1983-05-27 Optical measuring device

Country Status (1)

Country Link
JP (1) JPS59218903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104506U (en) * 1988-01-06 1989-07-14
US6825935B2 (en) 1998-04-28 2004-11-30 Fujikura Ltd. Apparatus for and method of using optical interference of light propagating through an optical fiber loop

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664604A (en) * 1979-10-12 1981-06-01 Farrand Ind Inc Correction method of and apparatus for optical devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664604A (en) * 1979-10-12 1981-06-01 Farrand Ind Inc Correction method of and apparatus for optical devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104506U (en) * 1988-01-06 1989-07-14
US6825935B2 (en) 1998-04-28 2004-11-30 Fujikura Ltd. Apparatus for and method of using optical interference of light propagating through an optical fiber loop

Similar Documents

Publication Publication Date Title
EP0646767B1 (en) Interferometric distance measuring apparatus
US11293757B2 (en) Non-interferometric optical gyroscope based on polarization sensing and implementations of closed loop control allowing for slow phase modulation
US5365338A (en) Wavelength sensor for fiber optic gyroscope
CN105091877A (en) Rotation sensing method based on polarization state of light and optical gyroscope thereof
US4639138A (en) Fiber-optic rotation rate sensor having dual interferometer loops
JPS6337212A (en) Method for reading rotational speed by passive optical resonator
CA1189725A (en) Dual-polarization interferometer with a single-mode waveguide
US4283144A (en) Method of fiber interferometry zero fringe shift referencing using passive optical couplers
Zakirov et al. Fiber optic gyroscope and accelerometer application in aircraft inertial system
US5044749A (en) Fiber-optic bender beam interferometer rate sensor
JP3687971B2 (en) Method and apparatus for compensating residual birefringence in an interferometric fiber optic gyro
JPS59218903A (en) Optical measuring device
US8301407B2 (en) Stabilized solid-state gyrolaser
Cordova et al. Interferometric fiber optic gyroscope with inertial navigation performance over extended dynamic environments
KR20100004318A (en) Depolarized fiber-optic gyroscope
CN105865434B (en) A kind of fibre optic gyroscope frequency regulator and frequency-stabilizing method
JPS60135816A (en) Optical fiber gyro
RU81317U1 (en) DEVICE FOR MEASURING ANGULAR SPEEDS OF ROTATION
JPS5960212A (en) Optical fiber gyro system
JPS622121A (en) Optical fiber gyroscope
CN1135600A (en) Heterodyne interference optical-fiber gyrosope
KR20150097051A (en) optical fiber gyro sensor system with low cost
RU2039934C1 (en) Fiber-optic gyro
SU1437680A1 (en) Interference device for monitoring angular position of object
JPS58190772A (en) Detector for angular velocity of rotation