JPS59217668A - Carbon ceramic resistor - Google Patents

Carbon ceramic resistor

Info

Publication number
JPS59217668A
JPS59217668A JP58091506A JP9150683A JPS59217668A JP S59217668 A JPS59217668 A JP S59217668A JP 58091506 A JP58091506 A JP 58091506A JP 9150683 A JP9150683 A JP 9150683A JP S59217668 A JPS59217668 A JP S59217668A
Authority
JP
Japan
Prior art keywords
carbon
raw material
resistor
binder
ceramic resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58091506A
Other languages
Japanese (ja)
Inventor
茂夫 長崎
冨永 正勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KONETSU KOGYO KK
Original Assignee
TOKAI KONETSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KONETSU KOGYO KK filed Critical TOKAI KONETSU KOGYO KK
Priority to JP58091506A priority Critical patent/JPS59217668A/en
Publication of JPS59217668A publication Critical patent/JPS59217668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、前処理原料を用いた炭素系セラミック抵抗体
(以下単に、セラミック抵抗体という。)に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carbon-based ceramic resistor (hereinafter simply referred to as a ceramic resistor) using a pretreated raw material.

一般にセラミック抵抗体は、高電圧装置、大容量コンデ
ンサーの充放電装置、電力用遮断器等の用途に広く使用
されている。このセラミック抵抗体の中で、最も耐熱性
、耐電圧電流性とエネルギー耐量を有する抵抗体の製造
方法は、アルミナ、シリカを骨材とし、炭素を導電材と
してセラミック結合剤等を加え、混合加圧成形後、高温
焼結させて抵抗体の素体を形成している。しかし、この
方法の最大の欠点は、100m#m以下という超微粉炭
素を均一に分散させることが困難であることから、得ら
れたセラミック抵抗体の抵抗値は、バラツキが太き(、
従って低得率となって、製造コスト」ユ大きな問題とな
っていた。
In general, ceramic resistors are widely used in applications such as high-voltage devices, large-capacity capacitor charging/discharging devices, and power circuit breakers. Among these ceramic resistors, the manufacturing method for the resistor, which has the highest heat resistance, voltage and current resistance, and energy resistance, uses alumina and silica as aggregates, carbon as a conductive material, and a ceramic binder, etc. After pressure forming, it is sintered at high temperature to form the element body of the resistor. However, the biggest drawback of this method is that it is difficult to uniformly disperse ultrafine carbon of 100 m#m or less, so the resistance values of the obtained ceramic resistors vary widely (
Therefore, the yield was low and the manufacturing cost became a big problem.

本発明の目的は、セラミック抵抗体の材料を、前処理す
る事により、導電材の炭素を均一に分散させて前記の欠
点を改良することにある。
An object of the present invention is to improve the above-mentioned drawbacks by pre-treating the material of the ceramic resistor to uniformly disperse the carbon of the conductive material.

即ち、あらかじめ直径10μm以下の絶縁性無機質材料
、例えば、アルミナ、ムライト、焼成粘土等の原料に1
.5〜5重景重量炭素粉末と結合剤を加え、充分混合混
練した後、前記の結合剤が固化する温度で加熱処理する
ことにより得られた前処理原料を抵抗体の導電性主原料
として用いることを特徴とするセラミック抵抗体である
。次に前述の前処理をして得た導電性主原料に抵抗体の
素体を形成するための結合材等例えば粘土を添加し、十
分混合混練した後、型押プレスまたは押出プレスにより
加圧成形し、該成形品を非酸化雰囲気中で1200〜1
400℃の温度で焼成した後、両電極面を金属溶射法等
で形成し、更に該電極を除く外表面に絶縁層を形成して
、セラミ、ツク抵抗体の構造体を得た。
That is, 1 is preliminarily applied to an insulating inorganic material having a diameter of 10 μm or less, such as alumina, mullite, fired clay, etc.
.. 5-5 weight carbon powder and a binder are added, thoroughly mixed and kneaded, and then heated at a temperature at which the binder solidifies, resulting in a pre-treated raw material used as the conductive main raw material of the resistor. This ceramic resistor is characterized by: Next, a binder such as clay for forming the resistor body is added to the conductive main raw material obtained through the above-mentioned pretreatment, and after thorough mixing and kneading, pressure is applied using an embossing press or an extrusion press. The molded product is heated to 1200 to 1 in a non-oxidizing atmosphere.
After firing at a temperature of 400° C., both electrode surfaces were formed by metal spraying or the like, and an insulating layer was further formed on the outer surface except for the electrodes to obtain a ceramic, solid resistor structure.

前述のように、原料を前処理することにより、絶縁性無
機質材料の粒子の表面に炭素がほぼ均等に被覆され、且
つ次工程の混合混線において、無機質材料と炭素が分離
しない程度に固化されている。従って、炭素の分散を良
(することは、骨材としての直径10μm程度の無機質
材料の表面を炭素で被覆した導電性主原料の分散を良く
すること2    でもある。この導電性主原料の分散
を良くすることは、粒子の大きさと、抵抗体使用原料に
対してかなりの割合を占めていることで従来性なわれて
いた超微粉炭素の直接配合に比べて容易である。
As mentioned above, by pre-treating the raw materials, the surfaces of the particles of the insulating inorganic material are coated with carbon almost evenly, and the inorganic material and carbon are solidified to the extent that they do not separate in the next step of mixing and cross-mixing. There is. Therefore, improving the dispersion of carbon also means improving the dispersion of the conductive main raw material, which is made by coating the surface of an inorganic material with a diameter of about 10 μm with carbon2. It is easier to improve the carbon resistance compared to the conventional method of directly blending ultrafine carbon, due to the particle size and the fact that it occupies a considerable proportion of the raw material used in the resistor.

従って炭素を被覆した無機質材料の分散を均一にするこ
とにより、炭素の分散も均一になり、従来法の欠点であ
った炭素の不均一な分散による抵抗値のバラツキが、極
めて効果的に改善され大幅な得率向上となって、製造コ
ストの低減を得た。
Therefore, by making the dispersion of the inorganic material coated with carbon uniform, the dispersion of carbon also becomes uniform, and the variation in resistance value due to non-uniform dispersion of carbon, which was a drawback of the conventional method, is extremely effectively improved. This resulted in a significant improvement in yield and a reduction in manufacturing costs.

また、従来超微粉炭素がH2O,CO2、COの脱、吸
着などにより、製造工程間において抵抗値が変動するこ
とがあり問題視されていたが、本発明の無機質材料を中
芯とし、炭素粒と結合剤を加えて該中芯の表面に炭素を
被覆させることにより、塊状の炭素の存在をなくし、分
散された炭素粒はセラミック抵抗体の素材中において、
該素材の結合剤等により外気から保護される形となり、
結果的には前述のような脱、吸着を防ぎ、工程間の抵抗
値の変動が減少して、作業能率の大幅な向上を得た。
In addition, in the past, ultrafine carbon powder was considered a problem because its resistance value fluctuated between manufacturing processes due to desorption and adsorption of H2O, CO2, and CO, but carbon particles using the inorganic material of the present invention as a core By adding a binder and coating the surface of the core with carbon, the presence of lumpy carbon is eliminated, and the dispersed carbon grains are dispersed in the material of the ceramic resistor.
The binding agent of the material protects it from the outside air,
As a result, the above-mentioned desorption and adsorption were prevented, and fluctuations in resistance between processes were reduced, resulting in a significant improvement in work efficiency.

次に本発明を図面にて説明する。第1図は本発明の前処
理後の導電性主原料の一粒子を示す模式図である。即ち
、絶縁性無機質材料(1)の外表面に炭素粉末(2)が
結合剤(3)により被覆されており、この被覆された材
料を、主原料としてセラミック抵抗体を成形、焼成、仕
上げ等の各工程を経て得るものである。
Next, the present invention will be explained with reference to the drawings. FIG. 1 is a schematic diagram showing one particle of the conductive main raw material after pretreatment of the present invention. That is, the outer surface of an insulating inorganic material (1) is coated with carbon powder (2) with a binder (3), and this coated material is used as a main raw material to form, bake, finish, etc. a ceramic resistor. It is obtained through each process.

第2図は本発明より得たセラミック抵抗体の断面を示す
正面図である。即ち、該セラミック抵抗体は前述の前処
理をして得た導電性主原料と結合剤からなる抵抗体素体
(4)の両側面に電極(6)を形成し、該電極を除いた
外表面に絶縁層を形成した構造である。
FIG. 2 is a front view showing a cross section of a ceramic resistor obtained according to the present invention. That is, the ceramic resistor is made by forming electrodes (6) on both sides of a resistor element (4) made of a conductive main raw material and a binder obtained through the above-mentioned pretreatment, and then forming It has a structure with an insulating layer formed on the surface.

本発明において留意すべき点の1つは導電性主原料を形
成する絶縁性無機質材料の粒度である。
One of the points to be noted in the present invention is the particle size of the insulating inorganic material forming the conductive main raw material.

即ち、粒度に差があると比表面積が異なり、単位表面積
当りの炭素被覆量はほぼ同一であっても、炭素によって
被覆された導電性主原料の粒子の比表面積が異なる。即
ち、部分的に炭素含有量に差が生じることにより抵抗値
のばらつきの原因となる。従って、粒度を極力揃える必
要があり、実測によれば該無eJ F材料の粒子の直径
が10μm以上の場合は、抵抗値のばらつきが大きくな
ることより、該材料の粒径を10μm以下とする事が好
ましい。
That is, if there is a difference in particle size, the specific surface area will differ, and even if the amount of carbon coating per unit surface area is approximately the same, the specific surface area of the particles of the conductive main raw material coated with carbon will differ. In other words, differences in carbon content may occur locally, causing variations in resistance values. Therefore, it is necessary to make the particle size as uniform as possible, and according to actual measurements, if the particle diameter of the non-eJF material is 10 μm or more, the variation in resistance value becomes large, so the particle size of the material is set to 10 μm or less. Things are good.

更に、もう一つの留意すべき点は、導電性主原料の絶縁
性無機質材料の粒子の表面に炭素を固化させるための前
処理工程において使用する結合剤である。即ち、炭素被
覆を固化する熱処理工程後に、汎用の装置により粉砕す
ると折角固化した炭素被覆が破壊する恐れがあるので、
手で容易にほぐし得る程度の炭素被覆粒子間の強度が必
要となる。例えば、ガラス、あるいは熱可塑性樹脂のよ
うに加熱時に溶融軟化するような結合剤を使用すると、
常温では炭素被覆粒子間が強固に結合されて、粒度調整
のため装置による粉砕が必要となり、好ましくない。従
って、本発明に用いられる結合剤は、例えばコロイダル
シリカのような無機質のもの、メチルセルローズ、ポリ
ビニルアルコール、カルボキシルメチルカーボネートの
有機質のもの、フェノール樹脂、フラン樹脂のような熱
硬化性樹脂が好ましい。上記の結合剤を採用することに
より、加熱処理された後の炭素被覆粒は、焼結したリ、
結合剤との反応がないため、容易に手でほぐれて炭素被
覆が破壊しない前処理原料が得られた。
Furthermore, another point to be noted is the binder used in the pretreatment step for solidifying carbon on the surface of the particles of the insulating inorganic material that is the conductive main raw material. In other words, if the carbon coating is crushed using general-purpose equipment after the heat treatment process to solidify the carbon coating, the hardened carbon coating may be destroyed.
The strength between the carbon-coated particles must be such that they can be easily loosened by hand. For example, if you use a binder that melts and softens when heated, such as glass or thermoplastic resin,
At room temperature, the carbon-coated particles are strongly bonded, and pulverization using an apparatus is required to adjust the particle size, which is not preferable. Therefore, the binder used in the present invention is preferably an inorganic binder such as colloidal silica, an organic binder such as methyl cellulose, polyvinyl alcohol, or carboxyl methyl carbonate, or a thermosetting resin such as phenolic resin or furan resin. By employing the above-mentioned binder, the carbon-coated grains after heat treatment can be sintered,
Since there was no reaction with the binder, a pretreated raw material was obtained that could be easily loosened by hand and the carbon coating would not be destroyed.

尚、結合剤によっては350℃以上の高温で加熱処理を
要す場合もあるが、炭素は酸化されやすいため、非酸化
雰囲気中例えば窒素や、アルゴン中等で加熱することが
好ましい。
Depending on the binder, heat treatment may be required at a high temperature of 350° C. or higher; however, since carbon is easily oxidized, it is preferable to heat the binder in a non-oxidizing atmosphere such as nitrogen or argon.

次に本発明を実施例により説明するが、本発明はこれに
よりなんら限定されるものではない。
Next, the present invention will be explained with reference to examples, but the present invention is not limited thereto in any way.

(実施例、1) 直径10/=m以下(平均直径3.5μm)のアルミナ
粉に、平均直径30 、、fi、、の超微粉炭素を、ア
ルミナ粉に対し3重量%添加し、混合機で1時間混合す
る。その後、上記混合物に結合剤としてコロイダルシリ
カをアルミナ粉に対して5重量%と、水を加え、押潰機
で1時間混練する。乾燥後、窒素雰囲気、500℃で、
24時間加熱処理を行ない、コロイダルシリカのシロキ
サン結合により、アル゛2   ミナを中芯とする炭素
被覆粒を得た。次に該炭素被覆粒を70重量%、カオリ
ン7重量%、粘土22重量%、炭酸マグネシウム1重量
%の割合の配合原料を、1時間混練後、押出プレスで成
形し、窒素雰囲気、1200℃の温度で焼成して直径Ω
8mm長さ40++++nの棒状素体とし、次いで、電
極および絶縁層を形成して、セラミック抵抗体を得た。
(Example 1) Ultrafine carbon powder with an average diameter of 30 m or less (average diameter 3.5 μm) was added in an amount of 3% by weight based on the alumina powder, and a mixer Mix for 1 hour. Thereafter, 5% by weight of colloidal silica as a binder based on the alumina powder and water are added to the above mixture, and the mixture is kneaded using a crusher for 1 hour. After drying, at 500°C in a nitrogen atmosphere,
Heat treatment was performed for 24 hours, and carbon-coated grains having alumina as a core were obtained by siloxane bonding of colloidal silica. Next, mixed raw materials containing 70% by weight of the carbon-coated grains, 7% by weight of kaolin, 22% by weight of clay, and 1% by weight of magnesium carbonate were kneaded for 1 hour, then molded using an extrusion press, and heated at 1200°C in a nitrogen atmosphere. Diameter Ω after firing at temperature
A rod-shaped element body having a length of 8 mm and a length of 40+++n was prepared, and then electrodes and an insulating layer were formed to obtain a ceramic resistor.

該抵抗体1200個の抵抗値は平均値752Ωで抵抗値
のバラツキは±10%以内であった。
The average resistance value of the 1200 resistors was 752Ω, and the variation in resistance value was within ±10%.

比較のため、従来の方法を用いた。即ち直径10μm以
下(平均直径3.5μm)のアルミナ粉70重量%、カ
オリン7重量%、粘土22重量%、炭酸マグネシウム1
重量%の配合原料に、平均直径30mμmの炭素粉末3
重量%を添加し、前述の実施例1と同様の工程を経て得
た直径Ω8咽、長さ40咽のセラミック抵抗体、120
0個の抵抗値は平均値728Ωで、バラツキは−19〜
+2396と大幅な低得率を示した。
For comparison, a conventional method was used. That is, 70% by weight of alumina powder with a diameter of 10 μm or less (average diameter of 3.5 μm), 7% by weight of kaolin, 22% by weight of clay, 1% by weight of magnesium carbonate.
Carbon powder with an average diameter of 30 mμm is added to the blended raw materials in 3% by weight.
A ceramic resistor with a diameter of 8 Ω and a length of 40 Ω, obtained by adding % by weight and undergoing the same process as in Example 1, 120
The average resistance value for 0 pieces is 728Ω, and the variation is -19~
It showed a significantly low gain rate of +2396.

加えて、実施例1の場合の作業と比較すると、H2O,
CO,CO2、の脱、吸着による工程間の著しい抵抗値
の変動により、作業能率等の面で、20%以上の工数を
要した。
In addition, compared to the work in Example 1, H2O,
Due to significant fluctuations in resistance between processes due to desorption and adsorption of CO and CO2, more than 20% of the man-hours were required in terms of work efficiency.

(実施例、2) 直径IQzn++以下(平均直径3.5μm)のアルミ
ナ粉に、平均直径30 m’μmの超微粉炭素をアルミ
ナ粉に対し3重量%加え、混合機で1時間混合後、結合
剤としてメチルセルロース5%の水溶液を加え、押潰機
で1時間混線原料を窒素雰囲気中350℃で24時間加
熱し、アルミナを中芯とした炭素被覆粒を得た。次に、
実施例1と同じ配合同工程を経て得たセラミック抵抗体
、1200個の抵抗値を測定したところ、平均値514
Ωに対しバラツキは−7,3〜+9.2%で大幅な得率
向上が得られた。
(Example, 2) 3% by weight of ultrafine carbon powder with an average diameter of 30 m'μm was added to alumina powder with a diameter of IQzn++ or less (average diameter 3.5μm), and after mixing with a mixer for 1 hour, it was combined. A 5% aqueous solution of methylcellulose was added as an agent, and the mixed wire raw material was heated in a nitrogen atmosphere at 350° C. for 24 hours using a crusher for 1 hour to obtain carbon-coated particles having alumina as the core. next,
When the resistance values of 1,200 ceramic resistors obtained through the same formulation and process as in Example 1 were measured, the average value was 514.
The variation with respect to Ω was -7.3 to +9.2%, and a significant improvement in yield was obtained.

上述の実施例1と2の結果を比較して、下表1に示す。The results of Examples 1 and 2 described above are compared and shown in Table 1 below.

(表 1) 上表のように、本発明による抵抗体は、大幅に得率が向
上し、生産性、安定性等への技術的実用的効果は極めて
大なるものがある。
(Table 1) As shown in the above table, the resistor according to the present invention has a significantly improved yield, and has extremely large technical and practical effects on productivity, stability, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の前処理原料の模式図であり第2図は
、本発明のセラミック抵抗体の断面を示す正面図である
。 (1)・・・・・・絶縁性無機質材料 (2)・・・・・炭素粉末 (3)・・・・・・結合材 (4)・・・・・セラミック抵抗体素体(5)・・・・
・ 絶縁層 (6)・・・・・・電極 特許出願人  東海高熱工業株式会社
FIG. 1 is a schematic diagram of a pretreated raw material of the present invention, and FIG. 2 is a front view showing a cross section of a ceramic resistor of the present invention. (1) Insulating inorganic material (2) Carbon powder (3) Binding material (4) Ceramic resistor element (5)・・・・・・
・Insulating layer (6)・・・Electrode patent applicant Tokai Konetsu Kogyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)骨材が絶縁性無機質材料で、導電材が炭素からな
るセラミック抵抗体において、あらかじめ、アルミナ、
ムライト、焼成粘土等の絶縁性無機質材料に炭素粉末及
び結合剤を加え、十分混合混線後、加熱処理することに
より、前記無機質材料の粒子の表面を炭素で被覆した前
処理原料を形成し、該原料を抵抗体の導電性主原料とし
て用いたことを特徴とする炭素系セラミック抵抗体。
(1) In a ceramic resistor whose aggregate is an insulating inorganic material and whose conductive material is carbon, alumina,
Carbon powder and a binder are added to an insulating inorganic material such as mullite or fired clay, thoroughly mixed and mixed, and then heat treated to form a pretreated raw material in which the surface of the particles of the inorganic material is coated with carbon. A carbon-based ceramic resistor characterized in that the raw material is used as the main conductive raw material of the resistor.
(2)アルミナ、ムライト、焼成粘土等の絶縁性無機質
材料が、直径10μm以下の粉末である特許請求の範囲
第(1)項記載の炭素系セラミック抵抗体。
(2) The carbon-based ceramic resistor according to claim (1), wherein the insulating inorganic material such as alumina, mullite, or fired clay is a powder with a diameter of 10 μm or less.
JP58091506A 1983-05-26 1983-05-26 Carbon ceramic resistor Pending JPS59217668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58091506A JPS59217668A (en) 1983-05-26 1983-05-26 Carbon ceramic resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58091506A JPS59217668A (en) 1983-05-26 1983-05-26 Carbon ceramic resistor

Publications (1)

Publication Number Publication Date
JPS59217668A true JPS59217668A (en) 1984-12-07

Family

ID=14028291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58091506A Pending JPS59217668A (en) 1983-05-26 1983-05-26 Carbon ceramic resistor

Country Status (1)

Country Link
JP (1) JPS59217668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205302A (en) * 1989-02-03 1990-08-15 Sony Corp Ceramic resistor
EP0634756A2 (en) * 1993-07-16 1995-01-18 Kabushiki Kaisha Toshiba Metal oxide resistor, power resistor, and power circuit breaker
JPH1041103A (en) * 1996-07-22 1998-02-13 Tokai Konetsu Kogyo Co Ltd Manufacture of high-energy injection type ceramic resistor
CN101794648A (en) * 2010-03-24 2010-08-04 胡晞 High-power noninductive synthesized resistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688868A (en) * 1979-12-20 1981-07-18 Matsushita Electric Ind Co Ltd Ceramic raw material wet mixing method
JPS5752101A (en) * 1980-09-16 1982-03-27 Toshiba Ceramics Co Ceramic resistor and method of producing same
JPS5864279A (en) * 1981-10-12 1983-04-16 住友電気工業株式会社 Non-oxide ceramics sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5688868A (en) * 1979-12-20 1981-07-18 Matsushita Electric Ind Co Ltd Ceramic raw material wet mixing method
JPS5752101A (en) * 1980-09-16 1982-03-27 Toshiba Ceramics Co Ceramic resistor and method of producing same
JPS5864279A (en) * 1981-10-12 1983-04-16 住友電気工業株式会社 Non-oxide ceramics sintered body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205302A (en) * 1989-02-03 1990-08-15 Sony Corp Ceramic resistor
EP0634756A2 (en) * 1993-07-16 1995-01-18 Kabushiki Kaisha Toshiba Metal oxide resistor, power resistor, and power circuit breaker
EP0634756A3 (en) * 1993-07-16 1995-08-02 Tokyo Shibaura Electric Co Metal oxide resistor, power resistor, and power circuit breaker.
JPH1041103A (en) * 1996-07-22 1998-02-13 Tokai Konetsu Kogyo Co Ltd Manufacture of high-energy injection type ceramic resistor
CN101794648A (en) * 2010-03-24 2010-08-04 胡晞 High-power noninductive synthesized resistor

Similar Documents

Publication Publication Date Title
EP3412640B1 (en) Low-shrinkage, high-strength, and large ceramic plate and manufacturing method thereof
EP1450376B1 (en) Ag COMPOUND PASTE
CN108133768A (en) A kind of high conductivity low temperature curing type electrocondution slurry and preparation method thereof
CN108484131B (en) Alumina ceramic slurry suitable for 3D printing, preparation method and application
CN109261890B (en) Printing material for ceramic core, preparation method of printing material and preparation method of ceramic core
JPS59217668A (en) Carbon ceramic resistor
DE2426329A1 (en) POWDERED SIZING AGENT
JPH0311602A (en) Resistance paste proper to manufacture of electric resistance layer and resistance layer manufactured from said resistance paste
JPS6212667A (en) Manufacture of member for semiconductor
KR102411685B1 (en) Filler composite material with high insulation and heat resistance, and the method for manufacturing through dry particle-particle complexation
JP3640432B2 (en) Method for producing fluid tungsten / copper composite powder
JPH1135310A (en) Production of powdery glassy carbon, paste having prescribed electric conductivity prepared from the same and resistance layer produced from the paste
KR102282500B1 (en) Nanocomposite insulation materials with enhanced thermal conductivity by dispersion of inorganic nanoparticles and their manufacturing method
JPH09296158A (en) Conductive adhesive
CN100462328C (en) Graphite, phenolic resin, (Ba1-x-y, Srx, Pby) TiO3 based PTC thermistor and method for preparing the same
JPH11150001A (en) Ceramic resistor and manufacture of the same
JPS6220276A (en) Surface heat generating body element
JP4047956B2 (en) Method for forming silicon carbide powder
JPS63171275A (en) Spot welding electrode and manufacture thereof
JPH01305859A (en) Production of high-density carbon material
JPH0337108A (en) Isotropic carbon material
CN107393626A (en) A kind of hot method powdery electric slurry and preparation method thereof
JPS6017392B2 (en) Conductive paint using silver-copper composite powder
JPS59184773A (en) Manufacture of silicon carbide sintered body
JPH0645189A (en) Manufacture of polarizable electrode