JPS59216785A - Transportation system for lng - Google Patents

Transportation system for lng

Info

Publication number
JPS59216785A
JPS59216785A JP58091587A JP9158783A JPS59216785A JP S59216785 A JPS59216785 A JP S59216785A JP 58091587 A JP58091587 A JP 58091587A JP 9158783 A JP9158783 A JP 9158783A JP S59216785 A JPS59216785 A JP S59216785A
Authority
JP
Japan
Prior art keywords
lng
bog
gas
tank
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58091587A
Other languages
Japanese (ja)
Inventor
Ikuo Miki
郁雄 三木
Hiroshi Makihara
牧原 洋
Keijirou Yoshida
圭二郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58091587A priority Critical patent/JPS59216785A/en
Publication of JPS59216785A publication Critical patent/JPS59216785A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • F25J1/0025Boil-off gases "BOG" from storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0223Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with the subsequent re-vaporisation of the originally liquefied gas at a second location to produce the external cryogenic component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/42Integration in an installation using nitrogen, e.g. as utility gas, for inerting or purging purposes in IGCC, POX, GTL, PSA, float glass forming, incineration processes, for heat recovery or for enhanced oil recovery

Abstract

PURPOSE:To transport LNG safely by producing LN2 at an LNG receiving base by utilizing a coldness of LNG, loading LNG on the LNG vessel, reliquefying by exchanging heat of BOG produced during transportation by the LNG vessel, as well as utilizing N2 gas as an anti-explosion gas. CONSTITUTION:LN2 is produced by utilizing coldness of LNG at an LNG receiving base or consumption base and loaded on a tank 11 inside the LNG carrier through a loading mouth 16. During the transportation of the LNG, BOG produced in the LNG tank 10 is exhausted from a top part of the tank 10 and after compressed by a compressor 12, it is reliquefied by a heat exchanger 21 in the LN2 tank 11. LN2 becomes N2 gas but a part of it is stored and used ass an anti-explosion gas. This construction prevents a pressure rise due to BOG on the LNG carrier to reliquefy, while at the same time to obtain the anti-explosion gas to enable the safe transportation.

Description

【発明の詳細な説明】 本発りjは[、NGの転送システムに関するものである
。詳しくは、LNGをある基地から別の基地へ輸送する
除に不可縫的に発生するボイルオフガス(以下、BOG
と呼称〕を容易にかつ安価に再液化することによって回
収し、安全の41’tM保と大気汚染等の防止を可能と
するLNGの輸送システムに胸するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transfer system of [, NG. In detail, boil-off gas (hereinafter referred to as BOG), which is irreparably generated while transporting LNG from one base to another,
We are excited about the development of an LNG transportation system that can easily and inexpensively recover LNG by reliquefying it, maintain a safe 41'tM, and prevent air pollution.

LNGは、他の多(のエネルギー源と比較すると硫黄、
窒素、メタル、灰分などを含まず、公害防止策の上から
も優れたエネルギー圀であるため、今後わが国の政策面
でもLNGは産業用、民需用としてその用途が拡大され
る方向にある。
Compared to other energy sources, LNG contains sulfur,
Since LNG does not contain nitrogen, metals, or ash, and is an excellent energy source in terms of pollution prevention measures, the use of LNG for industrial and private purposes is likely to be expanded in the future in terms of Japanese policy.

しかしながら、大量の可燃性の液化ガスを低温下で液化
貯蔵し、輸送するため、保安の確保が最も優先される必
をがある。
However, since large amounts of flammable liquefied gas are liquefied and stored at low temperatures and transported, ensuring safety must be given top priority.

LNGの輸送は、天然ガスを題する井戸の近傍又はガス
パイプラインで連結された遠隔の地に建設される液化基
地からLNGを受入れ、消費に回すまでのある期間、こ
れを貯蔵しておくところの受入基地に輸送する場合(海
上1次輸送〕と、上述の受入基地からさらに小分けして
個々の消費基地に輸送する場合(主として海上2次輸送
)の2つに分けられる。LNGは、重圧下の沸点が約−
162Cであり、容器の耐圧強度の問題があるため通當
常圧近傍で貯蔵され、輸送される。従って、上述の帖送
過程においても。
LNG transportation involves receiving LNG from a liquefaction terminal built near a natural gas well or in a remote location connected by a gas pipeline, and storing it for a certain period of time before consumption. There are two types of transport: LNG is transported to a base (primary sea transport), and it is further divided from the above-mentioned receiving base and transported to individual consumption bases (mainly secondary sea transport). The boiling point is about -
162C, and because there is a problem with the pressure resistance of the container, it is usually stored and transported near normal pressure. Therefore, also in the above-mentioned shipping process.

LHO)/fi、温と外部温度との差に由来J−る外部
からの入熱によつ゛(、BOGが発生する。比較的小輸
送量の海上2仄輸送では、BOGを処理する方法として
は大気放出が最も安易な方法であるが。
BOG is generated due to heat input from the outside due to the difference between LHO)/fi and external temperature. BOG is generated as a method of processing BOG in 2-way sea transport with a relatively small transport volume. However, the easiest method is to release it into the atmosphere.

80Gの大気放出は支全面や環境保全面から好ましくな
い。現にLNc−大型輸送船では、厳しい規制が設けら
れ、海難防止協会、学識経験者、海上保安庁、港湾′W
埋当局などが一体となって対策がとられており少なくと
も入港時にはBOCTの大気放出は禁じられている。
Emission of 80G into the atmosphere is undesirable from the viewpoint of support and environmental protection. In fact, strict regulations are in place for LNc - large transport vessels, and the Maritime Accident Prevention Association, academic experts, the Japan Coast Guard, and ports'
The burial authorities and other authorities are working together to take measures, and the release of BOCT into the atmosphere is prohibited, at least when entering the port.

このよ547 BOGの大気放出は厳重につつしむべき
ことであるため、これに代る有効な方法として、仄の6
つの方式が考えられている。
Since the release of 547 BOG into the atmosphere should be strictly respected, an effective alternative method is to
Two methods are being considered.

■蓄圧方式: LNG貯hc答器容器圧強度を高め、発
生するBOGをある一定期間内刺 じ込める。
■Pressure accumulation method: Increases the pressure strength of the LNG storage HC reactor container and stores the generated BOG within a certain period of time.

■推進用燃料化方式: BOGを船舶推進用の燃料に使
用する。
■Propulsion fuel method: BOG is used as fuel for ship propulsion.

■再液化方式:液化7リントを装備し、BOGを再び液
化してLNC+貯蔵容器に戻 すO ところで、上記5つの方式はそれぞれ一長一短を有して
おり、すべてを満足するものではない。すなわち■の蓄
圧方式は容器の耐圧を高めると飛躍的に装置自体のコス
トが高くなることに加え、輸送船の可成効率が低下し、
輸送コストが増加することになる。■の燃料化方式は、
特に海上2次輸送用の比較的小型の船舶ではディーゼル
機関を使用しているためBOGは燃料に不適当であるこ
と、またBOG発生モードと推進機運転モードが適合し
にくいなどの不都合がある。さらに、■の再液化方式は
、新たに再液化のためのプラントを装備する必要があり
、コスト高となる。また付言すれば、海上1次輸送と2
次輸送では、明らかに輸送するLNGの危および距離(
すなわち時間ンに大きな差があるため、技術、経済、保
安の各面の要因を総合して判断すると、海上1次輸送で
は■の燃料化方式と■の再液化方式が適しており、一方
海上2次輸送では■の蓄圧方式が適していると一般的に
言える。
■Re-liquefying method: Equipped with a 7-lint liquefaction unit to liquefy the BOG again and return it to the LNC+storage container O By the way, each of the above five methods has its advantages and disadvantages, and not all of them are satisfactory. In other words, with the pressure accumulation method (■), increasing the pressure resistance of the container dramatically increases the cost of the device itself, and also reduces the production efficiency of the transport ship.
This will increase transportation costs. ■The fuel conversion method is
In particular, relatively small ships for secondary marine transportation use diesel engines, so BOG is unsuitable as a fuel, and the BOG generation mode and propulsion engine operation mode are difficult to match. Furthermore, the reliquefaction method (2) requires the installation of a new reliquefaction plant, resulting in high costs. Also, I would like to add that primary maritime transport and secondary
In the next transport, it is clear that the danger and distance of the LNG to be transported (
In other words, since there is a large difference in the time taken, judging from a comprehensive consideration of technological, economic, and security factors, the fuel conversion method (2) and the reliquefaction method (2) are suitable for primary marine transport; It can generally be said that the pressure accumulation method (■) is suitable for secondary transportation.

本発明は、特に海上2次輸送において前述の・ ような
従来法の欠点を解消し、安価に容易にBOGを再液化し
て回収することにより、BOGによる保安上、環境保全
上の問題を防止することを可能としたものである。すな
わち、LNGの一次受入基地又はLNG消1を基地のい
づれか一方、あるいはそれらの両者においてLNGの保
有している冷熱を利用して窒気分離もしくは窒素ガスの
冷却を行なうことによって液体窒素(以下LN  と呼
称ンを製造し、当該LN2の適当量をLNG輸送船にL
NGとは別の貯槽に積載し、航海中に発生するBOGを
AiJ記LN2と熱交換させることによって、BOGを
液化回収するものである。
The present invention eliminates the drawbacks of the conventional methods described above, especially in secondary marine transportation, and prevents security and environmental conservation problems caused by BOG by easily reliquefying and recovering BOG at low cost. This made it possible to do so. In other words, liquid nitrogen (hereinafter referred to as LN A suitable amount of the LN2 is then transferred to an LNG transport ship.
The BOG will be liquefied and recovered by loading it into a storage tank separate from NG and exchanging heat with the AiJ LN2 generated during the voyage.

このとき、LN2とBOGとの熱交換によって発生する
N2  ガスは、甲板以下のLNG貯僧囲りの船倉部分
に送り込むことによって、万が−のLNG漏洩時の爆発
性雰囲気の形成を防止することに用いることができる。
At this time, the N2 gas generated by heat exchange between LN2 and BOG is sent into the hold area surrounding the LNG storage below the deck to prevent the formation of an explosive atmosphere in the unlikely event of an LNG leak. It can be used for.

上述のように本発明は、BOG回収のために本来LNG
が保有している冷熱を陸上のプラントでLN2の形に置
換し、これをLNG船による輸送時に蒸発させてその潜
熱でBOGを液化するもので、船舶上の装置を極めて簡
易としたものである。以下に、本発明の有効性を実施の
態様に基づいて詳細に説明する。
As mentioned above, the present invention originally uses LNG for BOG recovery.
This system converts the cold energy held by the BOG into LN2 at an onshore plant, evaporates it during transportation by an LNG ship, and uses the latent heat to liquefy the BOG, making the equipment on the ship extremely simple. . The effectiveness of the present invention will be explained in detail below based on embodiments.

第1図は、LNGの海上2次輸送の模様を図示したもの
である。第1図において、TはLNG受入基地でありC
1,G2.・・・顔はTよりLtJGをもらい受けて消
費する基地である。1は海上1次輸送によって産ガス国
の液化基地から輸送されて(るLNGで、これを受入基
地Tのタンクに貯蔵している。他方で消費基地01.C
2・・・CN  ではそれぞれ小口の消費者1−■、1
−■・・・、1−@;2−■、2−■・・−2−@;・
・・N−■、N−■°°・。
Figure 1 illustrates the secondary maritime transportation of LNG. In Figure 1, T is the LNG receiving terminal and C
1, G2. ...The face is the base that receives and consumes LtJG from T. 1 is LNG transported from a liquefaction terminal in a gas-producing country by sea primary transportation, and is stored in a tank at a receiving terminal T.On the other hand, LNG is stored in a tank at a receiving terminal T.
2...CN, small consumers 1-■, 1, respectively.
-■..., 1-@;2-■, 2-■...-2-@;-
・・N−■, N−■°°・.

N−■をかかえ、ガスパイプライン9によってこれらの
小口消費者に天然ガスを供給している。
The gas pipeline 9 supplies natural gas to these small consumers.

海上2次輸送とは、前述の受入基地Tと?FV費基地C
,,a2・・・籟 を結ぶ船舶Sによる輸送のことで、
特に日本のように周囲を海で囲まれた国では好都合な手
段である。一般に2次輸送手段としては陸上バイグライ
ン、タンクローリ−車小型船舶などがあるが、BOGが
問題となるのはタンクローリ−車小型船舶の場合である
What is secondary maritime transport and the above-mentioned receiving base T? FV cost base C
,,a2... transport by ship S connecting the
This is especially convenient in a country like Japan, which is surrounded by the sea. In general, secondary transportation means include land big lines, tanker trucks, and small vessels, but BOG becomes a problem in the case of tanker trucks, small vessels, and the like.

第1図において受入基地Tと消費基地C1,C2・・・
ON  を結ぶ船舶Sはルート2でTから01  にL
)JGを運び、消費基地c1  でLNGを全量アンロ
ードしたあとルート5で古び受入基地Tに戻ることもあ
るし、ルート2.4.5で示すように何れかの消費基地
でアンロードしたあと再び受入基地Tに戻って1サイク
ルの航海を終えることもある。また受入基地Tは、これ
に近接した消費者があれば第1図に示すようにパイフリ
イン8を通じて小口消費者T−■、T−■、・・・T−
■に直接ガスを供給していても良い。本発明のシステム
を可能とするには、先ず、上述の受入基地T又は消費基
地C,,a2.・・・籟の少なくとも1箇所以上のとこ
ろで輸送中に生じるBOGの液化に必要なLN2の製造
を行なうことである。
In Fig. 1, receiving base T and consumption bases C1, C2...
Vessel S connecting ON is route 2 from T to 01 to L
) After unloading the entire amount of LNG at the consumption base c1, it may return to the old receiving base T via route 5, or after unloading at any consumption base as shown in route 2.4.5. They may return to receiving base T again to complete one cycle of voyage. In addition, if there are consumers in the vicinity of the receiving base T, small-lot consumers T-■, T-■, . . . T-
■Gas may be supplied directly to. In order to enable the system of the present invention, first, the above-mentioned receiving base T or consuming base C,, a2. ...Production of LN2 necessary for liquefaction of BOG generated during transportation at at least one location on the rice grains.

LNGの寒冷を利用するLN2の製造法としては、後述
するように色々な方法が考えられるが、本 “発明のシ
ステムでは、特定の方法に限定されるものではな(、個
々の事情に応じて適当な方法を採用して良い。本発明の
システムでは、前述のようなLNGのローディング、ア
ンローディングを含む船舶の航海サイクルにおいて、受
入基地T又は消費基地C1,C2・・・籟 に立ち寄っ
た際に1その後の航海中やbNa 474載のままの待
機時間において発生が予想されるBOGの量にさらに適
当な余裕を見込んで、これらのBOGの液化に必要なL
N2をLNGとは別の貯nJ K積載する。当該LNG
輸送船におけるBOG再液化の方法を第2図に基づいて
より詳細に説明する。
Various methods can be considered for producing LN2 using the refrigeration of LNG, as described below, but the system of the present invention is not limited to a specific method (depending on individual circumstances). Any suitable method may be adopted.In the system of the present invention, when stopping at receiving base T or consumption bases C1, C2... 1. Considering the amount of BOG that is expected to be generated during the subsequent voyage and waiting time while the bNa 474 is still on board, the L required for liquefaction of these BOG is calculated.
N2 is stored separately from LNG and loaded in nJK. The LNG concerned
The method of BOG reliquefaction in a transport ship will be explained in more detail based on FIG. 2.

第2図において、LNG 15は貯槽101/(貯えら
れる。この図示の例では、LNG貯摺貯槽形であり、通
常のLNG輸送船では当該タンクを4基程度有している
。また本発明のシステムでは、さらにLN2の貯槽11
、圧縮機12、熱交換器21を装備する。この際、熱交
換器21は第2図の例では、611述のLN2貯槽の下
部にLN2の液面下に没するように管群を配置fffi
 してLN214と圧縮後のBOGと熱交換させている
が、LN2貯槽と熱交換器とは切り離して、独立の熱交
換器を設置し、配管等で連結しても良い。第2図のよう
な装置配齢によって、先ずLNG Ih′槽10で発生
するBOG 15は、当該貯槽の頂部から抜き出され、
ライン17を経て圧縮υを12に運ばれ、ここで圧縮さ
れる。次kc EE圧縮機BOG 22は、熱交換52
1に送られ、LN214と熱交換して液化する。熱交換
器21から出て来る冷却後のBOG 24は、運転条件
によっては全量液化しない場合も考えられるため、必要
に応じて気液分離器23に導びかれ、気液が分離された
のち、LNG 19は再び供給ノズル25を通じて古び
LNGの貯槽10に戻され、他方未凝縮のBOG20は
iTTびライン17に合流して圧##機12に送られる
In FIG. 2, LNG 15 is stored in a storage tank 101/(.In this illustrated example, it is an LNG storage tank type, and a normal LNG transport ship has about four such tanks. The system also includes LN2 storage tank 11.
, a compressor 12, and a heat exchanger 21. At this time, in the example shown in FIG. 2, the heat exchanger 21 has a group of tubes arranged at the bottom of the LN2 storage tank described in 611 so as to be submerged below the liquid level of LN2.
Although the LN214 and the compressed BOG are exchanged with each other, the LN2 storage tank and the heat exchanger may be separated, an independent heat exchanger may be installed, and the LN2 storage tank and the heat exchanger may be connected to each other by piping or the like. According to the equipment arrangement as shown in FIG. 2, the BOG 15 generated in the LNG Ih' tank 10 is first extracted from the top of the storage tank.
Via line 17 the compressed υ is conveyed to 12 where it is compressed. Nextkc EE compressor BOG 22 heat exchanger 52
1, where it exchanges heat with LN214 and liquefies it. The cooled BOG 24 coming out of the heat exchanger 21 may not be completely liquefied depending on the operating conditions, so it is led to the gas-liquid separator 23 as necessary to separate the gas and liquid, and then The LNG 19 is again returned to the aged LNG storage tank 10 through the supply nozzle 25, while the uncondensed BOG 20 joins the iTT line 17 and is sent to the pressure machine 12.

一方LN2の挙動は次のように説明される。液化基地も
しくは消費基地において製造されたLN2は、 LNG
輸送船畜港時にローディングアームジヨイント16から
2イン26を通じてLN2の貯槽11に送り込まれる。
On the other hand, the behavior of LN2 can be explained as follows. LN2 produced at a liquefaction terminal or consumption terminal is LNG
When the transport ship is brought to port, it is sent from the loading arm joint 16 to the LN2 storage tank 11 through the 2-in 26.

つぎに航海中を含めLNGがその貯槽1oにある限り、
洛に発生しているBOGを再液化するためfJtf述の
ような操作がなされる際、熱交換器21において圧縮後
のBOG 22と熱交換することによってLN2自身は
蒸発潜熱分を与えられることによって気化し、N2  
ガス18となりLN2貯僧外に取り出される。
Next, as long as LNG is in the storage tank 1o, including during the voyage,
When the operation described in fJtf is performed to reliquefy the BOG generated in the LN2, the LN2 itself is given latent heat of vaporization by exchanging heat with the compressed BOG 22 in the heat exchanger 21. vaporized, N2
It becomes gas 18 and is taken out of the LN2 reservoir.

第2図に示す例では当該N ガス18は甲板以下の空間
を満たすことに使用されている。甲板以下の臣間内の空
気をパージしてN2  ガス封入することによって、万
が−のLNat7ft洩時に発生する可能性がある天然
ガスの爆発性雰囲気の形成を防止することができる。ま
た、第2図に示すような本発明のシステムではLN2に
よってBOGの再液化が可能になるためには、当然のこ
となからLN2の桿点よりもBOGの露点の方が高(な
ければならないこと、また操作圧力も前に述べたように
耐圧の上昇に伴なう装置費の上昇を避けるには可能な限
り常圧に近いことが必要である。本発明のシステムでは
最も耐圧の面から容易な重圧近傍で操作しても、本発明
のシステムが機能すると言える。すなわち第6図KBO
Gの露点、LN2の沸点のそれぞれにつき圧力との関係
を示すとおり、常圧下でのBOGの露点は約−162C
であり、またLN2(Dt3点は一196Cであり、そ
の差すなわち伝熱のドライビングフォースは約54C程
度がとれることとなる。
In the example shown in FIG. 2, the N gas 18 is used to fill the space below the deck. By purging the air in the cabin below deck and filling it with N2 gas, it is possible to prevent the formation of an explosive natural gas atmosphere that could occur in the unlikely event of a 7ft LNat leak. In addition, in the system of the present invention as shown in Fig. 2, in order for BOG to be reliquefied by LN2, the dew point of BOG must be higher than the rod point of LN2. In addition, as mentioned earlier, the operating pressure must be as close to normal pressure as possible in order to avoid an increase in equipment costs due to an increase in pressure resistance. It can be said that the system of the present invention functions even when operated near easy heavy pressure. That is, Fig. 6 KBO
As shown in the relationship between the dew point of G and the boiling point of LN2, the dew point of BOG under normal pressure is approximately -162C.
Also, LN2 (Dt3 points is -196C, and the difference between them, that is, the driving force of heat transfer, is about 54C.

また、BOGの圧縮機12で圧縮する程度はBOGを液
化後、再びLNG貯槽に送り届けるに必要な圧力損失分
を補な5だけでよいか、多少の余裕を見込んで圧縮して
も良い。例えば、常圧から2気圧(絶対圧)まで圧縮し
た場合にはBOGの露点は一155Cとなり、他方LM
2は常圧で操作するとしてLN2の沸点との差は46C
となり、十分熱交換可能であり、さらW圧力に余裕があ
れば第2図に示すように気液分離器23に入る手前で液
化後のBOG 24を#張弁27で膨張さく13  B
OG 1 )77時当り、BOGを酸化するために必要
なLN2の量を求めてみる。1例として、BOGもLN
2も共に常圧下で取り扱うものとし、BOGは圧縮後−
100Cとなって熱交換器に入り、常圧下の飽和液(−
162C)で同熱交換器を去り、他方LN2は゛帛圧下
の飽和液(−196′C)から蒸発して−1200の過
熱蒸気として同熱交換器を去るものとする。
Further, the degree of compression by the BOG compressor 12 may be just 5 to compensate for the pressure loss required to send the BOG to the LNG storage tank again after liquefaction, or it may be compressed by allowing some margin. For example, when compressing from normal pressure to 2 atmospheres (absolute pressure), the dew point of BOG will be -155C, and the dew point of LM
Assuming that 2 is operated at normal pressure, the difference from the boiling point of LN2 is 46C.
If sufficient heat exchange is possible and there is a margin in the W pressure, the liquefied BOG 24 is expanded with the # expansion valve 27 before entering the gas-liquid separator 23 as shown in Figure 2.
OG1) Let's find the amount of LN2 required to oxidize BOG per 77 hours. As an example, BOG is also LN
2 shall be handled under normal pressure, and BOG shall be handled under normal pressure.
The temperature reaches 100C and enters the heat exchanger, and the saturated liquid (-
162C), while LN2 is evaporated from the saturated liquid (-196'C) under pressure and leaves the heat exchanger as superheated steam at -1200C.

BOGおよびN2  のエンタルピ線図は、第4図に示
すようなものとなり、この図を参考にしてBOG 1 
)77時を液化するのに必要!′、cLN2の量をWと
して熱収支をと9、Wについて解くと次のようになる。
The enthalpy diagram of BOG and N2 is as shown in Figure 4, and with reference to this diagram, BOG 1
) Necessary to liquefy 77 o'clock! ', cIf the amount of LN2 is W, the heat balance is calculated as follows.

IX(150−2)=W(74−7) 、=150−二’−=2.2 )77時 4−7 (2)つぎに、LNGの寒冷を利用してLN2を装造す
る場合に、LNGの単位取収斌1トン/時当りどの程度
のLN2が製造されるかを検討する。
IX (150-2) = W (74-7) , = 150-2'- = 2.2 ) 77 hours 4-7 (2) Next, when building LN2 using the cold temperature of LNG, , consider how much LN2 is produced per 1 ton/hour of LNG unit collection.

第1表は、文献に公表されている5例についてまとめた
ものであるか、規模やプロセスの違いによって、LNG
 1 )77時当りのLN2H#L量は0.056〜0
.48 )77時の範囲にわたっている。ケースAS−
Dは、LNGの顕熱、潜熱を合わせて利用し、必要とす
る圧縮動力等を外部から電力の形で補充しているのに対
し、ケースEはLNGを約50 atmの加圧下で書ガ
ス化し約10 atmの圧力まで膨張させてタービンを
回して動力を回収し、涼料窒気および窒素の圧縮動力を
すべてまかない、さらに余剰の電力を生み出しているの
で、ケースEにおけるLN2のM−ii、fitが1桁
低い値となっている。
Table 1 summarizes the five cases published in the literature, or
1) LN2H#L amount per 77 hours is 0.056 to 0
.. 48) over the range of 77 hours. Case AS-
In Case D, the sensible heat and latent heat of LNG are used together, and the necessary compression power is supplied externally in the form of electricity, whereas in Case E, LNG is converted into gas under a pressure of about 50 atm. The M-ii of LN2 in Case E is expanded to a pressure of about 10 atm, rotates a turbine, and recovers the power, which covers all the power for compressing the coolant nitrogen and nitrogen, and also generates surplus electricity. , fit is one digit lower.

〔5〕  次に、LNGIFIli送船舶におけるBO
Gの発生量を検討する。第5図は、球形タンク方式のL
NG輸送船の場合の、プラスチック・7オームを断熱材
とした時の断熱拐の厚み忙対するBOG発生率を示した
ものである。この図よりタンクの答方1によってBOG
の発生率が異なることが判る。断熱材厚さを400+m
とし、LNG貯槽1基当りの容量2000mとすると、
BOG発生率は0.5%/日となる。
[5] Next, BO on the LNGIFIli transport vessel
Consider the amount of G generated. Figure 5 shows the L of the spherical tank system.
This figure shows the BOG occurrence rate depending on the thickness of the insulation layer when plastic 7 ohm is used as the insulation material in the case of an NG transport ship. From this diagram, BOG by answer 1 for the tank.
It can be seen that the incidence rates are different. Insulation thickness 400+m
Assuming that the capacity of one LNG storage tank is 2000 m,
The BOG incidence is 0.5%/day.

本発明によるLNGの輸送システムの有効性を以下の例
により詳しく説明する。
The effectiveness of the LNG transportation system according to the present invention will be explained in detail by the following example.

例1 世帯数約17万を有する他方都市における民生用の都市
ガスをLNGでまかなうことを想定する。この規模の都
市ではLNGの年間使用量は約80.000 )77年
であり、この値をさらに換算すると219トン7日とな
る。
Example 1 It is assumed that city gas for civil use in another city with approximately 170,000 households will be supplied with LNG. In a city of this size, the annual consumption of LNG is approximately 80,000 tons per year, which is further converted to 219 tons per day.

上述の必要量のLNGを、大規模なLNG受入基地から
当該地方都市の消費基地に輸送するに当り、球形タンク
方式の輸送船を使用することとし、さらに当該輸送船と
しては球形貯槽4基を有する総可載量2000 m5の
船を2隻用い、これらを通常時には交互に就航させるも
のとする。
In order to transport the above-mentioned required amount of LNG from a large-scale LNG receiving terminal to a consumption base in the local city, a spherical tank type transport ship will be used, and the transport ship will also be equipped with four spherical storage tanks. Two ships with a total payload capacity of 2000 m5 will be used, and these will be put into service alternately during normal times.

LNGの比重は約0.42であるから、当LNG船1隻
当りの可載量は2000X0.42=840)ンとなり
、したかってM+J述の都市の必要分を8407219
=5.8日はと゛まかなうことができる。したかつて当
該消費基地は約4日間に1回は、上記LNG輸送船によ
るLNGの補給を受ける必要があることになる。LNG
を輸送するに当り、受入基地におけるローディングに1
日、受入基地から消費基地への航海に1日、さらに消費
基地におり−るアンローディングに1日、その後再び受
入基地に戻るために約1日すなわち、1サイクルの航海
に計4日を要するとする。したがって、年間LNG船が
尚該消費基地のために稼動するのべ日数は次のようにな
る。
Since the specific gravity of LNG is approximately 0.42, the carrying capacity per LNG ship is 2000 x 0.42 = 840), and therefore the required amount for the city described in M + J is 8407219
= 5.8 days can be covered. In the past, the consumption base would need to be resupplied with LNG by the LNG transport ship about once every four days. LNG
1 for loading at the receiving base when transporting
1 day for the voyage from the receiving base to the consuming base, 1 day for unloading at the consuming base, and approximately 1 day for returning to the receiving base, i.e., 4 days in total for one cycle of the voyage. Suppose then. Therefore, the total number of days that the LNG carrier is still operating for the consumption base per year is as follows.

LNGを積載していない状態でrFj費基地から受入基
地への帰路は、BOG発生はないので、BOG発生期間
は上記日数の%となる。(5)で述べたように第5図か
ら、断熱材厚さ400日に対するBOG発生率を読みと
ると、0.5%/iであるから、年間のBOG発生量は
下記のようになる。
Since no BOG occurs on the return trip from the rFj cost base to the receiving base without LNG being loaded, the BOG generation period is % of the above number of days. As mentioned in (5), from FIG. 5, the BOG generation rate for the insulation material thickness of 400 days is 0.5%/i, so the annual BOG generation amount is as follows.

 00 =0.158)ンーBOG/時 したがって、BOGの液化に必要なLN2の量は、前述
の〔すの試算から、次のように算出される。
00 = 0.158) -BOG/hour Therefore, the amount of LN2 required for liquefying BOG is calculated as follows from the above-mentioned trial calculation.

0.158X2.2=0.30 )77時他方、LN2
をLNGの消費基地で製造するとすれば、前述の(2」
の試算結果を利用して、LN2の製造量は次のように算
出される。
0.158X2.2=0.30) At 77, on the other hand, LN2
If it is manufactured at an LNG consumption base, the above (2)
Using the trial calculation results, the production amount of LN2 is calculated as follows.

(9,1)ンーLNG/時)X(0,056〜0.48
)=0.56〜4.4トン−すなわち、平約0.33〜
4.4トン/時の割合でLM2を製造することができる
。このLN2M造量は1itI述(7) BOG ノ再
液化に必要なLN2740.50トン/時を上回ってお
り、本発明によるLNGの輸送システムは十分実現しう
るものであることが判る。上述の例からも判る通り、L
NG 輸送船におけるBOGの発生量をいかに低く押え
るかが最も重要であるため、断熱材厚さを厚(するほか
、根本的に断熱方式を改善すればBOG発生率を上記例
に見る値の%とすることもそれほど困難ではな(、この
場合にはたちまち必要LN2量は%で済むこととなり、
このことは益々本発明の有効性を示すことになる。
(9,1) - LNG/hour)X (0,056~0.48
)=0.56~4.4 tons - that is, about 0.33~
LM2 can be produced at a rate of 4.4 tons/hour. This LN2M production amount exceeds the LN2740.50 tons/hour required for BOG reliquefaction as described in 1itI (7), and it can be seen that the LNG transportation system according to the present invention can be fully realized. As can be seen from the above example, L
NG Since the most important thing is to keep the amount of BOG generated on a transport ship as low as possible, by increasing the thickness of the insulation material (in addition to fundamentally improving the insulation method, the BOG generation rate can be reduced by % of the value shown in the example above) It is not that difficult to do so (in this case, the required amount of LN2 can be reduced to %,
This further demonstrates the effectiveness of the present invention.

以上述べた通り、本発明はLNGの受入基地および消費
基地の両方又はいづれか一方でLNG輸送船で導入した
LNGの寒冷を利用して液体窒素を製造し、当該液体蟹
素および輸送すべきLNGヲLNG輸送船に積載し、ロ
ーディング、アンローディングおよび航海中を含めて当
該LNG輸送LN24船で発生するBOGと前記液体窒
素と熱交換させることによって、当該BOGを再液化し
てLNG貯槽に戻すことにより、LNG貯槽の圧力上昇
を防  。
As described above, the present invention utilizes the cooling of LNG introduced by an LNG transport ship to both an LNG receiving terminal and/or a consuming terminal to produce liquid nitrogen, and then removes the liquid nitrogen and the LNG to be transported. By loading the LNG transport ship and exchanging heat with the liquid nitrogen and the BOG generated on the LNG transport LN24 ship during loading, unloading, and voyage, the BOG is reliquefied and returned to the LNG storage tank. , prevent pressure rise in the LNG storage tank.

止するところのLNG輸送船ならびに当該受入および消
費の基地から成るLNGrM送システムシステム
An LNGrM transport system consisting of a stopping LNG transport vessel and its receiving and consumption base.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、LNGの海上2次恰送を模式的に圧す図、第
2図は、本発明のシステムのうち、LNG輸送船舶で実
施するシステムの態杼を示1図、第5図は、  BOG
の露点に対する飽和圧力と凝縮潜熱の関係、およびLN
2のvト点に対する外相圧力と蒸発潜熱との関係を図示
したもので、それぞれ実線がBOG 、点線がLN2に
ついての右関を示し、第4図は、BOGおよびN2  
の温度丸エンタルピーの関係を示す図であり、第5図は
球形タンク方式のLNG貯槽における断熱材厚さとBO
G発生率の関係を示す図である。 復代理人 内 1)  明 復代理人 萩 原 亮 − 第4図 ン男 度 (0C) 第5図 断熱君理さ (mtn)
Fig. 1 is a diagram schematically showing the secondary pumping of LNG at sea, Fig. 2 is a diagram showing the structure of the system of the present invention, which is implemented on an LNG transport vessel, and Fig. 5 is , BOG
The relationship between saturation pressure and latent heat of condensation with respect to the dew point of LN
Figure 4 shows the relationship between the external phase pressure and the latent heat of vaporization for the v point of No.
Figure 5 shows the relationship between the temperature and round enthalpy of the temperature, and Figure 5 shows the relationship between the insulation material thickness and the BO
It is a figure showing the relationship of G incidence rate. Sub-agent 1) Meikoku agent Ryo Hagiwara - Figure 4 Male degree (0C) Figure 5 Adiabatic degree (mtn)

Claims (2)

【特許請求の範囲】[Claims] (1)  LNG輸送船によって導入した受入基地およ
び/または消費基地でのLNGの寒冷を利用して液体窒
素を製造し、当該液体窒素をLNG輸送船に積載し、当
該恰送船において発生するLNGのボイルオフガスを前
記液体窒素と熱交換させて当該ボイルオフガスを再液化
することにより、LNG貯槽の圧力上昇を防止すること
を特徴とするLNGの輸送システム。
(1) Produce liquid nitrogen by utilizing the cooling of LNG introduced by an LNG transport ship at a receiving terminal and/or a consumption terminal, load the liquid nitrogen onto an LNG transport ship, and generate LNG on the transport ship. An LNG transportation system, characterized in that the boil-off gas is heat-exchanged with the liquid nitrogen to re-liquefy the boil-off gas, thereby preventing a pressure increase in an LNG storage tank.
(2)  LNG輸送船に@祇した液体窒素の蒸発によ
って発生する窒素ガスをLNG f(li送船の甲板以
下の窒間内に封入することによって安全を確保すること
を特徴とする特許請求の範囲第一項のLNGの輸送シス
テム。
(2) A patent claim characterized in that safety is ensured by sealing nitrogen gas generated by the evaporation of liquid nitrogen stored in an LNG transport ship into the nitrogen chamber below the deck of the LNG transport ship. LNG transportation system in scope 1.
JP58091587A 1983-05-26 1983-05-26 Transportation system for lng Pending JPS59216785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58091587A JPS59216785A (en) 1983-05-26 1983-05-26 Transportation system for lng

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58091587A JPS59216785A (en) 1983-05-26 1983-05-26 Transportation system for lng

Publications (1)

Publication Number Publication Date
JPS59216785A true JPS59216785A (en) 1984-12-06

Family

ID=14030678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58091587A Pending JPS59216785A (en) 1983-05-26 1983-05-26 Transportation system for lng

Country Status (1)

Country Link
JP (1) JPS59216785A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002095285A1 (en) * 1999-11-05 2002-11-28 Osaka Gas Co., Ltd. Device and method for pressure control of cargo tank of liquefied natural gas carrier
KR100726292B1 (en) 2005-10-06 2007-06-11 삼성중공업 주식회사 LNG reliquefaction method and apparatus in LNG carrier
WO2017105680A1 (en) * 2015-12-14 2017-06-22 Exxonmobil Upstream Research Company Expander-based lng production processes enhanced with liquid nitrogen
JP2018538197A (en) * 2015-12-14 2018-12-27 エクソンモービル アップストリーム リサーチ カンパニー Method of natural gas liquefaction on an LNG carrier storing liquid nitrogen
US10480854B2 (en) 2015-07-15 2019-11-19 Exxonmobil Upstream Research Company Liquefied natural gas production system and method with greenhouse gas removal
US10488105B2 (en) 2015-12-14 2019-11-26 Exxonmobil Upstream Research Company Method and system for separating nitrogen from liquefied natural gas using liquefied nitrogen
US10578354B2 (en) 2015-07-10 2020-03-03 Exxonmobil Upstream Reseach Company Systems and methods for the production of liquefied nitrogen using liquefied natural gas
US10663115B2 (en) 2017-02-24 2020-05-26 Exxonmobil Upstream Research Company Method of purging a dual purpose LNG/LIN storage tank
US11060791B2 (en) 2015-07-15 2021-07-13 Exxonmobil Upstream Research Company Increasing efficiency in an LNG production system by pre-cooling a natural gas feed stream
US11083994B2 (en) 2019-09-20 2021-08-10 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration
US11215410B2 (en) 2018-11-20 2022-01-04 Exxonmobil Upstream Research Company Methods and apparatus for improving multi-plate scraped heat exchangers
US11326834B2 (en) 2018-08-14 2022-05-10 Exxonmobil Upstream Research Company Conserving mixed refrigerant in natural gas liquefaction facilities
US11415348B2 (en) 2019-01-30 2022-08-16 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US11506454B2 (en) 2018-08-22 2022-11-22 Exxonmobile Upstream Research Company Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same
US11536510B2 (en) 2018-06-07 2022-12-27 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11555651B2 (en) 2018-08-22 2023-01-17 Exxonmobil Upstream Research Company Managing make-up gas composition variation for a high pressure expander process
US11578545B2 (en) 2018-11-20 2023-02-14 Exxonmobil Upstream Research Company Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers
US11635252B2 (en) 2018-08-22 2023-04-25 ExxonMobil Technology and Engineering Company Primary loop start-up method for a high pressure expander process
US11668524B2 (en) 2019-01-30 2023-06-06 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11806639B2 (en) 2019-09-19 2023-11-07 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11808411B2 (en) 2019-09-24 2023-11-07 ExxonMobil Technology and Engineering Company Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen
US11815308B2 (en) 2019-09-19 2023-11-14 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11927391B2 (en) 2019-08-29 2024-03-12 ExxonMobil Technology and Engineering Company Liquefaction of production gas

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4862184A (en) * 1971-11-17 1973-08-30
JPS4862814A (en) * 1971-11-22 1973-09-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4862184A (en) * 1971-11-17 1973-08-30
JPS4862814A (en) * 1971-11-22 1973-09-01

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6901762B2 (en) * 1999-11-05 2005-06-07 Osaka Gas Co., Ltd. Device and method for pressure control of cargo tank of liquefied natural gas carrier
WO2002095285A1 (en) * 1999-11-05 2002-11-28 Osaka Gas Co., Ltd. Device and method for pressure control of cargo tank of liquefied natural gas carrier
KR100726292B1 (en) 2005-10-06 2007-06-11 삼성중공업 주식회사 LNG reliquefaction method and apparatus in LNG carrier
US10578354B2 (en) 2015-07-10 2020-03-03 Exxonmobil Upstream Reseach Company Systems and methods for the production of liquefied nitrogen using liquefied natural gas
US10480854B2 (en) 2015-07-15 2019-11-19 Exxonmobil Upstream Research Company Liquefied natural gas production system and method with greenhouse gas removal
US11060791B2 (en) 2015-07-15 2021-07-13 Exxonmobil Upstream Research Company Increasing efficiency in an LNG production system by pre-cooling a natural gas feed stream
JP2018538197A (en) * 2015-12-14 2018-12-27 エクソンモービル アップストリーム リサーチ カンパニー Method of natural gas liquefaction on an LNG carrier storing liquid nitrogen
US10488105B2 (en) 2015-12-14 2019-11-26 Exxonmobil Upstream Research Company Method and system for separating nitrogen from liquefied natural gas using liquefied nitrogen
US10551117B2 (en) 2015-12-14 2020-02-04 Exxonmobil Upstream Research Company Method of natural gas liquefaction on LNG carriers storing liquid nitrogen
JP2019505755A (en) * 2015-12-14 2019-02-28 エクソンモービル アップストリーム リサーチ カンパニー Inflator-based LNG production process reinforced with liquid nitrogen
WO2017105680A1 (en) * 2015-12-14 2017-06-22 Exxonmobil Upstream Research Company Expander-based lng production processes enhanced with liquid nitrogen
US10663115B2 (en) 2017-02-24 2020-05-26 Exxonmobil Upstream Research Company Method of purging a dual purpose LNG/LIN storage tank
US10989358B2 (en) 2017-02-24 2021-04-27 Exxonmobil Upstream Research Company Method of purging a dual purpose LNG/LIN storage tank
US11536510B2 (en) 2018-06-07 2022-12-27 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11326834B2 (en) 2018-08-14 2022-05-10 Exxonmobil Upstream Research Company Conserving mixed refrigerant in natural gas liquefaction facilities
US11506454B2 (en) 2018-08-22 2022-11-22 Exxonmobile Upstream Research Company Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same
US11635252B2 (en) 2018-08-22 2023-04-25 ExxonMobil Technology and Engineering Company Primary loop start-up method for a high pressure expander process
US11555651B2 (en) 2018-08-22 2023-01-17 Exxonmobil Upstream Research Company Managing make-up gas composition variation for a high pressure expander process
US11215410B2 (en) 2018-11-20 2022-01-04 Exxonmobil Upstream Research Company Methods and apparatus for improving multi-plate scraped heat exchangers
US11578545B2 (en) 2018-11-20 2023-02-14 Exxonmobil Upstream Research Company Poly refrigerated integrated cycle operation using solid-tolerant heat exchangers
US11415348B2 (en) 2019-01-30 2022-08-16 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11668524B2 (en) 2019-01-30 2023-06-06 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US11927391B2 (en) 2019-08-29 2024-03-12 ExxonMobil Technology and Engineering Company Liquefaction of production gas
US11806639B2 (en) 2019-09-19 2023-11-07 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11815308B2 (en) 2019-09-19 2023-11-14 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11083994B2 (en) 2019-09-20 2021-08-10 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration
US11808411B2 (en) 2019-09-24 2023-11-07 ExxonMobil Technology and Engineering Company Cargo stripping features for dual-purpose cryogenic tanks on ships or floating storage units for LNG and liquid nitrogen

Similar Documents

Publication Publication Date Title
JPS59216785A (en) Transportation system for lng
US5803005A (en) Ship based system for compressed natural gas transport
CN101245892B (en) Lng tank and method of treating boil-off gas
EP2609007B1 (en) A method and arrangement for providing lng fuel for ships
US6089022A (en) Regasification of liquefied natural gas (LNG) aboard a transport vessel
US3877240A (en) Process and apparatus for the storage and transportation of liquefied gases
US20100205979A1 (en) Integrated LNG Re-Gasification Apparatus
Jeon et al. Review on boil-off gas (BOG) re-liquefaction system of liquefied CO2 transport ship for carbon capture and sequestration (CCS)
KR100899997B1 (en) Sloshing free cargo tank by re-liquefaction of boil off gas
Kim et al. Operation scenario-based design methodology for large-scale storage systems of liquid hydrogen import terminal
KR100885796B1 (en) Boil-off gas reliquefaction apparatus
KR20130052937A (en) Liquefied gas carrier having boil-off gas tank
KR20160070345A (en) Boil-Off Gas Treatment System For Ship
WO2014086413A1 (en) Integrated and improved system for sea transportation of compressed natural gas in vessels, including multiple treatment steps for lowering the temperature of the combined cooling and chilling type
KR20160128662A (en) LNG Offloading System And Method For FLNG
Bahgat Proposed method for dealing with boil-off gas on board LNG carriers during loaded passage
KR20220099292A (en) Heterogeneous Liquefied Gas Storage Tank
KR102543433B1 (en) LNG Offloading System And Method For FLNG
KR20150030938A (en) Apparatus for the reliquefaction of boil-off gas
KR102512996B1 (en) System and Method for Controlling Boil-Off Gas of Liquefied Hydrogen
JPH0424598B2 (en)
KR20160020721A (en) BOG Reliquefaction System and Method for Liquefying BOG Using the Same
WO2023121234A1 (en) Ship boil-off gas reliquefaction system
KR20220161589A (en) Fuel gas supply system and method for ship
Frangesh et al. H—4 Distrigas LNG Barge Operating Experience