JPS5921651B2 - Granulation method and equipment - Google Patents

Granulation method and equipment

Info

Publication number
JPS5921651B2
JPS5921651B2 JP7706681A JP7706681A JPS5921651B2 JP S5921651 B2 JPS5921651 B2 JP S5921651B2 JP 7706681 A JP7706681 A JP 7706681A JP 7706681 A JP7706681 A JP 7706681A JP S5921651 B2 JPS5921651 B2 JP S5921651B2
Authority
JP
Japan
Prior art keywords
perforated plate
granulation
granulation chamber
chamber
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7706681A
Other languages
Japanese (ja)
Other versions
JPS57190643A (en
Inventor
登 川上
義弘 伊藤
忠 奥
宣人 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI PAUDARU KK
Original Assignee
FUJI PAUDARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI PAUDARU KK filed Critical FUJI PAUDARU KK
Priority to JP7706681A priority Critical patent/JPS5921651B2/en
Publication of JPS57190643A publication Critical patent/JPS57190643A/en
Publication of JPS5921651B2 publication Critical patent/JPS5921651B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、粉体を流動状態に保ち、これに結合剤溶液
を噴霧して所要径の顆粒ないし粒体を得る造粒方法とそ
の装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a granulation method and apparatus for obtaining granules or granules of a desired diameter by keeping powder in a fluid state and spraying a binder solution thereon.

従来よりこの種の造粒装置としては、造粒室底部に多数
の孔を備えた多孔板を固定し、この固定多孔板の下方よ
り熱風を上方に向って噴出させ、これによって造粒室内
の粉体を上下方向にのみ流動させ、これにスプレーで結
合剤溶液を噴霧し、粉体粒子を形成凝集させて乾燥させ
ることにより造粒するものがある。
Conventionally, this type of granulation equipment has a perforated plate with a large number of holes fixed at the bottom of the granulation chamber, and hot air is blown upward from below the fixed perforated plate. There is a method in which granulation is carried out by causing the powder to flow only in the vertical direction, spraying a binder solution thereon, forming powder particles, agglomerating them, and drying them.

この造粒方法は、造粒室内で上下にはげしく移動する粉
体にスプレーの液噴霧速度および液粒子の大きさを調整
して均一に粒子の核を作り得る利点がある。
This granulation method has the advantage that it is possible to uniformly form particle nuclei by adjusting the liquid spray speed and the size of the liquid particles on the powder that is rapidly moving up and down in the granulation chamber.

しかしながら粉体の性質が異ったり、スプレーの液粒子
の大きさ、速度の相違によって、造粒した製品の粒度分
布にそれぞれバラつきを生ずることが多い難点がある。
However, there is a drawback that the particle size distribution of the granulated product often varies due to differences in the properties of the powder and the size and speed of the sprayed liquid particles.

これと共に、従来の流動層造粒法による製品は、造粒過
程で粉体が上下方向の移動のみの外力を受けることを、
下方から吹上げられる熱気流にさらされながら粒体化す
るために、ポーラスな粒体となる。
At the same time, products made using the conventional fluidized bed granulation method are subject to external forces that only move the powder in the vertical direction during the granulation process.
Because it is granulated while being exposed to hot air currents blown up from below, it becomes porous granules.

このことは製品面からすると長所でもあり、短所でもあ
るが、ポーラスな粒体ではなく、見掛比重(嵩比重)が
大で密度の高い粒体を必要とする場合がある。
This is both an advantage and a disadvantage from a product perspective, but it may require granules with large apparent specific gravity (bulk specific gravity) and high density, rather than porous granules.

したがって密度の高い製品を後にプレスして成型品とす
るたとえばフェライト等の電子部品や医薬錠剤の材料と
しての粒体を製造するには不適当である。
Therefore, it is unsuitable for producing granules as materials for electronic parts such as ferrite or pharmaceutical tablets, which are later pressed into molded products from high-density products.

この発明は、粗粒(直径3〜1へ)、細粒(直径1.5
〜0.3へ)、微細粒(直径0.5〜0.1鬼)等の球
形顆粒のうちの所要直径の粒体を簡単な操作で著しく高
い歩留りにおいて造粒すると共に、密度の高い粒体な得
ること、ならびに一台の装置において混合、造粒、乾燥
および過大粒の解砕を行い得る方法および装置を目的と
するものである。
This invention has coarse grains (diameter 3 to 1), fine grains (diameter 1.5
~0.3), fine grains (diameter 0.5 to 0.1 mm), etc., can be granulated with a required diameter at a significantly high yield with a simple operation, and can also be granulated with high density. The object of the present invention is to provide a method and apparatus that can perform mixing, granulation, drying and oversized granulation in one device.

以下図示の実施例についてこの発明を詳述する。The present invention will be described in detail below with reference to the illustrated embodiments.

筒状の造粒室1の上部に、材料投入口2を有する本体ケ
ース3を設け、バグフィルタ−4を介して排気ブロワ−
5に接続する。
A main body case 3 having a material input port 2 is provided in the upper part of the cylindrical granulation chamber 1, and an exhaust blower is provided through a bag filter 4.
Connect to 5.

造粒室1の底部内周に周縁部6を近接させた回転多孔板
Tを設け、モーター8により500〜1000R,P、
M、の範囲で任意に変速し回転し得るように構成し、多
孔板7の下部に同軸に設けた顆粒排出羽根9を配置し、
側方の顆粒排出口10より所要粒径に造粒した顆粒を排
出すべくする。
A rotary perforated plate T with a peripheral edge 6 close to the inner periphery of the bottom of the granulation chamber 1 is provided, and a motor 8 is used to generate 500 to 1000 R, P,
The granule discharge vane 9 is arranged coaxially with the lower part of the perforated plate 7,
Granules granulated to a desired particle size are discharged from the side granule discharge port 10.

造粒室1内には多孔板7の直上に近接し、かつ造粒室1
の内壁に沿う立上り部11を有する攪拌バー12を設け
、本体ケース3の上部に設けたモーター13により正逆
両方向に、多孔板70回転より低速で回転させる構成と
する。
The inside of the granulation chamber 1 is located directly above and adjacent to the perforated plate 7.
A stirring bar 12 having a rising portion 11 along the inner wall of the main body case 3 is provided, and is rotated in both forward and reverse directions at a speed lower than the perforated plate 70 rotations by a motor 13 provided on the upper part of the main body case 3.

また多孔板7の上面側方部において造粒室1の側壁に、
顆粒より大径の粒体を器外に排出する粒体排出口14を
設け、該排出口14を開いて多孔板7を回転させること
により、多孔板T上の粒体を排出し得べ(する。
In addition, on the side wall of the granulation chamber 1 on the upper side of the perforated plate 7,
A granule discharge port 14 is provided for discharging granules with a larger diameter than the granules to the outside of the container, and by opening the discharge port 14 and rotating the perforated plate 7, the granules on the perforated plate T can be discharged. do.

攪拌バー12の立上り部11は造粒室1内壁に付着する
粒体を破砕する。
The rising portion 11 of the stirring bar 12 crushes the granules adhering to the inner wall of the granulation chamber 1.

造粒室1の上方において、本体ケース3内に臨む二流体
噴射ノズル15を、その噴霧口を下向きにして配置し、
液タンク16内の結合剤溶液をポンプ17および液量調
節器18を経てノズル15に供給すべ(し、さらにコン
プレッサー19からの圧縮空気を供給すべくして、ノズ
ル15により混合し、いわゆる二流体ノズルとして噴霧
すべくする。
Above the granulation chamber 1, a two-fluid injection nozzle 15 facing into the main body case 3 is arranged with its spray port facing downward,
The binder solution in the liquid tank 16 is supplied to the nozzle 15 via a pump 17 and a liquid volume regulator 18 (and mixed by the nozzle 15 in order to further supply compressed air from a compressor 19, forming a so-called two-fluid nozzle. It should be sprayed as a spray.

多孔板7の下部の室には、エアーフィルター20、ブロ
ワ−21、および熱交換器22を介して熱風または乾燥
ガスを送入し得べくし、多孔板70周縁部6と造粒室1
の内壁面との間のスキマ23および多孔板7に設けた多
数の小孔24から熱風又は乾燥ガスを造粒室1内に吹き
上げさせる。
Hot air or dry gas can be introduced into the lower chamber of the perforated plate 7 via an air filter 20, a blower 21, and a heat exchanger 22, and the peripheral part 6 of the perforated plate 70 and the granulation chamber 1
Hot air or dry gas is blown up into the granulation chamber 1 from a gap 23 between the granulation chamber 1 and the inner wall surface of the granulation chamber 1 and from a large number of small holes 24 provided in the perforated plate 7.

図において25はバグフィルタ−40脱粉装置であって
、所要時、コンプレッサー19からの圧縮空気を図中矢
符で示すようにバグフィルタ−4に対してその排気側よ
り適時、断続的に強く吹きつげ、その目づまりを防止し
、付着した粉体を落下させる。
In the figure, reference numeral 25 denotes a bag filter 40 de-powdering device, which blows compressed air from the compressor 19 intermittently and strongly from the exhaust side of the bag filter 4 as indicated by arrows in the figure. Prevents boxwood from clogging and removes adhering powder.

26は多孔板7および排出羽根9の駆動軸、27は攪拌
バーの駆動軸、28は熱風又は乾燥ガス入口である。
26 is a drive shaft for the perforated plate 7 and the discharge blade 9, 27 is a drive shaft for the stirring bar, and 28 is a hot air or dry gas inlet.

多孔板7に設ける多数の小孔24の径は、例えば所要顆
粒の最大径程度(3へ〜2%φ程度)とし、いわゆる開
口比については数%を適当とする。
The diameter of the large number of small holes 24 provided in the porous plate 7 is, for example, approximately the maximum diameter of the required granules (approximately 3 to 2%φ), and the so-called aperture ratio is appropriately set to several percent.

攪拌バー12は、多孔板7上に臨む部分を第3図に示す
如くスクレーパー状に傾斜させ、造粒中は多孔板7のA
矢符方向の回転と同方向に多孔板7よりも遅い回転でA
′矢符方向に回転させる。
The stirring bar 12 has a portion facing the perforated plate 7 inclined in a scraper shape as shown in FIG.
A by rotating slower than the perforated plate 7 in the same direction as the rotation in the direction of the arrow.
´Rotate in the direction of the arrow.

そして造粒完了後は、熱風の供給を停止し、多孔板の回
転を止めた状態でB矢符方向に回転させて、多孔板7上
に残る大径の粒子を多孔板7の小孔24に押しつけて破
砕する。
After the granulation is completed, the supply of hot air is stopped, and the perforated plate is rotated in the direction of the arrow B while the rotation of the perforated plate is stopped. crush it by pressing it against it.

この発明による造粒方法は次の通りである。The granulation method according to this invention is as follows.

先ず排気ブロワ−5とブロワ−21とを起動する。First, exhaust blower 5 and blower 21 are started.

これにより、フィルター20を通った空気は熱交換器2
2で加熱されて熱風となり、造粒室1の下室に吹き込ま
れ、多孔板70周縁のスキマ23および多数の小孔24
を通って造粒室1内を吹き上げる。
As a result, the air that has passed through the filter 20 is transferred to the heat exchanger 2.
2, it becomes hot air, which is blown into the lower chamber of the granulation chamber 1, and is blown into the gap 23 around the perforated plate 70 and the large number of small holes 24.
The inside of the granulation chamber 1 is blown up through the air.

多孔板7を500〜1000R,P、M、 で回転し、
攪拌バー12を50〜100 R,P、M、 で同方
向に回転させる。
Rotate the perforated plate 7 at 500 to 1000 R, P, M,
The stirring bar 12 is rotated in the same direction by 50 to 100 R, P, M.

この状態で粉体を材料投入口2より造粒室内に投入する
と、粉体は多孔板70回転とその下方から吹き上げる熱
風により造粒室内を浮動しながら旋回する。
When the powder is introduced into the granulation chamber from the material input port 2 in this state, the powder is rotated while floating in the granulation chamber by the perforated plate 70 revolutions and the hot air blown from below.

多孔板7は高速であるから、その小孔24および周縁の
スキマ23から吹き上げる熱風は同方向に旋回すると共
に粉体を遠心力で造粒室内周壁に圧接し、かつ反転して
第4図に示すような求心状旋回流動Fを行わせる。
Since the perforated plate 7 moves at high speed, the hot air blown from the small holes 24 and the gap 23 at the periphery swirls in the same direction and presses the powder against the peripheral wall of the granulation chamber by centrifugal force, and then reverses as shown in FIG. A centripetal swirling flow F as shown is caused.

したがって粉体は造粒室1の内周に沿う上述の求心状旋
回流動Fを行なう一方で垂直方向には造粒室1の内壁に
沿った第2図矢符Sに示すような循環流動Sを形成し、
粉体粒子の均一な混合を行なう。
Therefore, the powder performs the above-mentioned centripetal swirling flow F along the inner circumference of the granulation chamber 1, while in the vertical direction, the powder undergoes a circular flow S along the inner wall of the granulation chamber 1 as shown by the arrow S in FIG. form,
Provide uniform mixing of powder particles.

そこでノズル15に結合剤溶液を液量調節器18により
調節して供給すると同時に、圧縮空気を供給することに
より、前記旋回流動Fの表面に結合剤溶液の噴霧な行な
う。
Therefore, the binder solution is supplied to the nozzle 15 while being regulated by the liquid amount regulator 18, and at the same time, compressed air is supplied to spray the binder solution onto the surface of the swirling flow F.

これによって旋回流動ならびに循環流動する粉体粒子に
結合剤溶液の微粒子が付着して造粒の芯が作られ、この
芯に粉体粒子同志が結合し、これらの粒子の凝集物を、
前記循環流動Sおよび旋回筐動Fにより自転させかつ全
体としては公転させながら粒子を形成するので粒子は終
始転勤を受は球形に形成される。
As a result, fine particles of the binder solution adhere to the swirling and circulating powder particles, creating a core for granulation, and the powder particles bond to this core, forming aggregates of these particles.
Since the particles are formed while being rotated on their own axis and revolved as a whole by the circulating flow S and the rotating casing F, the particles are transferred from beginning to end and are formed into a spherical shape.

攪拌バー12は多孔板7より遅い回転で同方向に回転す
るので、粉体ならびに粒体の旋回流動および循環流動運
動に短時間の堰止めが行われる状態となる。
Since the stirring bar 12 rotates at a slower speed than the perforated plate 7 in the same direction, the swirling flow and circulating flow motion of the powder and granules are stopped for a short time.

この結果粒体は攪拌バー12上を通過する際粒体同志の
接触および反撥をくり返すので、粒体は高い密度に造粒
される。
As a result, when the granules pass over the stirring bar 12, the granules repeatedly come into contact with each other and are repelled, so that the granules are granulated to a high density.

ここで成長した粒体はひきつづき上記循環流動Sおよび
旋回流動Fを行なう際、粒体としての質量の遠心力で造
粒室1の内周壁に沿って転動するので、前記の自転およ
び公転は一層促進される。
When the granules grown here continue to perform the above-mentioned circulating flow S and swirling flow F, they roll along the inner circumferential wall of the granulation chamber 1 due to the centrifugal force of the mass of the granules, so the above-mentioned rotation and revolution are This will be further promoted.

従ってこの発明によれば、粒体は遠心力による造粒室内
周壁への圧接を受けながら転動造粒されるものであるか
ら、いわゆる重曹造粒物を造粒し得る特徴を有するもの
である。
Therefore, according to the present invention, since the granules are granulated by rolling while being pressed against the peripheral wall of the granulation chamber by centrifugal force, the granules have the characteristic of being able to granulate so-called sodium bicarbonate granules. .

上述の転勤造粒は液滴により加湿された粒子の表面に微
粉が付着しなから造粒室内で均一に球形化するので、粒
度分布のバラつきをな(し、高い収率の造粒を遂行し得
る効果を奏する。
In the above-mentioned transfer granulation, fine powder does not adhere to the surface of the particles moistened by droplets and is uniformly sphericalized in the granulation chamber, thereby eliminating variations in particle size distribution and achieving high yield granulation. It has the potential to be effective.

本発明において例えば粒体の直径が1.5X以下の細粒
を造粒しようとする場合は、造粒室内において浮動しな
がら旋回する粉体に、結合剤溶液を二流体ノズルを使用
することにより液滴直径を小さくしてかつ加液速度を遅
(し、熱風による乾燥を早めれば、上記液滴を芯とした
粒体がその時点での直径で造粒される。
In the present invention, when attempting to granulate fine granules with a diameter of 1.5X or less, for example, by using a two-fluid nozzle to apply a binder solution to the powder swirling while floating in the granulation chamber. By reducing the diameter of the droplet, slowing down the rate of liquid addition, and speeding up drying with hot air, granules with the droplet as the core are granulated with the diameter at that point.

一方それより直径の大きい粒体を造粒しようとする場合
は、上述の操作に加えて結合剤の加液速度を増せば、す
でに粒形化した粒子同志がさらに数個集合し、これに若
干の粉が加わって大きい粒体に成長させる。
On the other hand, when attempting to granulate granules with a larger diameter, if you increase the rate of addition of the binder in addition to the above-mentioned operation, several more particles that have already been granulated will aggregate, and this will cause some powder is added to grow into large granules.

また結合剤の噴霧な一流体ノズルで大きい液滴によって
行なうことにより、液による湿潤の程度が大きい粒体の
芯を作り、粉の付着する機会を多くし、また熱風の温度
も低(すれば、乾燥が遅くなるので、その間粒体を成長
させることによっても達成し得るものである。
In addition, by spraying large droplets with a single fluid nozzle that sprays a binder, the core of the particles is created with a high degree of wetting by the liquid, increasing the chances of powder adhesion, and the temperature of the hot air is low (if possible). This can also be achieved by growing the granules during this period, since drying is delayed.

またより密度の大きい粒体(空隙率の小さな顆粒)を得
たい場合には、多孔板70回転速度を速くすることによ
り密度を増し、顆粒の硬さを増大する。
Furthermore, if it is desired to obtain granules with a higher density (granules with a smaller porosity), the rotation speed of the perforated plate 70 is increased to increase the density and the hardness of the granules.

これは粒体に働く遠心力に起因するものであって、これ
により粒子相互間のこすり合い作用、研磨作用が増大し
、粒度分布のバラつきがさらに小さくなる。
This is due to the centrifugal force acting on the particles, which increases the rubbing action and polishing action between the particles, further reducing the variation in particle size distribution.

造粒、乾燥工程が終ると、多孔板70回転を減速し、ブ
ロワ−21および排気ブロワ−5を停止すれば、多孔板
7のスキマ23、小孔24からの熱風の上方への吹き出
しが停止するから、造粒された粒体は多孔板7の小孔2
4かも砂時計の砂のように下方の室に落下する。
When the granulation and drying steps are completed, the rotation of the perforated plate 70 is decelerated and the blower 21 and exhaust blower 5 are stopped, thereby stopping the upward blowing of hot air from the gaps 23 and small holes 24 of the perforated plate 7. Therefore, the granulated granules enter the small holes 2 of the perforated plate 7.
4. Like the sand in an hourglass, it falls into the chamber below.

従って排出口10を開き、排出羽根9を回転するごとに
より多孔板7から落下した粒体を器外に排出することが
できる。
Therefore, each time the discharge port 10 is opened and the discharge blade 9 is rotated, the particles falling from the perforated plate 7 can be discharged to the outside of the vessel.

多孔板7の小孔24の径より大径の粒体は多孔板γ上に
残留するが、ここで攪拌バー12のみを第3図の矢符B
方向に回転すれば該バーにより大径粒体は解砕されて、
多孔板7の小孔24より下方に落下させることができ、
造粒物を全部排出することができる。
Particles with a diameter larger than the diameter of the small hole 24 of the perforated plate 7 remain on the perforated plate γ, but only the stirring bar 12 is moved by the arrow B in FIG.
When rotated in the direction, the large diameter particles are crushed by the bar,
It can be dropped downward through the small holes 24 of the perforated plate 7,
All granules can be discharged.

次にこの発明による造粒結果の実施例について示す。Next, examples of granulation results according to the present invention will be shown.

実施例 1 原 料 ベントナイト・タルク 8kg 配合比率 1:1 結合剤 CMC3%溶液 造粒時間 5分 噴霧量及時間 2.3J(0,46J/m) 5分多
孔板直径 400X 多孔板回転数 造粒工程 750 R,P、M。
Example 1 Raw materials bentonite/talc 8 kg Mixing ratio 1:1 Binder CMC 3% solution Granulation time 5 minutes Spray amount and time 2.3 J (0.46 J/m) 5 minutes Perforated plate diameter 400X Perforated plate rotation speed Granulation Step 750 R, P, M.

乾燥工程 7分から16.5分まで の間180 R,P、M。Drying process: 7 minutes to 16.5 minutes Between 180 R, P, M.

攪拌バー回転数造粒工程 45 R,P、M。Stirring bar rotation speed Granulation process 45 R, P, M.

乾燥工程 7分から16.5分ま での間12 R,P、M。Drying process: 7 minutes to 16.5 minutes Between 12 R, P, M.

乾燥時間 5分、20分 以上の条件において得られた結果は、 乾燥時間5分で100メツシュ以上が90.5%、乾燥
時間20分で98.3%得られた。
The results obtained under the conditions of drying time of 5 minutes and 20 minutes or more were as follows: 90.5% of the meshes had a mesh size of 100 or more when the drying time was 5 minutes, and 98.3% when the drying time was 20 minutes.

24ないし48メツシユの粒度の揃った粒体は乾燥時間
5分で77.9%、20分で8’1.5%であった。
The granules with a uniform particle size of 24 to 48 meshes had a drying time of 77.9% for 5 minutes and 8'1.5% for 20 minutes.

実施例 2 原 料 フェライト粉末(磁性材料)15kg結合剤
PVA2%溶液 造粒時間 30分 噴霧量及時間 2.3J(0,46$/mJ 5分多
孔板直径 400% 多孔板回転数 造粒工程 750R,P、M。
Example 2 Raw materials Ferrite powder (magnetic material) 15kg Binder
PVA 2% solution granulation time: 30 minutes Spray amount and time: 2.3 J (0.46 $/mJ 5 minutes) Perforated plate diameter: 400% Perforated plate rotation speed: Granulation process: 750R, P, M.

乾燥工程 750 R,P、M。Drying process 750 R, P, M.

(32分後停止) 攪拌バー回転数 造粒工程 60 R,P、M。(Stopped after 32 minutes) Stirring bar rotation speed Granulation process 60 R, P, M.

乾燥工程 20R,P、M。Drying process 20R, P, M.

(32分後停止) 乾燥時間 30分、37分 以上の条件において得られた結果は、 顆粒のかさ比重 1.68 kg/73 顆粒。(Stopped after 32 minutes) Drying time: 30 minutes, 37 minutes The results obtained under the above conditions are: Bulk specific gravity of granules: 1.68 kg/73 Granules.

ゎ85+布 乾燥時間 乾燥時間30分 37分 10メツシュ以上 0 0.3% 24 /l 2.3% 2.0%32
1/ 1.1% 0.5%なおこの実
施例においては、目標とする粒度は32〜150メツシ
ユであり従って32メツシュ以上の粒体は乾燥終了後、
攪拌バーを逆方向に回転させ、多孔板上の粒体を解砕し
た。
ゎ85+cloth Drying time Drying time 30 minutes 37 minutes 10 mesh or more 0 0.3% 24 /l 2.3% 2.0%32
1/ 1.1% 0.5% In this example, the target particle size is 32 to 150 meshes, so particles of 32 meshes or more are dried after drying.
The stirring bar was rotated in the opposite direction to crush the granules on the perforated plate.

これにより乾燥時間30分の場合で88%以上、37分
の場合で94%以上の顆粒が得られた。
As a result, 88% or more of the granules were obtained when the drying time was 30 minutes, and 94% or more when the drying time was 37 minutes.

この発明は以上のように、多孔板の回転数を速(するに
従って粒体のかさ比重が増大し、粒度のバラつきの少な
い所望径の顆粒を効率よく得られるものであって、この
ときに高速に回転する多孔板の孔から吹き上げる熱風が
、多孔板上における粉体および成長途次の粒体の遠心力
による型缶造粒を積極的に助長し、空隙率が少なく、か
つ固い顆粒を作るものである。
As described above, as the rotation speed of the perforated plate increases, the bulk specific gravity of the granules increases, and it is possible to efficiently obtain granules of a desired diameter with little variation in particle size. The hot air blown from the holes of the rotating perforated plate actively promotes the granulation of the powder and growing granules on the perforated plate by centrifugal force, creating hard granules with low porosity. It is something.

また造粒工程において形成された粗い粒体に対しては、
乾燥工程完了後に、攪拌バーによる解砕作用を行わせる
ことで、造粒室から完全に取出すことができると共に、
所望する粒度の粒体、顆粒の歩留りを大巾に向上するこ
とができる。
In addition, for coarse granules formed in the granulation process,
After the drying process is completed, by performing a crushing action using a stirring bar, it is possible to completely remove the pellets from the granulation chamber, and
The yield of particles and granules of desired particle size can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の構成を示す正面図、第2図は要部の縦
断正面図、第3図は第2図の■−■線における拡大断面
図、第4図は粉体流動状態を示す平面図である。 1・・・・・・造粒室、2・・・・・・本体ケース、5
・・・・・・排気ブロワ−16・・・・・・周縁部、7
・・・・・・多孔板、9・・・・・・顆粒排出羽根、1
2・・・・・・攪拌バー、15・・・・・・二流体噴射
ノズル、21・・・・・・ブロワ−122・・・・・・
熱交換器、23・・・・・・スキマ、24・・・・・・
小孔、26゜27・・・・・・駆動軸。
Fig. 1 is a front view showing the configuration of the embodiment, Fig. 2 is a longitudinal sectional front view of the main part, Fig. 3 is an enlarged sectional view taken along the line ■-■ in Fig. 2, and Fig. 4 shows the powder flow state. FIG. 1... Granulation chamber, 2... Body case, 5
...Exhaust blower 16...Peripheral part, 7
...... Perforated plate, 9... Granule discharge vane, 1
2... Stirring bar, 15... Two-fluid injection nozzle, 21... Blower 122...
Heat exchanger, 23... Clearance, 24...
Small hole, 26°27... Drive shaft.

Claims (1)

【特許請求の範囲】 1 多数の小孔を設けた多孔板を円筒状造粒室の底部内
側に周縁部を近接した状態で高速に回転させると共に、
その下方から熱風またはガス体を供給することにより、
多孔板上に遠心方向および回転方向に高速に旋回する流
動気流を形成し、造粒室内に投入した粉体に上記気流に
よる造粒室内の平面方向ならびに垂直方向の旋回運動を
与えつつ上方より結合剤溶液を噴霧し該液滴に粉体粒子
を凝集させた後、さらに上記気流により造粒室内で自転
および公転を行わせることを特徴とする造粒方法。 2 多数の小孔を設けた多孔板を円筒状造粒室の底部内
側に周縁部を近接した状態で高速に回転させると共に、
その下方から熱風またはガス体を供給することにより、
多孔板上に遠心方向および回転方向に高速に旋回する流
動気流を形成し、造粒室内に投入した粉体に上記気流に
よる造粒室内の平面方向ならびに垂直方向の旋回運動を
与えつつ上方より結合剤溶液を噴霧仁政液滴に粉体粒子
を凝集させた後、さらに上記気流により造粒室内で自転
および公転を行わせた後、多孔板の回転および熱風また
はガス体の供給を止め、形成された粒体を多孔板の孔か
ら下方に落下させ、多孔板上に残る粗粒を攪拌バーによ
り解砕し多孔板の孔より下方に落下させた後、とり出す
ことを特徴とする特許請求の範囲1に記載の造粒方法。 3 円筒状の造粒室の内底部に多数の小孔を全面に設け
た多孔板を回転可能に設け、多孔板に対し相対回転を可
能としかつ少くとも多孔板上に近接する部分を傾斜させ
た攪拌バーを多孔板の上部に設け、多孔板を任意の速度
に変速して駆動する駆動機構と、攪拌バーをそれより低
い速度で正逆両方向に駆動し得る駆動機構を設け、多孔
板の下部に設けた室に粒体排出回転羽根と、粒体排出口
とを設けると共に、該室に熱風またはガスを供給する送
風手段を設け、造粒室上方に、結合剤溶液の噴霧手段を
配置した造粒装置。
[Claims] 1. A perforated plate provided with a large number of small holes is rotated at high speed with its peripheral edge close to the inside of the bottom of a cylindrical granulation chamber, and
By supplying hot air or gas from below,
A fluid airflow swirling at high speed in the centrifugal and rotational directions is formed on the perforated plate, and the powder introduced into the granulation chamber is combined from above while being given swirling motion in the planar and vertical directions within the granulation chamber by the airflow. A granulation method, which comprises spraying an agent solution to agglomerate powder particles into the droplets, and then causing the droplets to rotate and revolve within a granulation chamber using the air flow. 2 Rotate a perforated plate with a large number of small holes at high speed with its peripheral edge close to the inside of the bottom of the cylindrical granulation chamber,
By supplying hot air or gas from below,
A fluid airflow swirling at high speed in the centrifugal and rotational directions is formed on the perforated plate, and the powder introduced into the granulation chamber is combined from above while being given swirling motion in the planar and vertical directions within the granulation chamber by the airflow. After agglomerating the powder particles into droplets by spraying the agent solution and causing them to rotate and revolve in the granulation chamber using the air flow, the rotation of the perforated plate and the supply of hot air or gas are stopped, and the particles are formed. The method of claim 1 is characterized in that the coarse particles remaining on the perforated plate are crushed by a stirring bar, allowed to fall downward through the holes of the perforated plate, and then taken out. The granulation method according to scope 1. 3. A perforated plate provided with a large number of small holes on the entire surface is rotatably provided at the inner bottom of the cylindrical granulation chamber, and at least a portion close to the perforated plate is tilted to enable relative rotation to the perforated plate. A stirring bar is installed on the top of the perforated plate, and a drive mechanism that changes the speed of the perforated plate to drive the perforated plate and a drive mechanism that can drive the stirring bar in both forward and reverse directions at a lower speed are provided. A granule discharge rotating blade and a granule discharge port are provided in a chamber provided at the bottom, and a blowing means for supplying hot air or gas to the chamber is provided, and a means for spraying a binder solution is arranged above the granulation chamber. Granulation equipment.
JP7706681A 1981-05-20 1981-05-20 Granulation method and equipment Expired JPS5921651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7706681A JPS5921651B2 (en) 1981-05-20 1981-05-20 Granulation method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7706681A JPS5921651B2 (en) 1981-05-20 1981-05-20 Granulation method and equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9138786A Division JPS6265729A (en) 1986-04-22 1986-04-22 Granulator

Publications (2)

Publication Number Publication Date
JPS57190643A JPS57190643A (en) 1982-11-24
JPS5921651B2 true JPS5921651B2 (en) 1984-05-21

Family

ID=13623415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7706681A Expired JPS5921651B2 (en) 1981-05-20 1981-05-20 Granulation method and equipment

Country Status (1)

Country Link
JP (1) JPS5921651B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5955337A (en) * 1982-09-24 1984-03-30 Furointo Sangyo Kk Granulating and coating device
JPS59127638A (en) * 1982-12-31 1984-07-23 Furointo Sangyo Kk Granulating and coating apparatus
JPS5973036A (en) * 1982-10-18 1984-04-25 Furointo Sangyo Kk Granulation coating apparatus
WO2000018500A1 (en) * 1998-09-24 2000-04-06 Glatt Systemtechnik Dresden Gmbh Device for producing a pourable product and a method for using said device

Also Published As

Publication number Publication date
JPS57190643A (en) 1982-11-24

Similar Documents

Publication Publication Date Title
JP4898002B2 (en) Apparatus for producing a pourable product and method for using this apparatus
US4556175A (en) Granulating and coating machine
US3408169A (en) Pan granulation
CN206064345U (en) For the granulating disc of haydite production
JPH078816A (en) Crushing and pelletizing machine
CN211216550U (en) Rotating disc type granulating dryer
JPH0727476A (en) Treatment apparatus of moistened granular material
JPS5921651B2 (en) Granulation method and equipment
JP2001170473A (en) Pelletizing device
JP2002126561A (en) Shredding device
JPS6265729A (en) Granulator
JPS5949838A (en) Method and device for granulation
JP2000246084A (en) Granulator
JPS632212B2 (en)
JPH09103668A (en) Powder particle treatment apparatus
JPS5921649B2 (en) Granulation method and equipment
JPS5973036A (en) Granulation coating apparatus
JP2566503B2 (en) Powder mixing method and granulation method
JPS6327050B2 (en)
JP3338523B2 (en) Granule processing equipment and granule storage tank
JPH10296069A (en) Granulating device
JP3109972B2 (en) Granulation of raw materials for ceramics
JPH0549901A (en) Granulation
JPH04330929A (en) Discharge mechanism in fluidized-bed treating device
JPH0224581B2 (en)