JPS59215464A - High-strength high-expansion bolt - Google Patents

High-strength high-expansion bolt

Info

Publication number
JPS59215464A
JPS59215464A JP8753883A JP8753883A JPS59215464A JP S59215464 A JPS59215464 A JP S59215464A JP 8753883 A JP8753883 A JP 8753883A JP 8753883 A JP8753883 A JP 8753883A JP S59215464 A JPS59215464 A JP S59215464A
Authority
JP
Japan
Prior art keywords
weight
less
strength
bolt
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8753883A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Kenji Isogawa
礒川 憲二
Kunio Namiki
並木 邦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP8753883A priority Critical patent/JPS59215464A/en
Publication of JPS59215464A publication Critical patent/JPS59215464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To provide a titled bolt suitable for use in fastening of Al alloy parts, etc. by specifying the compsn. of a steel consisting of C, Si, Mn, Ni, S and Fe and regulating the cold reduction ratio for drawing after rolling and soln. heat treatment and forming temp. CONSTITUTION:A steel contg. 0.5-0.8wt% C, 0.1-1% Si, 10-20% Mn, 0.5-2% Ni and <=0.05%, more preferably <=0.02% S, contg. further 0.02-0.2% N and consisting of the balance Fe and unavoidable impurities is used as a blank material. The blank material is formed at 15-30% cold reduction ratio in drawing after rolling and soln. heat treatment and at <=600 deg.C, more preferably <=350 deg.C, by which a high-strength high-expansion bolt is obtd. This bolt is suitable for use in fastening Al parts, etc. having the coefft. of thermal expansion higher than the coefft. of expansion of Fe parts.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、Fe系部品に比べて熱膨張係数の比較的高
い例えばA文合金部品の締結に使用するのに適した高強
度・高膨張ボルトに関するものである。
Detailed Description of the Invention (Field of Industrial Application) This invention provides a high-strength, high-expansion product suitable for use in fastening A-type alloy parts, which have a relatively high coefficient of thermal expansion compared to Fe-based parts, for example. It's about bolts.

(従来技術) 近年、省エネル4≦どの関心が著しく高まってきており
、例えば自動車業界においても軽量化、低燃費化の努力
が多方面から行われている。その中で、エンジン部分、
とくにシリンダヘッドおよびシリンダブロックに鋳鉄よ
りも軽量であるAJJ合金が使用されるようになってき
ており、これに伴ってこれら各部品の締結ボルト(例え
ばスフラドボルト)に従来経験されなかった問題が生ず
るようになった。すなわち、エンジン稼動中にこれら各
部品は100°C前後まで」二昇するが、通常の鋼の熱
膨張係数が約13X10’程度であるのに対し、A又合
金の熱膨張係数は20〜25×10−6と大きいため、
従来の締結ポルトをそのまま用いた場合には、この締結
部分のA1合金部品が変形を生じ、締結部分にすき間を
生ずることがあった。
(Prior Art) In recent years, there has been a remarkable increase in interest in energy saving (4≦4), and efforts are being made from various angles to reduce weight and improve fuel efficiency, for example, in the automobile industry. Among them, the engine part,
In particular, AJJ alloy, which is lighter than cast iron, is being used for cylinder heads and cylinder blocks, and with this, problems that have not been experienced before are likely to arise with the fastening bolts (for example, sufrado bolts) of these parts. Became. In other words, during engine operation, these parts heat up to around 100°C, but while the coefficient of thermal expansion of ordinary steel is about 13x10', the coefficient of thermal expansion of A or alloy is 20 to 25. Because it is large as ×10-6,
If a conventional fastening port is used as is, the A1 alloy component of the fastening portion may be deformed, resulting in a gap in the fastening portion.

そのため、こうしたA1合金の締結ボルトの素材として
、高膨張材料を使用することが要求されるようになった
。ところで、従来よりオーステナイト系の材料は、熱膨
張係数が大きいことが知られているが、この材料は、降
伏強度が低いためボルトに適用した場合にへたりを生じ
やすいこと、ヘッダー性が悪いためボルトの精度や生産
性に難があること、などの問題点があるため、ボルトへ
の適用が遅れていた。
Therefore, it has become necessary to use a high expansion material as a material for such A1 alloy fastening bolts. By the way, it has been known that austenitic materials have a large coefficient of thermal expansion, but this material has a low yield strength, so it tends to sag when applied to bolts, and has poor header properties. Application to bolts was delayed due to problems such as problems with bolt accuracy and productivity.

(発明の目的) この発明は、」−記した従来の問題点に着目してなされ
たもので、高強度で且つ高膨張を有し、例えばFe系部
品よりも熱膨張係数の高いA文系部品の締結に使用した
ときでも高膨張であるためA文系部品の温度上昇時にA
文系部品と締結ボルトとの間の熱膨張差によるAn系部
品の変形発生を防止することが可能である高強度・高1
11張ボルトを提供することを目的としている。
(Purpose of the Invention) This invention was made by focusing on the problems of the conventional technology described in "-". Because of its high expansion even when used for fastening A
High strength/high 1 that can prevent the occurrence of deformation of An-based parts due to the difference in thermal expansion between human-related parts and fastening bolts.
The purpose is to provide 11 tension bolts.

(発明の構成) この発明による高強度・高膨張ボルトは、C25t、M
n、Ni、Sおよび必要に応じてN等の化学成分の適正
化および製造条件の適正化によって、引張強さ100 
K g f /mm2以上、0,2%酎力90Kgf/
mm2以上の高強度で且つ靭性にも優れたものであり、
主成分系は高Mnオースティト鋼である。この発明によ
る高強度Φ高膨張ボルトの製造にあたっては、代表的に
は、線材圧延→溶体化処理→伸線加工→(温間)成形→
ねじ転造の工程をとる。このような工程のうちとくに成
形工程において、冷間成形とり、た場合には、オーステ
ナイト鋼の場合に冷開成形過程において一般に割れを生
じやすいので、ヘツタ゛−割れを生じない温度での温間
または熱開成形を行うことが望ましいが、熱間成形を行
った場合には伸線による加工硬化が消滅しで降伏点の向
」−が図れないので、この発明においては成形温度の上
限を600°C以下とした。
(Structure of the Invention) The high-strength/high-expansion bolt according to the present invention includes C25t, M
Tensile strength of 100
K gf /mm2 or more, 0.2% shochu power 90Kgf/
It has high strength of mm2 or more and excellent toughness,
The main component system is high Mn austite steel. In manufacturing the high strength Φ high expansion bolt according to the present invention, typically, wire rolling → solution treatment → wire drawing → (warm) forming →
A thread rolling process is used. Among these processes, especially in the forming process, in the case of cold forming, austenitic steel is generally prone to cracking during the cold-open forming process, so warm or cold forming at a temperature that does not cause cracking is necessary. It is desirable to carry out hot-opening forming, but if hot forming is carried out, the work hardening caused by wire drawing disappears and the yield point cannot be improved, so in this invention, the upper limit of the forming temperature is set at 600°. It was set to be C or lower.

また、0.5〜0.8重量%C−10〜20重量%Mn
綱では、400〜800°Cの範囲で炭化物の析出領域
があり、炭化物は粒界に析出して靭性を劣化させる。そ
こで、この点について鋭意研究を進めた結果、伸線加工
における冷間加工率が大きくなると、上記炭化物の析出
領域が低温で且つ短時間側に移行することを見い出した
。さらに、0.2%耐力を高めると同時に炭化物の粒界
析出を抑えるための冷間加工率を調べたところ、15%
以上30%以下、より望ましくは25%以上30%以下
とするのが良いことがわかった。このようにして、伸線
加工における適切な冷間加工率を見い出し、成形温度の
上限を規定し、さらに成分系の適正化を図ることによっ
て、従来の鋼ボルトよりも高膨張で、A1合金の熱膨張
係数に近い熱膨張率を有し、しかも高強度であるボルト
を開発した。
Also, 0.5-0.8 wt% C-10-20 wt% Mn
In steel, there is a region where carbides precipitate in the range of 400 to 800°C, and carbides precipitate at grain boundaries and deteriorate toughness. Therefore, as a result of intensive research on this point, it was discovered that when the cold working rate in wire drawing increases, the carbide precipitation region shifts to the low temperature and short time side. Furthermore, when we investigated the cold working rate to increase the yield strength by 0.2% and at the same time suppress grain boundary precipitation of carbides, we found that the cold working rate was 15%.
It has been found that it is better to set the content to 30% or more, more preferably 25% or more and 30% or less. In this way, by finding an appropriate cold working rate in wire drawing, defining the upper limit of the forming temperature, and optimizing the composition system, we were able to create A1 alloy bolts with higher expansion than conventional steel bolts. We have developed a bolt that has a coefficient of thermal expansion close to the coefficient of thermal expansion and is also high strength.

すなわち、この発明による高強度・高膨張ボルトは、 C:0.5〜0.8重量% Si:0.1〜1重量% Mn:10〜20重量% Ni:0.5〜2重量% S:0.05重量%以下、より望ましくは0.02重量
%以下、 必要に応じて、N:0.02〜0.2重量%、残部Fe
および不純物からなる鋼を素材とし、圧延、溶体化処理
後の伸線加工における冷間加工率を15%以上30%以
下とし、600’O以下の温度で成形したことを特徴と
するものであり、より望ましくは、 C:0.5〜0.65重量% Si:0.1〜1重量% Mn:10〜20重量% Ni;1.3〜2重量% S:0.02重量%以下 必要に応じて、N:0.02〜0.2重量%残部Feお
よび不純物からなる鋼を素材とし、圧延、溶体化処理後
の伸線加工における冷間加工率を25%以」−30%以
下とし、350°C以下の温度で成形したことを特徴と
するものである。
That is, the high-strength/high-expansion bolt according to the present invention includes: C: 0.5-0.8% by weight Si: 0.1-1% by weight Mn: 10-20% by weight Ni: 0.5-2% by weight S : 0.05% by weight or less, more preferably 0.02% by weight or less, if necessary, N: 0.02 to 0.2% by weight, balance Fe
and impurities, the cold working rate in the wire drawing after rolling and solution treatment is 15% or more and 30% or less, and the material is formed at a temperature of 600'O or less. More preferably, C: 0.5-0.65% by weight, Si: 0.1-1% by weight, Mn: 10-20% by weight, Ni: 1.3-2% by weight, S: 0.02% by weight or less. Depending on the material, the steel made of N: 0.02 to 0.2% by weight with the balance Fe and impurities is used, and the cold working rate in wire drawing after rolling and solution treatment is 25% or more - 30% or less. It is characterized by being molded at a temperature of 350°C or less.

次に、この発明による高強度・高膨張ボルトの化学成分
範囲の限定理由について説明する。
Next, the reason for limiting the range of chemical components of the high-strength, high-expansion bolt according to the present invention will be explained.

C:0.5〜0.8重量% Cはオーステナイト中に固溶してボルトとして必要な強
度を確保すると共に、Mnとのバランスにもよるがオー
ステナイト単相として高熱膨張率を確保するのに有効な
元素であり、このような効果を得るためには0.5重量
%以上含有させることが必要である。しかし、多過ぎる
とM3C炭化物の析出を短時間側に移行させ、温間成形
時の炭化物の粒界析出を促進して靭性を劣化させるので
0.8重量%以下とすることが必要であり、より好まし
くは0.65重量%以下とする。
C: 0.5 to 0.8% by weight C is a solid solution in austenite to ensure the strength required for bolts, and also to ensure a high coefficient of thermal expansion as a single phase of austenite, depending on the balance with Mn. It is an effective element, and in order to obtain such effects, it is necessary to contain it in an amount of 0.5% by weight or more. However, if it is too large, the precipitation of M3C carbides will shift to the short-time side, promoting grain boundary precipitation of carbides during warm forming and deteriorating toughness, so it is necessary to keep it below 0.8% by weight. More preferably, it is 0.65% by weight or less.

Si :0.1〜1重量% Stは溶解・精錬時に脱酸剤として寄与すると共に、0
.2%耐力を高めるのにも寄与する元素であって、この
ような効果を得るためには0.1重量%以上含有させる
ことが必要である。しかし、多過ぎると靭性が劣化する
ので1重量%以下とすることが必要である。
Si: 0.1 to 1% by weight St contributes as a deoxidizing agent during melting and refining, and also
.. It is an element that also contributes to increasing the 2% yield strength, and in order to obtain such an effect, it is necessary to contain it in an amount of 0.1% by weight or more. However, if the amount is too large, the toughness deteriorates, so it is necessary to limit the amount to 1% by weight or less.

Mn:10〜20重量% Mnはオーステナイト相を安定化させ、17〜6 18X10  の高膨張率を確保するのに添加する元素
であり、このためには10重量%以上含有させることが
必要である。しかし、多過ぎると温間加工性が低下して
ヘッダー加工に支障をきたすので20重量%以下とする
ことが必要である。
Mn: 10 to 20% by weight Mn is an element added to stabilize the austenite phase and ensure a high expansion coefficient of 17 to 6 18 x 10, and for this purpose it is necessary to contain 10% by weight or more. . However, if the amount is too large, warm workability will be reduced and header processing will be hindered, so it is necessary to keep the content at 20% by weight or less.

Ni:0.5〜2重量% NiはM3C炭化物の析出を長時間側に移行させ、温間
加工時の炭化物の析出を遅らすのに有効な元素であって
、このためには0.5重量%以上含有させることが必要
であり、より望ましくは1.3重量%以上含有させる。
Ni: 0.5 to 2% by weight Ni is an element effective in shifting the precipitation of M3C carbides to the long-term side and delaying the precipitation of carbides during warm working. % or more, more preferably 1.3% by weight or more.

しかし、2重量%を超えても上記効果は飽和するので、
2重量%以下とした。
However, even if it exceeds 2% by weight, the above effect is saturated, so
The content was 2% by weight or less.

S:0.05重量%以下 S含有量が多過ぎると介在物の生成量が多くなるほか、
オーステナイト粒界に偏析して粒界を脆化し、このため
靭性を劣化するので、0.05重量%以下とする必要が
あり、より望ましくは0.02重量%以下とする。
S: 0.05% by weight or less If the S content is too high, the amount of inclusions will increase, and
Since it segregates at austenite grain boundaries and embrittles the grain boundaries, thereby deteriorating toughness, the content must be 0.05% by weight or less, more preferably 0.02% by weight or less.

N:0.02〜0.2重量% Nはオーステナイトを安定化し、強度を高めるのに有効
な元素であるので、必要に応じて0.02重量%以上含
有させる。しかし、多すぎると靭性が劣化し、溶製上も
困難をきたすので、0.2重量%以下とすることが必要
である。
N: 0.02 to 0.2% by weight Since N is an effective element for stabilizing austenite and increasing its strength, it is included in an amount of 0.02% by weight or more as necessary. However, if it is too large, the toughness deteriorates and it becomes difficult to melt, so it is necessary to keep it at 0.2% by weight or less.

この発明によるボルトの鋼組成は以上のごとくであるが
、圧延、溶体化処理後の伸線加工における冷間加工率を
15%以上30%以下とし、600°C以下の温度で(
温間)成形することとしたのは次の理由による。
The steel composition of the bolt according to the present invention is as described above, and the cold working rate in wire drawing after rolling and solution treatment is set to 15% to 30%, and at a temperature of 600°C or lower (
The reason why we decided to perform warm molding is as follows.

すなわち、ボルトの強度を100Kg f/mm2以上
に確保するためには伸線加工における冷間加工率を15
%以上とすることが必要であり、より望ましくは25%
以上とする。しかし、加工率が高すぎるとM3C炭化物
の析出領域を短時間側および低温側へ移行し、炭化物が
オーステナイト粒界に析出して靭性を劣化するので30
%以下とすることが必要である。
In other words, in order to ensure the strength of the bolt to be 100 kg f/mm2 or more, the cold working rate during wire drawing must be 15
% or more, more preferably 25%
The above shall apply. However, if the processing rate is too high, the precipitation region of M3C carbides will shift to the short-time side and low-temperature side, and the carbides will precipitate at the austenite grain boundaries, deteriorating the toughness.
% or less.

また、成形(ヘッダー成形)温度は、成形時の変形抵抗
を下げてヘッダー性を高める意味からできるだけ高温と
することが好ましいが、成形温度が高すぎるとM3C炭
化物が析出しやすくなると共に、伸線時の加工硬化の効
果が減少するので600’C以下とすることが必要であ
り、より望ましくは350°C以下とする。一方、成形
温度の下限は、ヘッダー成形の際における成形型の潤滑
性などによっても異なるが、通常の場合には200°C
程度以上とすることがより望ましい。
In addition, it is preferable to set the forming (header forming) temperature as high as possible in order to reduce the deformation resistance during forming and improve the header properties, but if the forming temperature is too high, M3C carbide will easily precipitate and wire drawing will occur. Since the effect of work hardening during heating is reduced, it is necessary to set the temperature to 600°C or lower, and more preferably to 350°C or lower. On the other hand, the lower limit of the molding temperature varies depending on the lubricity of the mold during header molding, but in normal cases it is 200°C.
It is more desirable to set it to above a certain degree.

(実施例) 表に示す化学成分の鋼を溶製したのち造塊し、線材圧延
→溶体化処理(1050°C)→伸線加工(冷間)→ボ
ルト成形(ヘッダー成形)→ねじ転造→M12(六角)
ボルトの工程によりボルトを製造し、ボルトから切り出
した試験片を用いて熱膨張率および引張性質を調べ、さ
らにボルト実体でくさび引張試験を行った。
(Example) After melting steel with the chemical composition shown in the table, it is ingot-formed, wire rod rolling → solution treatment (1050°C) → wire drawing (cold) → bolt forming (header forming) → thread rolling →M12 (hexagonal)
A bolt was manufactured using the bolt manufacturing process, and the coefficient of thermal expansion and tensile properties were investigated using a test piece cut from the bolt, and a wedge tensile test was conducted on the bolt itself.

上記製造工程において、伸線加工時の冷間加工率、ボル
ト成形時のヘッダ一温度は同じく表に示す値にして行っ
た。
In the above manufacturing process, the cold working rate during wire drawing and the header temperature during bolt forming were set to the values shown in the table.

そして、熱膨張率は、熱膨張試験機を使用して常温から
150°Cまでの平均熱膨張率をXIO’/’にで測定
した。また、引張性質は、M12ボルトよりJIS14
A号試験片を切り出して引張試験することにより調べた
。さらに、くさび引張強さはJIS  s  1051
に準じて添付図に示すくさび引張試験を実施することに
より求めた。
The coefficient of thermal expansion was determined by measuring the average coefficient of thermal expansion from room temperature to 150°C using a thermal expansion tester as XIO'/'. In addition, the tensile properties are JIS14 from M12 bolts.
It was investigated by cutting out a No. A test piece and subjecting it to a tensile test. Furthermore, the wedge tensile strength is JIS s 1051.
It was determined by carrying out the wedge tensile test shown in the attached figure in accordance with .

なお、図において、1は六角ボルト、2は台形ナツト、
3はくさび角度θが10°の環状くさび、4はくさび係
止部材、5はナツト係止部材であり、矢印A方向に引張
った際の破断強さを調べ表に示すように、本発明例のN
o、A”Dのボルトでは、従来例のNo、 T (S 
0M440相当材使用l掻ルトに比べて熱膨張率が大き
く、A文令金に近い値を示していることが明らかであり
、靭性にも富むものであることが明らかである。一方、
比較例のNo、 Eのボルトでは、C含有量が多くかつ
Ni含有量が少ないため、ヘッダー成形中に炭化物が析
出して靭性が劣化し、伸びおよびくさび引張強さが低い
値を示した。また、比較例のNo。
In addition, in the figure, 1 is a hexagonal bolt, 2 is a trapezoidal nut,
3 is an annular wedge with a wedge angle θ of 10°, 4 is a wedge locking member, and 5 is a nut locking member, and the breaking strength when pulled in the direction of arrow A was investigated. As shown in the table, the present invention example N of
o, A”D bolts, the conventional example No., T (S
It is clear that the coefficient of thermal expansion is larger than that of 0M440-equivalent material and that it shows a value close to that of A-grade gold, and it is clear that it is also rich in toughness. on the other hand,
In bolts No. and E of Comparative Examples, since the C content was high and the Ni content was low, carbide precipitated during header forming, resulting in poor toughness and low elongation and wedge tensile strength. Also, Comparative Example No.

FのボルトではCおよびMn含有量が少ないためオース
テナイト組織とはならず、熱膨張率が小さいという結果
になった。さらに、比較例のNo、Gのボルトでは、冷
間加工率が小さいために加工硬化量が不足して耐力が不
十分であり、同じ<N09Hのボルトでは、ヘッダ一温
度が高いために靭延性が低いという結果になった。
In the bolt of F, since the C and Mn contents were low, an austenitic structure was not formed, resulting in a low coefficient of thermal expansion. Furthermore, the bolts of No. and G in the comparative example have insufficient work hardening due to the small cold working rate, resulting in insufficient yield strength, and the same bolts of <N09H have poor toughness and ductility due to the high header temperature. The result was that it was low.

さらにまた、S含有量を少なくした本発明例のNo、 
I 、 Jのボルトでは、伸びが向上しており、高靭性
のボルトであることが確認され、C含有量低目におさえ
ると共にNi含有量を高目にした本発明例のNo、 K
 、 Lでは、冷間加工率をさらに高め且つヘッダ一温
度をより低目にとることによって、伸びおよびくさび引
張強さを維持して0.2%耐力の向上をはかることがで
きた。このことは、冷間加工率を上げることによって0
.2%耐力を高めようとする場合に、冷間加工率を上げ
ることによる炭化物の析出傾向をNi、C含有量の適正
化およびヘッダ一温度の低下によって抑制できることを
示している。
Furthermore, No. of the present invention example with reduced S content,
Bolts I and J had improved elongation and were confirmed to have high toughness, and bolts No. and K of the invention examples had a low C content and a high Ni content.
, L, by further increasing the cold working rate and lowering the header temperature, it was possible to maintain elongation and wedge tensile strength and improve yield strength by 0.2%. This can be reduced by increasing the cold working rate.
.. This shows that when trying to increase the 2% proof stress, the tendency for carbide precipitation due to increasing the cold working rate can be suppressed by optimizing the Ni and C contents and lowering the header temperature.

また、Nを添加した本発明例のNo、M、Hのボルトで
は、0゜2%耐力が一段と向上しており、Nを添加し且
つS含有量を少なくした本発明例のNo、 O、Pのボ
ルトでは、伸びが一段と向上していることが確認された
In addition, the 0°2% yield strength of bolts No., M, and H of the present invention examples to which N was added was further improved, and the bolts of No., O, and H bolts of the present invention examples to which N was added and the S content were reduced were further improved. It was confirmed that the elongation of the P bolt was further improved.

(発明の効果) 以上説明してきたように、この発明によるボルトでは、
C,Si、Mn、Sおよび必要に応じてN等の化学成分
の適正化をはかると共に、圧延。
(Effects of the invention) As explained above, the bolt according to the invention has
While optimizing chemical components such as C, Si, Mn, S, and N as necessary, rolling.

溶体化処理後の伸線加工における冷間加工率および成形
温度を規制するようにした仁の、引張強さ100Kg 
f /mm2以上、0.2%酎力90K g f / 
+nm2以上の高強度で且つ高靭延性を有し、しかも高
膨張率を有するものであり、例えばFe系部品よりも軽
量ではあるが熱膨張係数の高いAM系部品の締結に使用
したときでも高膨張であるためAn系部品の温度上昇時
に/l系部品と締結ボルトとの間の熱膨張差によるAM
系部品の変形発生を防止することが可能であり、良好な
締結状態を長く維持することができるという著大なる効
果を有している。
Tensile strength of 100Kg of wire that regulates cold working rate and forming temperature in wire drawing after solution treatment
f/mm2 or more, 0.2% potency 90K g f/
It has high strength of +nm2 or more, high toughness and ductility, and a high coefficient of expansion.For example, it has a high coefficient of expansion even when used to fasten AM parts that are lighter than Fe parts but have a high coefficient of thermal expansion. Due to expansion, when the temperature of An-based parts rises, AM due to the thermal expansion difference between the An-based parts and the fastening bolts
It is possible to prevent the occurrence of deformation of system parts, and has the remarkable effect that a good fastened state can be maintained for a long time.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面はくさび引張強さの測定要領を示す説明図であ
る。 特許出願人  大同特殊鋼株式会社 代理人弁理士 小  塩   豊 )A
The attached drawing is an explanatory diagram showing the procedure for measuring wedge tensile strength. Patent applicant Daido Steel Co., Ltd. Representative patent attorney Yutaka Oshio) A

Claims (5)

【特許請求の範囲】[Claims] (1) C: 0 、5〜0.8重量%、Si:0.1
〜1重量%、 Mn:10〜20重量%、 Ni:0.5〜2重量%、 S:0.05重量%以下、 残部Feおよび不純物からなる鋼を素材とし、圧延、溶
体化処理後の伸線加工における冷間加工率を15%以上
30%以下とし、600℃以下の温度で成形したことを
特徴とする高Ji度・高膨張ボルト。
(1) C: 0, 5-0.8% by weight, Si: 0.1
-1% by weight, Mn: 10-20% by weight, Ni: 0.5-2% by weight, S: 0.05% by weight or less, the balance is made of steel consisting of Fe and impurities, after rolling and solution treatment. A high-Ji degree, high-expansion bolt characterized in that the cold working rate in wire drawing is 15% or more and 30% or less, and the bolt is formed at a temperature of 600°C or less.
(2)  C: 0 、5〜0.8重量%、Si:O,
1〜1重量%、 Mn:10〜20重量%、 Ni:0.5〜2重量%、 S:O,C12重量%以下、 残部Feおよび不純物からなる鋼を素材とした特許請求
の範囲第(1)項記載の高強度φ高膨張ボルト。
(2) C: 0, 5-0.8% by weight, Si:O,
1 to 1% by weight, Mn: 10 to 20% by weight, Ni: 0.5 to 2% by weight, S: O, C 12% by weight or less, the balance being Fe and impurities. High strength φ high expansion bolt described in item 1).
(3) C: 0 、5〜0.65重量%、Si:0.
1〜1重量%、 Mn+10〜20重量%、 Ni:1.3〜2重量%、 S:0.02重量%゛以下、 残部Feおよび不純物からなる鋼を素材とし、圧延、溶
体化処理後の伸線加工における冷間加工率を25%以上
30%以下とし、350°C以下の温度で成形した特許
請求の範囲第(1)項記載の高強度会商膨張ボルト。
(3) C: 0, 5-0.65% by weight, Si: 0.
1 to 1% by weight, Mn+10 to 20% by weight, Ni: 1.3 to 2% by weight, S: 0.02% by weight or less, the balance being Fe and impurities, after rolling and solution treatment. A high-strength company expansion bolt according to claim 1, which is formed at a temperature of 350°C or less with a cold working rate of 25% or more and 30% or less in wire drawing.
(4)C:0.5〜0.8重量%、 Si:0.1〜1重量%、 Mn:10〜20重量%、 Ni:0.5〜2重量%、 S:0.05重量%以下、 N:0.02〜0.2重量%、 残部Feおよび不純物からなる鋼を素材とし、圧延、溶
体化処理後の伸線加工における冷間加工率を15%以上
30%以下とし、6008C以下の温度で成形したこと
を特徴とする高強度Φ高膨張ボルト。
(4) C: 0.5-0.8% by weight, Si: 0.1-1% by weight, Mn: 10-20% by weight, Ni: 0.5-2% by weight, S: 0.05% by weight Hereinafter, the material is steel consisting of N: 0.02 to 0.2% by weight, the balance being Fe and impurities, the cold working rate in wire drawing after rolling and solution treatment is 15% to 30%, and 6008C A high-strength Φ high-expansion bolt characterized by being molded at the following temperatures.
(5) C: 0 、5〜0.8重量%、Si:0.1
〜1重量%、 Mn:10〜20重量%、 Ni:0.5〜2重量%、 S:0.02重量%以下、 N+0.02〜0.2重量%。 残部Feおよび不純物からなる鋼を素材とした特許請求
の範囲第(4)項記載の高強度・高膨張ボルト。
(5) C: 0, 5-0.8% by weight, Si: 0.1
-1% by weight, Mn: 10-20% by weight, Ni: 0.5-2% by weight, S: 0.02% by weight or less, N+0.02-0.2% by weight. A high-strength, high-expansion bolt according to claim (4), which is made of steel with the remainder being Fe and impurities.
JP8753883A 1983-05-20 1983-05-20 High-strength high-expansion bolt Pending JPS59215464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8753883A JPS59215464A (en) 1983-05-20 1983-05-20 High-strength high-expansion bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8753883A JPS59215464A (en) 1983-05-20 1983-05-20 High-strength high-expansion bolt

Publications (1)

Publication Number Publication Date
JPS59215464A true JPS59215464A (en) 1984-12-05

Family

ID=13917756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8753883A Pending JPS59215464A (en) 1983-05-20 1983-05-20 High-strength high-expansion bolt

Country Status (1)

Country Link
JP (1) JPS59215464A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376847A (en) * 1986-09-18 1988-04-07 Daido Steel Co Ltd High strength and high expansion bolt
JPS6425919A (en) * 1987-07-21 1989-01-27 Hitachi Metals Ltd Production of material for high temperature bolt
JPH01191763A (en) * 1988-01-26 1989-08-01 Nisshin Steel Co Ltd High expansion alloy
JP2021503559A (en) * 2018-05-23 2021-02-12 ファ, マンチャオHE, Manchao NPR steel materials for rock bolts and their production methods

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376847A (en) * 1986-09-18 1988-04-07 Daido Steel Co Ltd High strength and high expansion bolt
JPS6425919A (en) * 1987-07-21 1989-01-27 Hitachi Metals Ltd Production of material for high temperature bolt
JPH01191763A (en) * 1988-01-26 1989-08-01 Nisshin Steel Co Ltd High expansion alloy
JP2021503559A (en) * 2018-05-23 2021-02-12 ファ, マンチャオHE, Manchao NPR steel materials for rock bolts and their production methods
US11427899B2 (en) 2018-05-23 2022-08-30 Min Xia NPR steel material for rock bolt and production method thereof

Similar Documents

Publication Publication Date Title
US3963531A (en) Cold rolled, ductile, high strength steel strip and sheet and method therefor
JP4946092B2 (en) High-strength steel and manufacturing method thereof
US4721600A (en) Superplastic ferrous duplex-phase alloy and a hot working method therefor
CN113322410A (en) High-strength bolt steel with excellent delayed fracture resistance and preparation method thereof
US3673007A (en) Method for manufacturing a high toughness steel without subjecting it to heat treatment
JPS6154844B2 (en)
US4092178A (en) Process for producing a steel having excellent strength and toughness
US5792285A (en) Hot-rolled ferritic steel for motor vehicle exhaust members
JPS59215464A (en) High-strength high-expansion bolt
JPS61238942A (en) Heat resisting alloy
JPS5942052B2 (en) Manufacturing method of ultra-high strength cold rolled steel sheet by continuous annealing
JPS5980757A (en) High strength austenitic steel
JPS63241120A (en) Manufacture of high ductility and high strength steel sheet having composite structure
JPS59215465A (en) High-strength high-expansion bolt
JPH01319651A (en) Free cutting steel having excellent warm workability
JPS6013050A (en) Heat-resistant alloy
JPS6254176B2 (en)
JPH02310313A (en) Production of weather-resisting steel
JP2626849B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent fatigue properties
JPH05331551A (en) Manufacture of high temperature high strength and high workability ferritic stainless steel
JPS63250416A (en) Manufacture of steel material excellent in stress corrosion cracking resistance and having low yield ratio in sulfide-rich circumstances
JPH0382708A (en) Production of high strength hot rolled steel plate for high degree working excellent in fatigue characteristic
JPH0273950A (en) Free cutting steel excellent in hot ductility
JPH03140412A (en) Production of steel having high strength and high toughness
JPS6158527B2 (en)