JPS59214704A - Automatic device using laser - Google Patents

Automatic device using laser

Info

Publication number
JPS59214704A
JPS59214704A JP58089543A JP8954383A JPS59214704A JP S59214704 A JPS59214704 A JP S59214704A JP 58089543 A JP58089543 A JP 58089543A JP 8954383 A JP8954383 A JP 8954383A JP S59214704 A JPS59214704 A JP S59214704A
Authority
JP
Japan
Prior art keywords
laser
target
distance
spot
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58089543A
Other languages
Japanese (ja)
Other versions
JPH0474649B2 (en
Inventor
Tatsushi Miyahara
宮原 建士
Hisashi Sakiyama
崎山 久史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MC KK
MATSUKU KK
Original Assignee
MC KK
MATSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MC KK, MATSUKU KK filed Critical MC KK
Priority to JP58089543A priority Critical patent/JPS59214704A/en
Priority to US06/612,560 priority patent/US4671654A/en
Priority to GB08412941A priority patent/GB2143396B/en
Publication of JPS59214704A publication Critical patent/JPS59214704A/en
Publication of JPH0474649B2 publication Critical patent/JPH0474649B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To make handling simple and to perform highly accurate surveying of paths including curves and arcs automatically, by attaching a position detecting target and a distance detecting target to a moving body. CONSTITUTION:A reflecting target 2 is used for measuring a distance. A position detecting target 5 receives laser light (b) from a laser light emitter 3 and detects the coordinates of the position of a received light spot S. In this target 5, a screen 7 is provided in front of a housing 6 and a camera 8 such as an image sensor is provided in the inside. A following controller 12 receives the X-Y data of the position of the laser spot and the distance signal from a synchronization controller 10 and monitors them so that the laser is not deviated from the position detecting target 5. The controller corrects the laser projecting direction as required. When the direction of the laser is corrected, the corrected data is added to the data received from the synchronization controller 10 and sent to a host processor 13. The corrected data includes displacements DELTAX and DELTAY in the directions X and Y on the surface of the target 5 and the distance to the target 2 when the correction is performed.

Description

【発明の詳細な説明】 m  発明の技術分野 本発明は、トンネルの路線工事等におけ、るレーザーを
用いた自動測量装量に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to automatic surveying equipment using a laser in tunnel route construction and the like.

(2)従来技術とその問題点 トンネル、道路或いはパイプライン等の線形工事には線
路測量が工事進行の大きな担い手となる。
(2) Prior art and its problems In linear construction work such as tunnels, roads, pipelines, etc., track surveying plays a major role in the progress of the construction work.

近年発展の目覚しいレーV゛−を用いた各種測定装置の
恩恵によって、殊(・C距離測定、直線性を測定する精
度が飛躍的に向上してきた。ところが道路乃至トンネル
等が曲線的に方向を変える場合、設計通りの曲1腺を求
めるには手間と時間が相かり、特殊技術も要求される。
Thanks to the benefits of various measuring devices using the remarkable development of laser beams in recent years, the accuracy of distance measurement and linearity measurement has improved dramatically.However, when roads, tunnels, etc. When changing, it takes a lot of time and effort to obtain the same tune as designed, and special techniques are also required.

たとえば道路に正確な曲率を持たせる場合、一方法とし
てトランシットを用いた肉視による測量かある。曲線乃
至円弧上の基準点にトラ/ジットを配置し、基偲点から
測量点の距離とトランシットの偏角を組み合わせた座標
関係から設計通りの路線を求める。曲線の測量の原理は
どのような方法を採っても基本的には上述のトラ/ジッ
トを用いた場合と同じである。しかし、トラ/ジット等
を用いた従来の装置では測量が非能率的であり、測定積
置も極めて低いものであった。
For example, if you want to give a road an accurate curvature, one method is to visually survey it using a transit vehicle. A transit/judge is placed at a reference point on a curve or arc, and the route as designed is determined from the coordinate relationship that combines the distance from the reference point to the survey point and the declination of the transit. No matter which method is used, the principle of curve measurement is basically the same as when using the above-mentioned tra/sit. However, with conventional devices using track/jit etc., surveying was inefficient and the measurement accuracy was extremely low.

(3)発明の目的 本発明は上記従来の実情に鑑みてなさノ9.たものであ
や、取扱いが簡便で、極めて高い精度で曲線乃至円弧状
を含む路線の測量が自動的に行なうことのできるレーザ
ーを用いた自動測量装置を提供することを目的とするも
のである。
(3) Purpose of the Invention The present invention was made in view of the above-mentioned conventional circumstances. The object of the present invention is to provide an automatic surveying device using a laser that is easy to handle and can automatically survey routes including curves and arcs with extremely high accuracy.

(4)発明の特徴 本発明の特徴は、レーザー発振器と光測圧器を一体に首
振p可能な架台に固定し、上記レーザー発振器からのレ
ーザー光を受光してレーザー光のスポット位置座標を検
出する位置検出ターゲットと、上記光測圧器から投光さ
れた光を反射させる測距用ターゲットを移動体に取シ付
けたことにある。以下、不発明を図面に基づいて説明す
る。
(4) Features of the invention The feature of the present invention is that a laser oscillator and an optical pressure meter are fixed together on a swingable mount, and the laser beam from the laser oscillator is received to detect the spot position coordinates of the laser beam. A position detection target for detecting a position and a distance measuring target for reflecting light projected from the optical pressure measuring device are attached to a moving body. Hereinafter, the invention will be explained based on the drawings.

(5)発明の一実施例 第1図id本発明の円曲縁自動選定測量装置の一実施例
の概略図である。
(5) One Embodiment of the Invention FIG. 1 is a schematic diagram of an embodiment of the automatic curved edge selection surveying device of the present invention.

図中1は反射ターゲット2に赤外光を投射しその反射光
を拾って距離を測定する光測圧器で、p)乙。
In the figure, 1 is an optical pressure meter that projects infrared light onto a reflective target 2 and picks up the reflected light to measure distance, p) B.

3はレーザー発振器である。上記光測圧器1とレーザー
発J最器3とが常に同一方向に光を照射するようらr振
91ノ可11ヒな架台4に一体に保持固定している。4
′は架台4の首振シ運動用の迫従装謂である。
3 is a laser oscillator. The optical pressure measuring device 1 and the laser emitting device 3 are integrally held and fixed on a frame 4 having an r vibration of 91° and 11° so that they always emit light in the same direction. 4
' is a so-called follow-up device for the oscillating movement of the pedestal 4.

5はレーザー発振器3からのレーザー光すを受けその受
光スポットSの位置座標を検出する位置検出ターゲット
である。この(5r置検出ターゲツト5はハウジング6
の前面にスクリーン7を設け、内部にイメージセンサ等
のカメラ8を設けて成る。
Reference numeral 5 denotes a position detection target that receives the laser beam from the laser oscillator 3 and detects the position coordinates of the light receiving spot S. This (5r position detection target 5 is the housing 6
A screen 7 is provided on the front surface of the device, and a camera 8 such as an image sensor is provided inside.

第1図に示す実施例では反射ターゲット2を位置検出タ
ーゲット5のハウジングの一部に取り付けているが、こ
れらターゲットを据え何けるトンネル用ンールドマシン
に分離して取シ付けてもよく、或いはスクリーン7の一
部に反射手段を設けてターゲット2としてもよい。
In the embodiment shown in FIG. 1, the reflective target 2 is attached to a part of the housing of the position detection target 5, but these targets may be attached separately to the tunnel machine where the targets are installed, or the screen 7 The target 2 may be provided by providing a reflecting means in a part of the target.

101d同期コントローラである。この同期コントロー
ラ10は、カメラ8からのビデオ信号をサンプリングし
て、レーザースポット位置の水平、垂直(以下rXJ 
、rYJという。)両方向の偏位を検出するようになっ
ておシ、また光測圧器1からの距離信号を受けy、a、
表示するようになっている。11はカメラ8の映像を表
示するモニターテレビ(CRT )である。
101d synchronous controller. This synchronous controller 10 samples the video signal from the camera 8 to determine the horizontal and vertical positions of the laser spot (hereinafter referred to as rXJ).
, rYJ. ) y, a,
It is designed to be displayed. Reference numeral 11 denotes a monitor television (CRT) for displaying images from the camera 8.

12はレーザー投射方向修Vのだめに、架台4の追従装
置4′を駆動制御するための追従コントローラである。
Reference numeral 12 denotes a follow-up controller for driving and controlling the follow-up device 4' of the pedestal 4 in order to adjust the laser projection direction.

該追従コントローラ12は、同期コントローラ10から
レーザ“−スポット位置のX。
The tracking controller 12 receives the laser "-X" of the spot position from the synchronous controller 10.

Yデータ及び距離信号を受は取シ、レーザーが位首検出
ターゲット5から外れないよう監視し、必要に応じてレ
ーザー投射方向の修正を行なうようになっている。また
、レーザーの方向修正を行なった場合には、その修正の
データをターゲット5表面でのX、Y方向の変位ΔX、
ΔYおよび修正を竹なった時点のターゲット21での距
離を同期コントo−ラ10から受けたデータに付加して
ホストプロセッサ+j13に送るようになっている。
It receives and receives Y data and distance signals, monitors the laser so that it does not deviate from the head detection target 5, and corrects the laser projection direction as necessary. In addition, when the direction of the laser is corrected, the data of the correction is used as the displacement ΔX in the X and Y directions on the surface of the target 5,
ΔY and the distance at the target 21 at the time of correction are added to the data received from the synchronization controller 10 and sent to the host processor +j13.

ホストプロセッサ13は通従コン)O−ラ12力・らの
データを演算加工し掘削状況の設計基線からのずれを監
子兄′するようになって゛いる。ホストプロセッサ2受
光 或いはCRTllで表示される。
The host processor 13 calculates and processes data from the conventional controller 12 and monitors deviations of excavation conditions from the design baseline. It is displayed on the host processor 2 light reception or CRTll.

以上の構成の測量装置の使用に際して、計画線を予め求
めておき、ホストプロセッサ13に入力しておく。これ
は磁気テープ或い(は磁気ディスク等の補助記憶変改で
あっても良い。
When using the surveying apparatus with the above configuration, a planned line is determined in advance and inputted to the host processor 13. This may be a modified auxiliary storage such as a magnetic tape (or a magnetic disk).

測量の手順として第2図に一例として示すように、先ず
、レーザー発振器3及び光測圧器1を設計線Cの始点乃
至始点における接WRX上に基準点poを設定して据え
付ける。−万、ターゲット5の中心を設計線の始点P1
に位置づける。従って、この時ターゲット5のスクリー
ンLICは第3図体〕に示すようにX軸の中心にレーザ
ースポットS1が位置する。勿論、同時に光測圧器1の
投射光は反射プリズムのターゲット2に当て正反射させ
るようにして距離t1を実時間で認識できるようにして
おく。
As an example of the surveying procedure, as shown in FIG. 2 as an example, first, the laser oscillator 3 and the optical pressure meter 1 are installed by setting a reference point po on the tangent WRX between the starting point and the starting point of the design line C. -10,000, the center of target 5 is the starting point of the design line P1
Positioned as Therefore, at this time, on the screen LIC of the target 5, the laser spot S1 is located at the center of the X axis as shown in the third figure. Of course, at the same time, the projected light from the optical pressure meter 1 is made to hit the target 2 of the reflecting prism and be specularly reflected so that the distance t1 can be recognized in real time.

工事進行に伴ってターゲット5を設計、線に沿って前進
させることになる。設計線は曲線を含んでいても良い。
As construction progresses, Target 5 will be designed and moved forward along the line. The design line may include a curve.

たとえば、スクリーン1が1/−ザー発振器3から長さ
t2離れた位置P2に達したとすると、ビームスボッ)
S2はスクリーン上で原点Oに位置してたSlから長さ
X27’?け離へたところに位置する。このスポットs
2の位置はカメラ8で検出これ同期コントローラ1oで
X、Y座標に変えられ追従コントローラ12及びホスト
プロセッサ13に送られる。ホストプロセッサ73には
また、光測圧器1かもの距離データ12が送られてきて
おシ、この距離データに対応する位置プログラムデータ
と実測[直X2が比較され、そこに差が認められれば、
偏差の方向と量をCRT ilに表示乃至プリンタ14
から出力する。こうした測定は曲線Cのどの点において
も実行でき、或いは連続的((偏差量を検出する事も可
能である。
For example, if the screen 1 reaches a position P2 that is a length t2 away from the 1/- laser oscillator 3, then the beam
S2 is the length X27' from Sl located at the origin O on the screen? Located in a remote location. This spot s
The position of 2 is detected by the camera 8, converted into X and Y coordinates by the synchronous controller 1o, and sent to the tracking controller 12 and host processor 13. The host processor 73 also receives the distance data 12 of the optical pressure meter 1, compares the position program data corresponding to this distance data with the actual measurement [direct X2], and if a difference is found there.
Display direction and amount of deviation on CRT ill or printer 14
Output from. Such measurements can be carried out at any point on the curve C or continuously (it is also possible to detect the amount of deviation.

ターゲット5か設計曲線に沿って更に進んで行くト、レ
ーザースポット位置はターゲット5上を移動し測定限界
(・て達する。この時折たに再度の測−川を行なって原
点を設定しても良いが、不実M(i ’tllで(d原
点設定の手間を可能な限シ省くため、次のような方式を
採っている。
As the target 5 moves further along the design curve, the laser spot position moves on the target 5 and reaches the measurement limit.The origin may be set by performing another measurement from time to time. However, in order to save the trouble of setting the origin as much as possible with M(i'tll), the following method is adopted.

スクリーン7に一定の測定領域を設定しておき、その壇
!$fにレーザースポットが達すると、追従コン)o−
ラ12が作動し、架台4に設けた追従装置4′を駆動し
、レーザースポットがスクリーン7の原点O付近に戻る
贅で架台4を回動させる。
Set a certain measurement area on screen 7, and use that stage! When the laser spot reaches $f, the tracking controller) o-
The laser 12 is activated, drives the follow-up device 4' provided on the pedestal 4, and rotates the pedestal 4 so that the laser spot returns to the vicinity of the origin O of the screen 7.

この吉きのレーザー光の移動を第2図に示す。第2図に
おいてR1は設刷曲線Cの始点における接線であり、R
2は上記のレーザー首振9を行なった後のレーザー光で
ある。
Figure 2 shows this successful movement of laser light. In FIG. 2, R1 is the tangent at the starting point of the printing curve C;
2 is the laser beam after the above-mentioned laser oscillation 9 has been performed.

い1、レーザーR1を振ってR2に来た時のスボソトヲ
83′とすると、同期コントローラ1oがらはS 3/
のX、Yli標が送らh7て来る。追従コン)o−ラ1
2はそのデータを受けてS3’ト3317)移動ベクト
ルの成分ΔX、ΔYを演算、記憶し、’Ilたその時の
距離データを同期コントローラ10からのX、Yデータ
に付加してホストプロセッサ13に送る。ホストプロセ
ッサ13は、追従コントローラ12からのX、Y、ΔX
、ΔY、L(距離)データを、演算する事によってター
ゲット5のその時のR1からのずれを知る事が出来、そ
の演算結果を前もって入力された計画線データと比較し
て工事の進行状況を知る事が出来る。この場合、レーザ
ー発振器3の首振シの制御を角度で行なうと、精度を出
す事は非常に困難であるが、本発明の場合はスクリーン
T上のレーザースポットの移動距離で制御を行なう為、
距離りに殆ど関係無くレーザーの精密な首振りを行なう
事が出来る。
1. Suppose that when the laser R1 is swung and it reaches R2, the synchronous controller 1o is S 3/
X, Yli mark is sent h7. Follower controller) o-ra 1
2 receives the data and calculates and stores the components ΔX and ΔY of the movement vector in step 3317), adds the distance data at that time to the X and Y data from the synchronous controller 10, and sends it to the host processor 13. send. The host processor 13 receives X, Y, and ΔX from the tracking controller 12.
, ΔY, L (distance) data, it is possible to know the deviation of the target 5 from R1 at that time, and the progress status of the construction can be known by comparing the calculation result with the planning line data input in advance. I can do things. In this case, if the oscillation of the laser oscillator 3 is controlled by angle, it is very difficult to achieve accuracy, but in the case of the present invention, control is performed by the moving distance of the laser spot on the screen T.
The laser can be swung precisely regardless of distance.

このようにする事によシレーザースポットが測定領域か
ら犬きくはみ出す前に、レーザースポットが測定領域内
に戻す事が、出来る。また上記の説明ではレーザースポ
ットを原点O付近に戻したのであるが、原点付近に限る
ものではなく、ターゲットの移動の傾向が予め解ってい
れば、レーザー発振器の誼振りの回数が出来るだけ少な
くなるよう々位置にレーザースポットを移動させる方が
好ましい。
By doing this, the laser spot can be brought back into the measurement area before it extends too far out of the measurement area. Also, in the above explanation, the laser spot is returned to the vicinity of the origin O, but this is not limited to the vicinity of the origin, and if the movement tendency of the target is known in advance, the number of times the laser oscillator oscillates will be reduced as much as possible. It is preferable to move the laser spot to a certain position.

以下同様の操作により、レーザーR1、R2の届く児通
し距離内は再測量をせずに、自動的に高精度の測量を行
なう事が出来る。
By performing similar operations, it is possible to automatically perform high-precision surveying within the reachable distance of lasers R1 and R2 without having to re-survey.

以上の手順で曲線Cを連続的に測定する事が出来る。X
、Y軸双方について同様な測定が出来る事は勿論である
Curve C can be measured continuously by the above procedure. X
, it goes without saying that similar measurements can be made on both the Y-axis and Y-axis.

(6)発明の効果 以−ヒ訟明したように、本発明によれば、レーザー発振
器と光測圧器を首振り回部な架台(、で固定し、レーザ
ー発振器からのレーザー光を受光してレーザー光のスポ
ット位置座標を検出する位置検出ターゲットと、光測圧
器からの投射光全反射させるターゲットを拶動体に固定
し、移動体の移動に伴なって変位する位置検出ターゲッ
ト上のレーザー光スポットの座標装着を予じめ設定して
おいた設計変差値と比較するようにしているブこめ、割
面線路の曲率との偏差が高い精度で;測定てきると共に
、自動測定が可能で特殊な測量技術も必要なく、取り扱
いが極めて簡単なレーザーを用いた自動測量装置が提供
できる。更に1.との装置はmにトンネル工事のみに適
用されるのでなく、一般土木工事、或いは学術研究試験
に供すこともでき、測定イ・幾器として広範な用途が期
待できるなどの利点もある、
(6) Effects of the Invention According to the present invention, a laser oscillator and an optical pressure meter are fixed on a mount (, which is a swinging part), and the laser beam from the laser oscillator is received. A position detection target that detects the spot position coordinates of the laser beam and a target that totally reflects the projected light from the optical pressure meter are fixed to a moving object, and the laser light spot on the position detection target is displaced as the moving object moves. The coordinate mounting is compared with the preset design deviation value, and the deviation from the curvature of the split surface line can be measured with high precision; automatic measurement is also possible and special It is possible to provide an automatic surveying device using a laser that does not require advanced surveying techniques and is extremely easy to handle.Furthermore, the device described in 1. is not only applicable to tunnel construction, but also general civil engineering work or academic research testing. It also has the advantage that it can be used for a wide range of purposes as a measurement instrument.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示しだもので、第1図(はレ
ーザーを用いた自動測量装置の概略構成図、第2図は同
上装置による測量原理を示す説明[□□□、第31MI
(A) 、 (BJはスクリーン上のレーザースポット
移動状態の一例と示す説明図である。 1・・・光測圧器、2・・・測距用ターゲット、3・・
・レーザー発振器、4・・・架台、5・・・位置検出用
ターゲット。 4斤許出願人  マツク株式会社 代理人弁理士  吉 1)芳 春 第1図
The drawings show one embodiment of the present invention, and FIG. 1 (shows a schematic diagram of the configuration of an automatic surveying device using a laser), and FIG. 2 shows an explanation of the principle of surveying using the same device [
(A), (BJ is an explanatory diagram showing an example of a laser spot movement state on a screen. 1... Optical pressure meter, 2... Target for distance measurement, 3...
・Laser oscillator, 4... Mount, 5... Target for position detection. 4 loaf license applicant Matsuku Co., Ltd. Patent attorney Yoshi 1) Yoshiharu Figure 1

Claims (1)

【特許請求の範囲】 11.1  レーザー発振器及び光測圧器を・一体に保
持し同一方向に向けた状態で首振り可能な架台に固定し
、上記架台から離間した位置に該レーザー発振器、f)
・らのレーザー光を受光し受光スポットの位置座標を検
出する位置検出用ターゲットと、上記光測圧器からの光
を反射させる測距用ターゲットを移動体に取9付け、両
ターゲットの移動ICよって位置検出用ターゲット上で
変化する受光スポットの位置座標及び移動距離の変化計
に基づき移動軌跡を求めることを特徴とするレーザーを
用のだ自動測量装置。 (2)  ターゲットに測定領域を設定可能であり、レ
ーザースポットが該測定領鞍から大きくはみ出すA+J
 K 1該レーザースポツトが測定領域内に戻るように
レーザー投光器の首振フを行なう事を特徴とする特許請
求の範囲第1項に記載のレーザーを用いた自動測量装置
。 (3)  レーザー投光器の首振シをターゲット上のレ
ーザースポットの移動を監視して行なう事を特徴とする
特許請求の範囲第2項に記載のレーザーを用いた自動測
量装置。
[Claims] 11.1 A laser oscillator and an optical pressure meter are held together and fixed to a swingable pedestal while facing in the same direction, and the laser oscillator is placed at a position separated from the pedestal, f)
・Attach a position detection target that receives the laser beam from above and detect the position coordinates of the light-receiving spot, and a distance measurement target that reflects the light from the optical pressure meter to a moving body, and use the movement IC of both targets to An automatic surveying device that uses a laser and is characterized by determining a movement trajectory based on the position coordinates of a light-receiving spot that changes on a position detection target and a change meter of movement distance. (2) A+J where a measurement area can be set on the target and the laser spot extends far beyond the measurement area;
K1: The automatic surveying device using a laser according to claim 1, characterized in that the laser projector is oscillated so that the laser spot returns to the measurement area. (3) The automatic surveying device using a laser according to claim 2, wherein the laser projector is oscillated by monitoring the movement of a laser spot on a target.
JP58089543A 1983-05-21 1983-05-21 Automatic device using laser Granted JPS59214704A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP58089543A JPS59214704A (en) 1983-05-21 1983-05-21 Automatic device using laser
US06/612,560 US4671654A (en) 1983-05-21 1984-05-21 Automatic surveying apparatus using a laser beam
GB08412941A GB2143396B (en) 1983-05-21 1984-05-21 Beam riding location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58089543A JPS59214704A (en) 1983-05-21 1983-05-21 Automatic device using laser

Publications (2)

Publication Number Publication Date
JPS59214704A true JPS59214704A (en) 1984-12-04
JPH0474649B2 JPH0474649B2 (en) 1992-11-26

Family

ID=13973727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58089543A Granted JPS59214704A (en) 1983-05-21 1983-05-21 Automatic device using laser

Country Status (1)

Country Link
JP (1) JPS59214704A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228509A (en) * 1988-07-19 1990-01-30 Nissan Motor Co Ltd Measuring method for spatial position
JPH0371004A (en) * 1989-08-11 1991-03-26 Railway Technical Res Inst Measuring method for geometric disorder of internal cavity cross-section and measuring instrument using the measuring method
WO2010146950A1 (en) * 2009-06-15 2010-12-23 国立大学法人岡山大学 Light point position detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172266A (en) * 1981-04-17 1982-10-23 Auto Process:Kk Distance measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172266A (en) * 1981-04-17 1982-10-23 Auto Process:Kk Distance measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0228509A (en) * 1988-07-19 1990-01-30 Nissan Motor Co Ltd Measuring method for spatial position
JPH0371004A (en) * 1989-08-11 1991-03-26 Railway Technical Res Inst Measuring method for geometric disorder of internal cavity cross-section and measuring instrument using the measuring method
WO2010146950A1 (en) * 2009-06-15 2010-12-23 国立大学法人岡山大学 Light point position detection device
JP5429897B2 (en) * 2009-06-15 2014-02-26 国立大学法人 岡山大学 Light spot position detector

Also Published As

Publication number Publication date
JPH0474649B2 (en) 1992-11-26

Similar Documents

Publication Publication Date Title
US4671654A (en) Automatic surveying apparatus using a laser beam
EP3677872B1 (en) Surveying instrument
US5237384A (en) Laser positioner and marking method using the same
US4656743A (en) Arrangement for determining the position of a hollow section system which is pressed forward
US5198868A (en) Laser surveying system having a function of marking reference points
US20010019101A1 (en) Target, surveying systems and surveying method
US12013239B2 (en) Marking system and marking method
JPS62293115A (en) Automatic measuring instrument for position and attitude of moving body
JP4787435B2 (en) Tunnel excavator position measurement device
JP3940619B2 (en) Tunnel excavator position measuring device
JPS59214704A (en) Automatic device using laser
JPH08254409A (en) Three-dimensional shape measuring and analyzing method
WO1996030720A1 (en) Method and apparatus for measuring position and posture of tunnel excavator
JPH0843084A (en) Multifunctional measurement vehicle for tunnel
JPS59214703A (en) Position measuring device utilizing laser light
JPH0747918B2 (en) Drilling position control method and device for rock drill
JPH0379646B2 (en)
JP4477209B2 (en) Direction angle measuring device for construction machinery
JP2002116026A (en) Measuring system for excavation position of shield machine
JPH06100078B2 (en) Automatic survey positioning system for tunnel lining machines
JP3295157B2 (en) Shield surveying method
JPH07103770B2 (en) Marking method for tunnel cross section
JPH04309809A (en) Inside tunnel measuring method in tunnel excavation work
JPH0742093Y2 (en) Position detection device for moving body
JP3045458B2 (en) Automatic surveying method of shield machine