JPS5921455B2 - Forced supply/exhaust type combustion control device - Google Patents

Forced supply/exhaust type combustion control device

Info

Publication number
JPS5921455B2
JPS5921455B2 JP9916776A JP9916776A JPS5921455B2 JP S5921455 B2 JPS5921455 B2 JP S5921455B2 JP 9916776 A JP9916776 A JP 9916776A JP 9916776 A JP9916776 A JP 9916776A JP S5921455 B2 JPS5921455 B2 JP S5921455B2
Authority
JP
Japan
Prior art keywords
gas
air
pressure
input
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9916776A
Other languages
Japanese (ja)
Other versions
JPS5324140A (en
Inventor
芳雄 山本
義幸 横網代
行夫 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9916776A priority Critical patent/JPS5921455B2/en
Publication of JPS5324140A publication Critical patent/JPS5324140A/en
Publication of JPS5921455B2 publication Critical patent/JPS5921455B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Gas Burners (AREA)

Description

【発明の詳細な説明】 本発明は強制給排気式燃焼装置に於いて、空気過剰率を
安定化させ燃焼状態を良好な状態に維持するための制御
装置に関するもので、空気過剰率を安定化しつつガス入
力を連続的かつ広範囲に変化することが可能で且つ、最
大入力時の通風回路の圧力損失が少い制御装置を得るこ
とを目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for stabilizing the excess air ratio and maintaining a good combustion state in a forced air supply/exhaust type combustion device. It is an object of the present invention to provide a control device that is capable of continuously and widely changing gas input, and that has a small pressure loss in a ventilation circuit at the maximum input.

完全予混合燃焼器ではガス量と燃焼空気量の比率が許容
限界内に保たわていることが必要である。
A fully premixed combustor requires that the ratio of gas volume to combustion air volume remain within permissible limits.

しかしながら、実際面ではその比率(以下空気過剰率と
いう)は、ガス圧、電圧などの外部的な要因やガス入力
を可変にするためのガス量変化に伴う要因なとて不安定
になり易く、一般ガス器具で使用されるガス圧を単に一
定化するための定圧ガスガバナのみでは目的を果せない
However, in practice, this ratio (hereinafter referred to as excess air ratio) tends to become unstable due to external factors such as gas pressure and voltage, and factors associated with changes in gas amount to make the gas input variable. A constant-pressure gas governor used in general gas appliances to simply stabilize the gas pressure cannot accomplish its purpose.

このために、空気圧とガス圧を常にほぼ等しくして混合
させる方法が宿効で、ゼロガバナと混合管を使用する場
合が多い。
For this reason, it is effective to mix the air and gas pressures by keeping them almost equal, and a zero governor and a mixing tube are often used.

この方法では、単に燃焼空気量のみを変化させればガス
入力も自動的に変化するので便利であるが、ガス圧を常
に空気圧と等しく推移させることが困難で、ある程度の
誤差は認めなければならない。
This method is convenient because the gas input automatically changes by simply changing the amount of combustion air, but it is difficult to keep the gas pressure always equal to the air pressure, and a certain amount of error must be accepted. .

この誤差は空気過剰率の誤差となるのでこの影響を少く
するには後述するが混合管の性能を高くする必要があり
、それは混合管の通風圧力損の増大を伴うため、送風機
性能との関係で設計点が選ばれていた。
This error results in an error in the excess air ratio, so in order to reduce this effect, it is necessary to improve the performance of the mixing pipe, which will be explained later.This is accompanied by an increase in the ventilation pressure loss of the mixing pipe, so the relationship with the blower performance is The design points were selected.

しかし、ガス入力を可変にするには、燃焼風量を変化さ
せねばならないが、最低風量時にガス圧と空気圧の誤差
による空気過剰率が許容値内にあるように混合管仕様を
選定すると、混合管圧損は燃焼風量の約2乗に比例して
増大するので、最高風量時の圧損は極めて大きくなる。
However, in order to make the gas input variable, it is necessary to change the combustion air volume, but if the mixing pipe specifications are selected so that the excess air ratio due to the error between gas pressure and air pressure is within the allowable value at the lowest air volume, the mixing pipe Since the pressure loss increases in proportion to approximately the square of the combustion air volume, the pressure loss at the maximum air volume becomes extremely large.

このために送風機として大型になり、騒音も大きくなる
という問題があった。
For this reason, there was a problem that the blower became large and the noise became louder.

本発明はこのような従来の欠点を除去したもので、以下
その実施例を添付図面とともに説明する。
The present invention eliminates these conventional drawbacks, and embodiments thereof will be described below with reference to the accompanying drawings.

第1図に於いて、1は燃焼空気の給気路で、分岐部2に
よって2力向に別れ各々が空気とガスの混合器6及び6
′に入る。
In FIG. 1, reference numeral 1 denotes a combustion air supply passage, which is divided into two directions by a branching part 2, each of which has a mixer 6 and 6 for air and gas.
'to go into.

混合器6,6′は同一構造で空気入口室3,3′から空
気ノズル4,4′を通って空気が噴出し、そのエゼクク
効果で低圧室5,5′の圧力レベルを下ける。
The mixers 6, 6' have the same structure, and air is ejected from the air inlet chambers 3, 3' through air nozzles 4, 4', and the pressure level in the low-pressure chambers 5, 5' is lowered by its exhaust effect.

その後、徐々に拡大するディフューザを通ってバーナ7
.7’−\入る。
Burner 7 is then passed through a gradually expanding diffuser.
.. 7'-\Enter.

ここで燃焼した熱は熱交換器8で外部へ伝えられ、また
排ガスは排気筒9や通って送風機10により排気路11
へ排出される。
The heat combusted here is transferred to the outside by a heat exchanger 8, and the exhaust gas is passed through an exhaust pipe 9 and a blower 10 into an exhaust passage 11.
is discharged to.

次に、ガスは、コック13の後の通路14を通ってガス
ガバナ15へ入り、ガス弁16 、16’を経て前記混
合器6,6′の低圧室5,5′に臨むガスノズル17
、17’に至る二つのカス回路12゜12′から供給さ
れている。
The gas then enters the gas governor 15 through the passage 14 after the cock 13 and passes through the gas valves 16, 16' to the gas nozzle 17 facing the low pressure chamber 5, 5' of the mixer 6, 6'.
, 17' are supplied from two cass circuits 12°12'.

尚、ガスガバナ15゜15′には分岐部2の空気圧が圧
力等化管18によって導入されており、空気圧の変化と
カスガバナ出[」圧の変化が同期するように作動する。
Incidentally, the air pressure of the branch portion 2 is introduced into the gas governor 15° 15' through a pressure equalization pipe 18, and operates so that changes in the air pressure and changes in the gas governor output pressure are synchronized.

尚、19は給気路の中に設けたダンパーで、燃焼空気量
の連続的変化が出来るようになっている。
Incidentally, 19 is a damper installed in the air supply passage, which allows the amount of combustion air to be continuously changed.

次に、第1図のような混合器を使用した方式での動作に
ついて説明する。
Next, the operation of the system using the mixer as shown in FIG. 1 will be explained.

記号を次の如く定める。混合器の空気入口室3,3′の
圧力 pai〃 低圧室の圧力 pnδ ガ゛スガ゛バナの出ロガ゛ス圧 pzδ燃焼
空気量 Qc ガス量 Qg空気過剰率
M 〃 の許容下限 M7M元〃 の許容
上限 M部 さて、空気ノズル4,4′のエセクタ効果による空気入
口室と低圧室の圧力差pai−pnoは第2図のように
Qcのほぼ2乗に比例する。
The symbols are defined as follows. Pressure in the air inlet chambers 3 and 3' of the mixer pai〃 Pressure in the low pressure chamber pnδ Gas governor output pressure pzδ Combustion air amount Qc Gas amount Qg Air excess ratio
Lower limit of allowable limit for M 7 Upper limit of allowable limit for M part Proportional.

又、ガス量はガス弁16 、16’とガスノズル17
、17’の抵抗及びガスガバナ出口圧pzoと低圧室の
圧力pnδと低圧室の圧力pnoで決まり、第3図のよ
うに圧力差pzo−pnoのほぼ平方根に比例する。
Also, the amount of gas is determined by the gas valves 16, 16' and the gas nozzle 17.
, 17', the gas governor outlet pressure pzo, the pressure pnδ in the low pressure chamber, and the pressure pno in the low pressure chamber, and is approximately proportional to the square root of the pressure difference pzo−pno as shown in FIG.

即ち pai=pz石となるようにガスガバナ15 、15’
が作動するとMは寸法関係でのみ決定されて、風量、ガ
ス量にかかわらず一定化が可能である。
That is, the gas governors 15 and 15' are set so that pai=pz stone.
When activated, M is determined only by dimensional relationships and can be made constant regardless of the air volume or gas volume.

ところが、ガスガバナの出口圧はカス流量によって変化
したり、供給ガス元圧の変化によっても変化する。
However, the outlet pressure of the gas governor changes depending on the flow rate of the waste, and also changes depending on the source pressure of the supplied gas.

更に、生産時の誤差も含めると、すべての条件下でpa
i=pnoを保持することは困灘である。
Furthermore, if production errors are included, the pa under all conditions is
It is difficult to maintain i=pno.

今、pzo=pai+Δpという関係にあるとすれば となってMの変化をもたらす。Now, if we have the relationship pzo=pai+Δp, , which brings about a change in M.

第4図はQcが100係の時にpa i pno−24
711111、A qでΔp=Qの時の基準空気過剰率
1,5とした時にΔp二±27/MI A qであると
すると、ガス入力を減少させる目的でQcを低下させた
時にMがどう変化するかを示したものである。
Figure 4 shows pa i pno-24 when Qc is 100.
711111, A q and when Δp = Q, the standard excess air ratio is 1.5, and if Δp2 ± 27/MI A q, then what happens to M when Qc is lowered for the purpose of reducing gas input? This shows how things change.

すなわち、pa 1−pnδがQc減少と共に低下して
くるので、低入力側になるほどMの変化は大きくなって
くる。
That is, since pa1-pnδ decreases as Qc decreases, the change in M increases as the input becomes lower.

次に、Mの許容限界をMaZC、y(巖’nとした時に
、定められたpa 1−pnoに対してΔpの許容値、
すなわち、ガスガバナの許容誤差範囲がどうなるかを第
5図に示している。
Next, when the allowable limit of M is MaZC, y('n), the allowable value of Δp for the determined pa 1-pno,
That is, FIG. 5 shows what the permissible error range of the gas governor is.

ガバナの誤差と、バーナの空気過剰率の許容値が定まれ
ば、混合器6,6′での圧力差pai−pnoの最低必
要値も決定される。
Once the tolerance of the governor error and the burner excess air ratio are determined, the minimum required value of the pressure difference pai-pno in the mixers 6, 6' is also determined.

入力を可変にする場合は、最低入力に見合う燃焼空気量
の時に、その最低必要差圧を確保するように空気ノズル
4,4′を設計することになる。
When the input is made variable, the air nozzles 4, 4' are designed to ensure the minimum required differential pressure when the amount of combustion air corresponds to the minimum input.

混合器6,6′の送風機10から見た圧損は、入力最低
の時を基準として、入力を2倍まで可変とするなら圧損
は4倍、3倍まで可変とするなら9倍の圧損となる。
The pressure drop seen from the blower 10 of the mixer 6, 6' is based on the lowest input, and if the input is varied up to 2 times, the pressure drop will be 4 times, and if it is varied up to 3 times, the pressure drop will be 9 times. .

例えば、最低必要な圧力差pai pnoを10711
11 A qとしてその時の混合器6゜6′の圧損を6
懸八qとするなら、入力変化を3倍とすると圧損は54
票Aqまで増加することになる。
For example, the minimum required pressure difference pai pno is 10711
Assuming 11 A q, the pressure loss of the mixer 6゜6' at that time is 6
If the input change is tripled, the pressure loss will be 54.
This will increase the number of votes to Aq.

これは、送風機自体の大型化と騒音の増大を伴うので好
ましくない。
This is not preferable because it increases the size of the blower itself and increases noise.

以上は混合器とゼ狛ガバナを使用する制御力式の一般的
な説明であるが、本発明では能力変化幅の拡大化を実現
する時に伴う圧損の増大と送風機の大型化を解決しよう
とするもので、第1図のように混合器6,6′とガス回
路12 、12’を各々並列に設け、各々の混合ガスを
燃焼させるバーナ7.7′と対応させている。
The above is a general explanation of the control force type that uses a mixer and a zebra governor, but the present invention attempts to solve the problems of increasing pressure loss and increasing the size of the blower that occur when expanding the range of capacity variation. As shown in FIG. 1, mixers 6, 6' and gas circuits 12, 12' are provided in parallel, respectively, and are associated with burners 7, 7' for burning the respective mixed gases.

今、ガスガバナ15とバーナ7の性能で決められる混合
器の最低必要差圧(pai pno)をpnと表わし
、その時の混合器の圧損をplと表わすことにし、2本
の混合器は入力を均等に負担し、且つ一本につき1/2
まで可変であるとすれは、ダンパー19ζこよる空気量
の制御と、ガス弁16′の開閉を組合することによって
次表のように入力を変化さぜることか出来る。
Now, the minimum required differential pressure (pai pno) of the mixer determined by the performance of the gas governor 15 and burner 7 is expressed as pn, and the pressure drop of the mixer at that time is expressed as pl, so that the two mixers have an equal input. and 1/2 per bottle.
By combining the control of the air amount by the damper 19ζ and the opening and closing of the gas valve 16', the input can be changed as shown in the following table.

全入力が100%〜50係の間はダンパー19のみで入
力を調節するが、50%以下にする時はガス弁16′を
閉じる。
When the total input is between 100% and 50%, the input is adjusted only by the damper 19, but when the total input is below 50%, the gas valve 16' is closed.

混合器6′には空気が流れているがガスが入らないので
バーナ7′では燃焼せず、バーナ7に対しては単にバイ
パス路になっているに過ぎない。
Although air is flowing through the mixer 6', no gas enters the mixer 6', so no combustion occurs in the burner 7', and the mixer 6' merely serves as a bypass path for the burner 7'.

こうすれば入力は1 / 4まで可変となるが、混合器
の圧損は4plになるのみで、1本の混合器で行うと1
6plにまで達つすることと比較すると、はるかに少い
圧損で良いことになる。
In this way, the input can be varied up to 1/4, but the pressure loss of the mixer will only be 4 pl, and if done with one mixer, it will be 1/4.
Compared to reaching up to 6 pl, a much smaller pressure drop is required.

第1図の実施例では2本の並列配置であったが3本の並
列なら1 / 6 iで4本ならl/8まで入力下限を
広くすることか出来るが一本当りの入力可変が1/2で
ある限り、送風機から見た混合器圧損は4pl止まりに
なる。
In the embodiment shown in Fig. 1, two wires are arranged in parallel, but if three wires are connected in parallel, the input lower limit can be widened to 1/6 i, and if four wires are placed in parallel, the input lower limit can be widened to 1/8, but the input variable per wire is 1. /2, the mixer pressure loss seen from the blower will be no more than 4 pl.

入力の連続可変の方法としてはダンパー19の他に送風
機10の速度制御を行っても同様の機能を達成すること
が出来る。
As a method of continuously varying the input, the same function can be achieved by controlling the speed of the blower 10 in addition to the damper 19.

これら風量調節手段は、前述の例で言えばl/2にまで
低下し、ガス弁16′が閉じた時に100%入力と同じ
空気が供給されるようにガス弁16′開閉と調節手段が
連続していると、入力調節はスムーズに行える。
In the above-mentioned example, these air volume adjustment means are reduced to 1/2, and the gas valve 16' is continuously opened and closed so that when the gas valve 16' is closed, the same air as 100% input is supplied. If you do so, you can adjust the input smoothly.

混合器は入力が均等に配分されていなくても、差を持た
せておくことも可能で、唯、各混合器の最低人力時にp
nを下回らないようにしておけば、全範囲で良好燃焼が
保証される。
Even if the inputs of the mixers are not evenly distributed, it is possible to have a difference between them, and only the p
Good combustion is guaranteed over the entire range if it is kept below n.

このように本発明によれば、空気過剰率を厳密にコント
ロールしつつ、ガス入力を大幅に変化させることが比較
的低圧の送風機で可能となる。
As described above, according to the present invention, it is possible to significantly change the gas input while strictly controlling the excess air ratio using a relatively low pressure blower.

更に、前述の例で言えば、l / 2以下の入力では混
合器6′がバイパス空気の通路になるが、これは次の様
な効果をもたらす。
Furthermore, in the above example, when the input is less than 1/2, the mixer 6' becomes a bypass air passage, which brings about the following effects.

熱交換器8の寸法が一定で、空気過剰率が一定化されて
いると、ガス入力が低い力が効率は高くなる傾向にある
が、これは良い反面、排ガス温度の必要以上な低下を招
き、排気路中では低入力の時にはバイパス路に新鮮空気
が流れ、排気ガスと混合するので結露させにくくする働
きがある。
If the dimensions of the heat exchanger 8 are constant and the excess air ratio is constant, the efficiency tends to be high when the gas input is low, but while this is good, it causes an unnecessarily low exhaust gas temperature. In the exhaust passage, when the input is low, fresh air flows into the bypass passage and mixes with the exhaust gas, which helps prevent dew condensation.

すなわち、入力を低下、下限を広く確保すると共に、自
動的にバイパス路を形成することになり、実用的に効果
は太きい。
In other words, the input is lowered, a lower limit is secured broadly, and a bypass path is automatically formed, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における強制糺市ト気式燃焼制
御装置の概略構成図、第2〜5図は説明図である。 1・・・・・・給気路、3,3′・・・・・・空気入口
室、4,4′・・・・・・ノズル、5,5′・・・・・
低圧室、6,6′・・・・・・混合器、7,7′・・・
・・・バーナ、12 、12’・・・・・・ガス回路、
15・・・・・・ガスガバナ、16 、16<・・・・
・ガス弁。
FIG. 1 is a schematic diagram of a forced-pressure-type combustion control device according to an embodiment of the present invention, and FIGS. 2 to 5 are explanatory diagrams. 1... Air supply path, 3, 3'... Air inlet chamber, 4, 4'... Nozzle, 5, 5'...
Low pressure chamber, 6, 6'... Mixer, 7, 7'...
... Burner, 12, 12'... Gas circuit,
15...Gas governor, 16, 16<...
・Gas valve.

Claims (1)

【特許請求の範囲】 1 空気入口室とその空気入口室下流で高速流となるノ
ズル部が形成する低圧室とを有し空気とガスを混合する
並列配置された複数個の混合器と、空気圧に応じたガス
圧になるよう制御するガスガバナが挿入されその末端が
各混合器の低圧室へ導かれたガス弁を有する複数のガン
回路と、各混合器と対応する複数のバーナを有し、前記
ガス弁のみの選択開閉によって燃焼入力を可変にした強
制給排気式燃焼制御装置。 2 燃焼風量の連続的調節が可能な調節手段を給気路中
に設け、ガス回路中のガス弁の選択開閉との組合せによ
って燃焼入力可変範囲を拡大した特許請求の範囲第1項
記載の強制給排気式燃焼制御装置。
[Scope of Claims] 1. A plurality of mixers arranged in parallel that mix air and gas, each having an air inlet chamber and a low pressure chamber formed by a nozzle section that generates a high-speed flow downstream of the air inlet chamber; a plurality of gun circuits each having a gas valve into which a gas governor is inserted and whose end is guided to a low pressure chamber of each mixer, and a plurality of burners corresponding to each mixer; A forced air supply/exhaust type combustion control device in which combustion input is made variable by selectively opening and closing only the gas valve. 2. The forced control according to claim 1, in which a control means capable of continuously adjusting the combustion air volume is provided in the air supply path, and the combustion input variable range is expanded by a combination of selective opening and closing of a gas valve in the gas circuit. Supply/exhaust type combustion control device.
JP9916776A 1976-08-18 1976-08-18 Forced supply/exhaust type combustion control device Expired JPS5921455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9916776A JPS5921455B2 (en) 1976-08-18 1976-08-18 Forced supply/exhaust type combustion control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9916776A JPS5921455B2 (en) 1976-08-18 1976-08-18 Forced supply/exhaust type combustion control device

Publications (2)

Publication Number Publication Date
JPS5324140A JPS5324140A (en) 1978-03-06
JPS5921455B2 true JPS5921455B2 (en) 1984-05-19

Family

ID=14240082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9916776A Expired JPS5921455B2 (en) 1976-08-18 1976-08-18 Forced supply/exhaust type combustion control device

Country Status (1)

Country Link
JP (1) JPS5921455B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888516U (en) * 1981-12-07 1983-06-15 サンデン株式会社 Kerosene vaporizing burner
DE3407552A1 (en) * 1984-03-01 1985-09-05 Bodenseewerk Perkin Elmer Co GAS CONTROL DEVICE FOR CONTROLLING THE FUEL GAS AND OXIDE SUPPLY TO A BURNER IN AN ATOMIC ABSORPTION SPECTROMETER
US4766883A (en) * 1986-02-26 1988-08-30 Mor-Flo Industries, Inc. Forced draft controlled mixture heating system using a closed combustion chamber
US5022352A (en) * 1990-05-31 1991-06-11 Mor-Flo Industries, Inc. Burner for forced draft controlled mixture heating system using a closed combustion chamber
US5085579A (en) * 1991-03-25 1992-02-04 Mor-Flo Industries, Inc. Powered chamber combustion system and burner therefor
US5240411A (en) * 1992-02-10 1993-08-31 Mor-Flo Industries, Inc. Atmospheric gas burner assembly
DE4317981A1 (en) * 1993-05-28 1994-12-01 Ranco Inc Gas-air ratio control device for a temperature control loop for gas appliances
JP6488550B2 (en) * 2014-03-27 2019-03-27 三浦工業株式会社 boiler

Also Published As

Publication number Publication date
JPS5324140A (en) 1978-03-06

Similar Documents

Publication Publication Date Title
US4380895A (en) Combustion chamber for a gas turbine engine having a variable rate diffuser upstream of air inlet means
US4385887A (en) Combustion control apparatus
US8413451B2 (en) Turbine with fluidically-controlled valve and swirler with a bleed hole
US20020043067A1 (en) Gas turbine combustion system and combustion control method therefor
JP2001527201A5 (en)
KR20090125034A (en) A heating system
JPH07189746A (en) Gas turbine combustor control method
JP2001507113A (en) Combustion dilution bypass system
JPS5921455B2 (en) Forced supply/exhaust type combustion control device
JP5588623B2 (en) Fuel delivery system and method for delivering fuel to a turbine using the fuel delivery system
KR102312889B1 (en) Gas Burner
JP2018132257A (en) Premixing device, heat source device and water heater
JPS5921454B2 (en) Forced air supply/exhaust type combustion control device
JPS5921456B2 (en) Forced supply/exhaust type combustion control device
JP2006145121A (en) Combustion device
CN114321895A (en) Ultralow-nitrogen gas combustion process and device
JPS5843654B2 (en) Combustion control device
JP2001012257A (en) Fuel vapor supply device for gas turbine burner
JPS6091135A (en) Controller of gas combustion
JPS605856B2 (en) Forced air supply/exhaust combustion control device
JPS5855410B2 (en) Forced intake and exhaust combustion device
JPH08261468A (en) Gas turbine combustor
JP2000146263A (en) Engine fuel feeder and air conditioner equipped with the same
US10539023B2 (en) Flow control in modulated air systems
JPH05256166A (en) Gas turbine control method