JPS59214020A - Optical switch - Google Patents

Optical switch

Info

Publication number
JPS59214020A
JPS59214020A JP8852683A JP8852683A JPS59214020A JP S59214020 A JPS59214020 A JP S59214020A JP 8852683 A JP8852683 A JP 8852683A JP 8852683 A JP8852683 A JP 8852683A JP S59214020 A JPS59214020 A JP S59214020A
Authority
JP
Japan
Prior art keywords
waveguide
electrode
propagation
leakage
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8852683A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Hideaki Adachi
秀明 足立
Kenzo Ochi
謙三 黄地
Kentaro Setsune
瀬恒 謙太郎
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8852683A priority Critical patent/JPS59214020A/en
Priority to US06/667,480 priority patent/US4715680A/en
Priority to EP84900750A priority patent/EP0137851B1/en
Priority to DE8484900750T priority patent/DE3482287D1/en
Priority to PCT/JP1984/000039 priority patent/WO1984003155A1/en
Publication of JPS59214020A publication Critical patent/JPS59214020A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3137Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve branching characteristics by applying a specific voltage to an electrode provided on a waveguide. CONSTITUTION:An optical switch consists of a main waveguide 11, a subordinate waveguide 12 which crosses the main waveguide 11, propagation control electrodes 31 which are arranged on the bisector of the acute crossing angle on the intersection 13 of both waveguides 11 and 12 at a specific interval of a propagation electrode gap 14, and leak control electrodes 33 which controls leak light leaking to the subordinate waveguide 12 as to the light of the main waveguide 1 at the intersection 13 and has specific leak electrode gaps 32. Then, the leak electrode gaps 32 are arranged at least on the subordinate waveguide 12 near the intersection 13 in parallel to the propagation electrode gap 14.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光スィッチに関する。特に導波光を分岐させる
ことにより光出力をオン−オフさせる光集積回路に応用
する光スィッチに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to optical switches. In particular, the present invention relates to an optical switch applied to an optical integrated circuit that turns on and off optical output by branching guided light.

従来例の構成とその問題点 従来この種の交差する導波路を用いだ光スィッチと1−
で、TIR(全反射型)スイッチがある。
Conventional structure and problems Conventionally, optical switches using this type of intersecting waveguides and 1-
There is a TIR (total internal reflection) switch.

従来この種のTIRスイッチは電気光学効果を有するT
1拡散型L I N b Os導波路により構成されで
いた。この構成のTIRスイッチは第1図に示すように
、主導波路11と交差する副導波路12とからなり、上
記交差する導波路11.12からなる交差部13上の鋭
角なる交差角の2等分線上に配置された一定間隔の伝搬
電極空隙14を有する伝搬制御電極16から構成されて
いた。このTIRスイッチにおいて、伝搬制御電極16
に電圧を印加1〜ない状態では主導波路の導波光t1は
交差部13を直進i〜主導波路11をそのまま伝搬する
。所定の電圧を印加すると伝搬電極ギャップ14の下の
導波路の屈折率が低下し、導波光t1はこの低屈折率層
との界面で全反射され副導波路へ伝搬する。具体的に述
べると、電圧が印加されていない状態では、導波光t 
は直進し、導波光t2となる。一方、電圧印加状態では
、導波光t、は交差路内で全反射され、導波光t3とな
り、スイ3   ′ ノチ動作を行う。
Conventionally, this type of TIR switch has an electro-optical effect.
It was composed of a 1-diffusion type L I N b Os waveguide. As shown in FIG. 1, the TIR switch with this configuration is composed of a main waveguide 11 and a sub-waveguide 12 that intersects with each other. It consisted of a propagation control electrode 16 having propagation electrode gaps 14 at regular intervals arranged on a line. In this TIR switch, the propagation control electrode 16
When no voltage is applied to 1 to 1, the guided light t1 of the main waveguide travels straight through the intersection 13 and propagates directly through the main waveguide 11. When a predetermined voltage is applied, the refractive index of the waveguide below the propagation electrode gap 14 decreases, and the guided light t1 is totally reflected at the interface with this low refractive index layer and propagates to the sub-waveguide. To be more specific, when no voltage is applied, the guided light t
travels straight and becomes guided light t2. On the other hand, when a voltage is applied, the guided light t is totally reflected within the cross-path, becomes the guided light t3, and performs a swivel 3' operation.

このような従来の光スィッチにおいては以下に示す問題
点があった。電気光学効果による屈折率変化は放電破壊
の生じ易くなる2KV/mmの電界印加時でも10 と
小さいため、全反射角となる主導波路11と副導波路1
2との交差角を大きくすることができなかった。この交
差角は0.5〜4゜と小さいため、電圧が印加されてい
ない状態で導波光t1 は交差部での導波路の構造変化
に影響を受け、全部直進せず一部副導波路へ漏洩し導波
光t3となった。このため、10dB以上の分岐比を得
ることが困難となり、スイッチング特性を充分に得るこ
とができなかった。
Such conventional optical switches have the following problems. Since the refractive index change due to the electro-optic effect is as small as 10 2 even when an electric field of 2 KV/mm is applied, which tends to cause discharge breakdown, the main waveguide 11 and the sub-waveguide 1, which form the total reflection angle,
It was not possible to increase the intersection angle with 2. Since this crossing angle is as small as 0.5 to 4°, when no voltage is applied, the guided light t1 is affected by the structural change of the waveguide at the crossing point, and does not go straight at all, but partially passes through the sub-waveguide. It leaked and became guided light t3. For this reason, it became difficult to obtain a branching ratio of 10 dB or more, and it was not possible to obtain sufficient switching characteristics.

この分岐比を改善するために発明者ら/′i第2図に示
す光スィッチを提案した。この光スィッチは、従来の光
スィッチに漏洩制御電極を付与し、分岐比を改善された
。すなわち、主導波路11と副導波路12の結合部に、
伝搬制御電極16の一部を変形させ、主導波路に平行な
一定間隔の漏洩電極空隙21をもつ漏洩制御電極22を
設けた。以上の構成にすると、伝搬制御電極オフ、漏洩
制御電極オン時では、漏洩電極空隙21下の導波路の屈
折率が電気光学効果により低下し低屈折率層を形成する
ので導波光t1 の副導波路12への漏洩光は上記低屈
折率層で全反射され漏洩することなく交差路14を直進
し導波光t3となり、特性の優れた分岐比を得ることが
出来た。また、副導波路12へのスイッチ動作は、伝搬
制御電極オン、漏洩制御電極オフにより実行された。
In order to improve this branching ratio, the inventors proposed an optical switch shown in FIG. 2. This optical switch adds a leakage control electrode to a conventional optical switch and improves the branching ratio. That is, at the coupling part between the main waveguide 11 and the sub waveguide 12,
A portion of the propagation control electrode 16 was deformed to provide a leakage control electrode 22 having leakage electrode gaps 21 at regular intervals parallel to the main waveguide. With the above configuration, when the propagation control electrode is off and the leakage control electrode is on, the refractive index of the waveguide below the leakage electrode gap 21 decreases due to the electro-optic effect and forms a low refractive index layer, so that the sub-guidance of the guided light t1 is reduced. The light leaking into the wave path 12 was totally reflected by the low refractive index layer and went straight through the crossroads 14 without leaking, becoming the waveguide light t3, making it possible to obtain a branching ratio with excellent characteristics. Further, the switching operation to the sub waveguide 12 was performed by turning on the propagation control electrode and turning off the leakage control electrode.

しかし、この構造ではまだ不充分な点を有していた。す
なわち、低電圧で導波光を全反射させるためには、伝搬
電極空隙および漏洩電極空隙の幅を2〜4μmにするこ
とが必要である。2μm以下では導波光が低屈折率層を
エバノネノセント波で漏洩するため、全反射しない。ま
た、4μmを越えると電極空隙に印加する電圧を上げな
ければ、2〜4μmの場合と等1−い電界が得られない
。1〜たがって、導波路の幅が2Qμm以下となると、
伝搬制御電極16と漏洩制御電極22を交差路13上に
構成することは不可能となる。両電極を第2図のごとく
一体化で構成すると、漏洩電極と伝搬電極との共通電極
部23の幅は2μm以下となり、通常の7オトリソ加工
は難1〜くなり歩留も低下する。さらに共通電極23の
先端は非常に細くなり、電極空隙15.21が交差路全
体に至らなくなり、導波路幅の広い、例えば20μm以
下の場合得られた効果が充分得られないという欠点があ
った。
However, this structure still had some shortcomings. That is, in order to totally reflect the guided light at a low voltage, it is necessary to set the width of the propagation electrode gap and the leakage electrode gap to 2 to 4 μm. At 2 μm or less, the guided light leaks through the low refractive index layer as an evanescent wave, and is not totally reflected. Moreover, if the thickness exceeds 4 μm, an electric field as high as that in the case of 2 to 4 μm cannot be obtained unless the voltage applied to the electrode gap is increased. 1~ Therefore, when the width of the waveguide is 2Qμm or less,
It becomes impossible to configure the propagation control electrode 16 and the leakage control electrode 22 on the intersection 13. When both electrodes are integrated as shown in FIG. 2, the width of the common electrode portion 23 between the leakage electrode and the propagation electrode becomes 2 μm or less, which makes normal 7-otolithography difficult and reduces the yield. Furthermore, the tip of the common electrode 23 becomes very thin, and the electrode gap 15.21 does not reach the entire cross-path, which has the disadvantage that the effect obtained cannot be obtained sufficiently when the waveguide width is wide, for example, 20 μm or less. .

発明者らは、上記構成の電極に改良を加え、導波路幅の
狭い導波路でも分岐比の優れ、したがって信号対雑音比
(S/N比)の優れた光スィッチを発明した。
The inventors improved the electrode having the above-mentioned configuration and invented an optical switch that has an excellent branching ratio even in a waveguide having a narrow waveguide width, and therefore has an excellent signal-to-noise ratio (S/N ratio).

発明の目的 本発明は、上記従来例の有1〜ていた欠点もしくは問題
点を除去し分岐特性の良好な光スィッチを提供すること
を目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide an optical switch with good branching characteristics by eliminating the drawbacks or problems of the above-mentioned conventional examples.

発明の構成 本発明の光スィッチは、主導波路と、上記主導波路と交
差する副導波路と、上記副導波路の形成する交差路上の
鋭角なる交差角の2等分線上に配置された一定間隔の伝
搬電極空隙を有する伝搬制御電極と、上記交差路におい
て上記主導波路の導波光のうち上記副導波路へ漏洩する
漏洩光を制御する一定間隔の漏洩電極空隙を有する漏洩
制御電極とを有し、上記漏洩電極空隙を上記伝搬電極空
隙に平行に上記交差路近傍の少なくとも上記副導波路上
に配置したものである。
Structure of the Invention The optical switch of the present invention includes a main waveguide, a sub-waveguide that intersects the main waveguide, and a predetermined interval arranged on the bisector of an acute intersection angle on the intersection formed by the sub-waveguide. a propagation control electrode having a propagation electrode gap of , and a leakage control electrode having a leakage electrode gap at a constant interval for controlling leakage light leaking to the sub waveguide out of the guided light of the main waveguide at the intersection. , the leakage electrode gap is arranged parallel to the propagation electrode gap on at least the sub waveguide near the intersection.

以下に本発明につ−て図を用いて説明する。The present invention will be explained below with reference to the drawings.

第3図は本発明にかかる光スィッチの構造を示す。同図
において本発明にかかる光スィッチは、主導波路11と
上記主導波路11と交差する副導波路12と、上記副導
波路11.12の形成する交差路13上の鋭角なる交差
角の二等分線上に配置された一定間隔の伝搬電極空隙1
4を有する伝搬制御電極31と、上記交差路13におい
て上記主導波路11の導波光のうち上記副導波路12へ
漏洩する漏洩光を制御する一定間隔の漏洩電極空隙32
を有する漏洩制御電極33とからなり、上記漏洩電極空
隙32は伝搬電極空隙14に平行に上記交差路13近傍
の少なくとも副導波路上に配置されている。
FIG. 3 shows the structure of an optical switch according to the present invention. In the same figure, the optical switch according to the present invention has a main waveguide 11, a sub-waveguide 12 that intersects with the main waveguide 11, and an acute intersection angle between the sub-waveguides 11 and 13 formed by the sub-waveguides 11 and 12. Propagation electrode gaps 1 at regular intervals arranged on a segment line
4, and leakage electrode gaps 32 at regular intervals for controlling leakage light leaking to the sub waveguide 12 out of the guided light of the main waveguide 11 at the intersection 13.
The leakage electrode gap 32 is arranged parallel to the propagation electrode gap 14 at least on the sub-waveguide near the intersection 13.

従来、このようが構成では伝搬電極空隙14に漏洩電極
空隙32が平行なので、漏洩電極空隙32に電界を印加
1〜電気光学効果により漏洩電極空隙下の導波路に低屈
折率層を形成し、主導波路11の導波光t1のうち副導
波路12への漏洩光は上記低屈折率層で全反射されるが
、幾何学的配置が主導波路11へ漏洩先金て戻るように
なっていないので分岐比が充分改善されないと考えられ
ていた。しかし、発明者らは本発明にかかる構造におい
ても、伝搬電極空隙14に電界を印加せず、漏洩電極空
隙32にのみ電界を印加すると、主導波路11の導波光
t、は副導波路12に漏洩することなく伝搬することを
見い出j〜、新規の光スィッチを発明1〜た。すなわち
、動作原理の詳細は明確になっていないが、漏洩電極空
隙32下の導波路に形成された低屈折率層により、導波
光t1のうちの漏洩成分が低下し、屈折率の高い主導波
路内へ導波光が閉じ込められ、副導波路へ漏洩すること
なく伝搬するもの古考えられる。
Conventionally, in such a configuration, since the leaky electrode gap 32 is parallel to the propagation electrode gap 14, an electric field is applied to the leaky electrode gap 32. A low refractive index layer is formed in the waveguide under the leaky electrode gap by the electro-optic effect. Of the guided light t1 of the main waveguide 11, the leakage light to the sub-waveguide 12 is totally reflected by the low refractive index layer, but the geometric arrangement is not such that the leakage light returns to the main waveguide 11. It was thought that the branching ratio would not be improved sufficiently. However, even in the structure according to the present invention, the inventors found that when an electric field is not applied to the propagation electrode gap 14 but only to the leakage electrode gap 32, the guided light t of the main waveguide 11 is transferred to the sub waveguide 12. We discovered that light propagates without leakage and invented a new optical switch. That is, although the details of the operating principle are not clear, the low refractive index layer formed in the waveguide below the leaky electrode gap 32 reduces the leakage component of the guided light t1, and the main waveguide with a high refractive index It is thought that the guided light is confined inside and propagates without leaking to the sub waveguide.

本発明にかかる構造を詳細に検討した結果、導波路幅に
最適の範囲のあることを見い出1−だ。すなわち、導波
路幅4〜20μmが最適である。4μm以下では、電極
空隙が2〜4μmが適当なので、本構成を実現すること
が不可能であ°る。又、2膜μmを越えると、従来例で
示した構造が実現可能である。さらに、本発明の構造で
は従来例よりも分岐比を向上させることができなかった
。これは、従来例と異なり全反射視像を用いていないた
めと考えられる。特に導波路幅が4〜10μmで分岐比
改善が優れており、分岐比20dB以上が実現された。
As a result of a detailed study of the structure according to the present invention, it was found that there is an optimum range for the waveguide width. That is, a waveguide width of 4 to 20 μm is optimal. If the electrode gap is less than 4 μm, it is impossible to realize this configuration because the appropriate electrode gap is 2 to 4 μm. Furthermore, if the thickness exceeds 2 μm, the structure shown in the conventional example can be realized. Furthermore, with the structure of the present invention, it was not possible to improve the branching ratio compared to the conventional example. This is considered to be because, unlike the conventional example, a total internal reflection visual image is not used. In particular, when the waveguide width was 4 to 10 μm, the branching ratio was improved, and a branching ratio of 20 dB or more was achieved.

したがって、本発明にかかる構造においては、伝搬制御
電極311,312に電圧を印加せず、漏洩制御電極3
11,331に所望の電圧を印加した場合、主導波路1
1の導波光t1は副導波路12へ漏洩せず、そのまま主
導波路を伝搬する。
Therefore, in the structure according to the present invention, no voltage is applied to the propagation control electrodes 311 and 312, and the leakage control electrode 3
When a desired voltage is applied to 11,331, the main waveguide 1
The guided light t1 of 1 does not leak to the sub waveguide 12 and propagates through the main waveguide as it is.

一方、伝搬制御電極311,312に電圧を印加し、漏
洩制御電極311.331の電圧を印加させない場合、
導波光t1は伝搬電極空隙13下に形成された低屈折率
層で全反射され、副導波路129 /  ζ へ導波光t3となって伝搬する。以上のような電圧印加
を加えることにより、導波光t1 をスイッチ動作させ
ることができた。分岐比20dB、消光比20dBを実
現させることができ、S/N比の優れた光スィッチを可
能と1〜だ。
On the other hand, when applying voltage to the propagation control electrodes 311 and 312 and not applying voltage to the leakage control electrodes 311 and 331,
The guided light t1 is totally reflected by the low refractive index layer formed under the propagation electrode gap 13, and propagates to the sub waveguide 129/ζ as the guided light t3. By applying the voltage as described above, the guided light t1 could be operated as a switch. It is possible to achieve a branching ratio of 20 dB and an extinction ratio of 20 dB, making it possible to create an optical switch with an excellent S/N ratio.

上記構成の光スィッチにおいて、第3図に示す主導波路
11と副導波路12との間に構成上の差異はなく、11
を副導波路に、12を主導波とすることができる。この
構成において、スイッチ動作は以下のようになる。すな
わち、伝搬制御電極311.312に電圧を印加せず、
漏洩制御電極312.332に電圧を印加した場合、導
波光t4の副導波路の漏洩光は漏洩電極空隙34下に電
気光学効果により形成された低屈折率層により主導波路
に戻されるので、漏洩することなく伝搬し導波光t3と
なる。一方、伝搬制御電極311゜312に電圧を印加
し、漏洩制御1篭極312゜332に電圧を印加させな
い場合、導波光t4は伝搬電極空隙13下に電気光学効
果により形成された低屈折率層で全反射され、副導波路
11を伝1o・−ノ 搬する導波光t2となシスイッチ動作を行う。
In the optical switch having the above configuration, there is no difference in configuration between the main waveguide 11 and the sub waveguide 12 shown in FIG.
can be used as a sub-waveguide, and 12 can be used as a main waveguide. In this configuration, the switch operation is as follows. That is, without applying voltage to the propagation control electrodes 311 and 312,
When a voltage is applied to the leakage control electrodes 312 and 332, the leakage light of the guided light t4 from the sub-waveguide is returned to the main waveguide by the low refractive index layer formed under the leakage electrode gap 34 by the electro-optic effect, so that the leakage is prevented. The light propagates without any movement and becomes guided light t3. On the other hand, when a voltage is applied to the propagation control electrodes 311° 312 and no voltage is applied to the leakage control 1 gating electrode 312° 332, the guided light t4 passes through the low refractive index layer formed under the propagation electrode gap 13 by the electro-optic effect. The guided light t2 is totally reflected and propagates through the sub-waveguide 11, performing a switching operation.

1−たがって、本発明の光スィッチは主導波路および副
導波路の区別なく形成され、しかも電極も一部共通に使
用するので、簡単な構成で高性能な光スィッチが実現で
きた。
1- Therefore, in the optical switch of the present invention, the main waveguide and the sub-waveguide are formed without distinction, and some electrodes are also used in common, so a high-performance optical switch can be realized with a simple configuration.

実施例の説明 以下本発明について、実施例をあげて具体的に説明する
DESCRIPTION OF EMBODIMENTS The present invention will be specifically described below with reference to Examples.

本発明の実施例を第3図により具体的に説明する0たと
えば、電気光学効果の大きい材料であるLiNbO3単
結晶において、表面が平滑なY−カットL iN b 
O3単結晶基板36上に深さ1μmS度のTi拡散層か
らなる線路幅20μmの交差する2本の導波路を、導波
路の鋭角なる交差角の2等分線がL i N b O3
単結晶のX軸方向に形成1−1主光導波路11および副
導波路12とし、次に電極と導波路とが直接接すると導
波光の伝搬損失が増加するので、バッファ層として膜厚
0.2μmのb 102膜をスパッタ法で蒸着した。次
に、上記交差部13に膜厚0.1μm 、空隙幅4μm
の伝搬制11′ 両電極31および漏洩制御電極33をA4の真空蒸着お
よびリフトオフの技術で形成し、光スィッチとする。以
上の構成において、電極311゜312.332は等電
位とし、311と331との間に電圧を例えば10V/
μmの電界で、印加すると、漏洩電極空隙32下の導波
路中に低屈折率を形成すると、主導波路11の導波路光
t1 は副導波路12に漏洩することなく直進t−だ。
Embodiments of the present invention will be specifically explained with reference to FIG. 3. For example, in LiNbO3 single crystal, which is a material with a large electro-optic effect,
Two intersecting waveguides with a line width of 20 μm made of a Ti diffusion layer with a depth of 1 μm S degrees on an O3 single crystal substrate 36 are formed so that the bisector of the acute intersection angle of the waveguides is L i N b O3
1-1 main optical waveguide 11 and sub-waveguide 12 are formed in the X-axis direction of the single crystal, and then the propagation loss of the guided light increases if the electrode and the waveguide are in direct contact with each other. A 2 μm b 102 film was deposited by sputtering. Next, at the intersection 13, a film thickness of 0.1 μm and a gap width of 4 μm are applied.
Propagation control 11' Both electrodes 31 and leakage control electrode 33 are formed by A4 vacuum evaporation and lift-off techniques to form an optical switch. In the above configuration, the electrodes 311, 312, and 332 are at equal potential, and a voltage of, for example, 10 V/3 is applied between 311 and 331.
When an electric field of μm is applied to form a low refractive index in the waveguide below the leaky electrode gap 32, the waveguide light t1 of the main waveguide 11 travels straight t- without leaking to the sub waveguide 12.

この場合、分岐比は、20dB以上を得ることができた
。スイッチ動作させる場合、電極311,331を等電
位にし、電極312.332を等電位とし、電極311
と312との間に電圧を、例えば1゜77μmの電界で
、印加させると、導波光t1は伝搬電極空隙13下の導
波路中に形成された低屈折率層で全反射され、導波光t
3となる。この場合、分岐比は2odB以上得られた。
In this case, a branching ratio of 20 dB or more could be obtained. When operating the switch, the electrodes 311 and 331 are made to have an equal potential, the electrodes 312 and 332 are made to be made to have an equal potential, and the electrodes 311 and 331 are made to have an equal potential.
When a voltage is applied, for example, with an electric field of 1° 77 μm between
It becomes 3. In this case, a branching ratio of 2 odB or more was obtained.

本実施例ではTi拡散型L I N b Os導波路を
用いて説明したが、本発明の構造において光導波路は電
気光学効果の大きい材料であればよく、L iN b 
O3に限定されるものでない。例えば、LiTaO2,
PLZT、BGO,GaAs などでも同様な効果を示
す。
Although this embodiment has been described using a Ti-diffused L I N b Os waveguide, the optical waveguide in the structure of the present invention may be made of any material that has a large electro-optic effect;
It is not limited to O3. For example, LiTaO2,
PLZT, BGO, GaAs, etc. also exhibit similar effects.

発明の効果 以上のように本発明は光スィッチの交差部に漏洩制御電
極の構造に工夫を加え、分岐特性を改善1−たものであ
る。本発明において、単に導波路上に設けられた電極に
所定の電圧を印加することにより、導波光の直進時には
副導波路へ漏洩せず、又反射時に副導波路へ全て伝搬す
るので、分岐比の優れた光スィッチが得られる。さらに
、消光比の良好な光スィッチが実現される。したがって
、本発明の光スィッチを用いると、導波光の漏洩の少な
い光スィッチを構成することができ、スイッチ特性の優
れた光スィッチが実現できるものである。
Effects of the Invention As described above, the present invention improves the branching characteristics by improving the structure of the leakage control electrode at the intersection of the optical switch. In the present invention, by simply applying a predetermined voltage to the electrodes provided on the waveguide, the guided light does not leak to the sub-waveguide when it travels straight, and all propagates to the sub-waveguide when it is reflected, so the branching ratio is An excellent optical switch is obtained. Furthermore, an optical switch with a good extinction ratio can be realized. Therefore, by using the optical switch of the present invention, an optical switch with less leakage of guided light can be constructed, and an optical switch with excellent switching characteristics can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の全反射型光スイッチの要部平面図、第2
図は発明者らの提案にかかる全反射型光スイッチの要部
平面図、第3図は本発明にかかる実施例の光スィッチの
要部平面図である。 13′・ :f 11・・・・・・主導波路、12・・・・・・副導波路
、13・・・・・・交差部、14・・・・・・伝搬電極
空隙、31・・・・・・伝搬制御電極、32・・・・・
・漏洩電極空隙、33・・・・・・漏洩制御電極、34
・・・・・・漏洩電極空隙。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 4 第2図 15   Z3 2/ 22
Figure 1 is a plan view of the main parts of a conventional total reflection type optical switch, Figure 2
The figure is a plan view of a main part of a total reflection type optical switch proposed by the inventors, and FIG. 3 is a plan view of a main part of an optical switch according to an embodiment of the present invention. 13':f 11...Main waveguide, 12...Sub waveguide, 13...Intersection, 14...Propagation electrode gap, 31... ...Propagation control electrode, 32...
・Leakage electrode gap, 33...Leakage control electrode, 34
...Leakage electrode gap. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4 Figure 2 15 Z3 2/22

Claims (1)

【特許請求の範囲】[Claims] 主導波路と、上記主導波路と交差する副導波路と、上記
両溝波路の形成する交差路上の鋭角なる交差角の2等分
線上に配置された一定間隔の伝搬電極空隙を有する伝搬
制御電極と、上記交差路において上記主導波路の導波光
のうち上記副導波路へ漏洩する漏洩光を制御する一定間
隔の漏洩電極空隙を有する漏洩制御電極とを有し、上記
漏洩電極空隙を上記伝搬電極空隙に平行に上記交差路近
傍の少なくとも上記副導波路上に配置したことを特徴と
する光スィッチ。
a main waveguide, a sub-waveguide that intersects with the main waveguide, and a propagation control electrode having propagation electrode gaps arranged at constant intervals on a bisector of an acute intersection angle on the intersection formed by the double-groove waveguide; , a leakage control electrode having a leakage electrode gap at a constant interval for controlling leakage light that leaks to the sub waveguide out of the waveguide light of the main waveguide at the intersection, and the leakage electrode gap is connected to the propagation electrode gap. An optical switch, characterized in that the optical switch is arranged parallel to at least the sub-waveguide near the intersection.
JP8852683A 1983-02-10 1983-05-19 Optical switch Pending JPS59214020A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8852683A JPS59214020A (en) 1983-05-19 1983-05-19 Optical switch
US06/667,480 US4715680A (en) 1983-02-10 1984-02-10 Optical switch
EP84900750A EP0137851B1 (en) 1983-02-10 1984-02-10 Optical switch
DE8484900750T DE3482287D1 (en) 1983-02-10 1984-02-10 OPTICAL SWITCH.
PCT/JP1984/000039 WO1984003155A1 (en) 1983-02-10 1984-02-10 Optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8852683A JPS59214020A (en) 1983-05-19 1983-05-19 Optical switch

Publications (1)

Publication Number Publication Date
JPS59214020A true JPS59214020A (en) 1984-12-03

Family

ID=13945279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8852683A Pending JPS59214020A (en) 1983-02-10 1983-05-19 Optical switch

Country Status (1)

Country Link
JP (1) JPS59214020A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US6987901B2 (en) 2002-03-01 2006-01-17 Rosemount, Inc. Optical switch with 3D waveguides
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6810176B2 (en) 2000-08-07 2004-10-26 Rosemount Inc. Integrated transparent substrate and diffractive optical element
US7003187B2 (en) 2000-08-07 2006-02-21 Rosemount Inc. Optical switch with moveable holographic optical element
US6987901B2 (en) 2002-03-01 2006-01-17 Rosemount, Inc. Optical switch with 3D waveguides

Similar Documents

Publication Publication Date Title
US4130342A (en) Passive optical channel crossover, switch and bend structure
US5594818A (en) Digital optical switch and modulator and a method for digital optical switching and modulation
JP2746216B2 (en) Light switch
JPH1039266A (en) Optical control device
JP2705664B2 (en) Light switch
US4730884A (en) Bipolar voltage controlled optical switch using intersecting waveguides
US7088874B2 (en) Electro-optic devices, including modulators and switches
JPS59214020A (en) Optical switch
JPH0375847B2 (en)
JPH045174B2 (en)
JPH04172316A (en) Wave guide type light control device
JPH0721597B2 (en) Optical switch
JPS6396626A (en) Waveguide type light control element
JPH0361932B2 (en)
JPS61231522A (en) Optical control type optical switch device
JPH0377493B2 (en)
JPS61198133A (en) Waveguide type optical switch
JPS6269247A (en) Optical switch
JPS5993428A (en) Optical branch device
JPS59195622A (en) Branched optical waveguide
JPS62299947A (en) Waveguide optical switch
JPS6142620A (en) Optical exor circuit
JPH0713685B2 (en) Crossed-waveguide optical switch
JPS61162030A (en) Optical switch element
JPH06250131A (en) Optical control element