JPS5921387B2 - Coated cemented carbide parts - Google Patents

Coated cemented carbide parts

Info

Publication number
JPS5921387B2
JPS5921387B2 JP2356178A JP2356178A JPS5921387B2 JP S5921387 B2 JPS5921387 B2 JP S5921387B2 JP 2356178 A JP2356178 A JP 2356178A JP 2356178 A JP2356178 A JP 2356178A JP S5921387 B2 JPS5921387 B2 JP S5921387B2
Authority
JP
Japan
Prior art keywords
metals
cemented carbide
layer
group
coated cemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2356178A
Other languages
Japanese (ja)
Other versions
JPS54116345A (en
Inventor
泰次郎 大西
昭雄 西山
俊一 村井
則文 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP2356178A priority Critical patent/JPS5921387B2/en
Publication of JPS54116345A publication Critical patent/JPS54116345A/en
Publication of JPS5921387B2 publication Critical patent/JPS5921387B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates

Description

【発明の詳細な説明】 この発明は、著しくすぐれた耐摩耗性を有し、特に切削
工具や耐摩耗用部品として使用するのに適した被覆超硬
合金部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to coated cemented carbide parts which have excellent wear resistance and are particularly suitable for use as cutting tools and wear-resistant parts.

従来、硬質相形成成分として、周期律表の4a,5a、
および6a族金属の炭化物、窒化物、炭窒化物、および
炭酸窒化物のうちの1種または2種以上:60〜97重
量%を含有し、さらに必要に応じて結合相形成成分とし
て、結合相の耐摩耗性および耐塑性変形性を向上させる
目的で、Cr族金属、SilおよびAI3のうちの1種
または2種以上 1〜20重量%を含有し、残りが結合
相形成成分としての鉄族金属のうちの1種または2種以
上と不可避不純物からなる組成を有する超硬合金基材の
表面に、周期律表の4aおよび5a族金属のうちの1種
または2種以上の金属の炭化物、窒化物、または炭窒化
物からなる面心立方晶の高融点化合物で構成された内層
と、Al,Zr,Mg,TilおよびSiのうちの1種
または2種以上の酸化物の外層と、からなる硬質被覆層
を形成してなる被覆超硬合金部材が提案されており、こ
の従来被覆超硬合金部材はすぐれた耐摩耗性をもつこと
から、特にスローアウエイチツブとして適用されている
が、この従来被覆超硬合金部材によつても十分満足する
耐摩耗性を期待することはできず、したがつてなお一層
すぐれた耐摩耗性を有する被覆超硬合金部材の開発が望
まれるところである。
Conventionally, as hard phase forming components, 4a, 5a of the periodic table,
and one or more of group 6a metal carbides, nitrides, carbonitrides, and carbonitrides: 60 to 97% by weight, and if necessary, a binder phase forming component. In order to improve the wear resistance and plastic deformation resistance of A carbide of one or more metals from Groups 4a and 5a of the periodic table, on the surface of a cemented carbide base material having a composition consisting of one or more metals and unavoidable impurities; An inner layer composed of a face-centered cubic high melting point compound made of nitride or carbonitride, and an outer layer of one or more oxides of Al, Zr, Mg, Ti, and Si. A coated cemented carbide member formed with a hard coating layer has been proposed, and since this conventional coated cemented carbide member has excellent wear resistance, it is particularly applied as a throw-away piece. Even with this conventional coated cemented carbide member, it is not possible to expect sufficiently satisfactory wear resistance, and there is therefore a desire to develop a coated cemented carbide member that has even better wear resistance.

そこで、本発明者等は、上述のような観点から、よりす
ぐれた耐摩耗性を有する被覆超硬合金部材を得べく、上
記従来被覆超硬合金部材に着目し研究を行なつた結果、
上記従来被覆超硬合金部材の硬質被覆層における内層と
外層の間に中間層を設け、その中間層を、周期律表の4
aおよび5a族金属のうちの1種または2種以上の金属
の炭酸化物、窒酸化物、または炭窒酸化物、あるいは同
4aおよび5a族金属のうちの1種または2種以上の金
属成分と、ほう素およびけい素のうちの1種または2種
の成分との両成分共存の炭酸化物、窒酸化物、または炭
窒酸化物(この場合ほう素およびけい素は中間層の硬さ
および耐酸化性を向上させるために固溶させるものであ
り、その固溶割合は、炭素、窒素、および酸素との総和
に占める割合(モル比)で0.001から固溶限の0.
2までを含有するものである)からなる面心立方晶の高
融点化合物で構成し、かつ中間層における固溶酸素含有
量を内層接合面から外層接合面に向つて単調に増加させ
ると、(a)上記硬質被覆層における中間層は、固溶酸
素の濃度勾配によつて、内層表面との接合面から外層接
合面に亘つて変化する種々の特性をもつようになる。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research focusing on the conventional coated cemented carbide member described above in order to obtain a coated cemented carbide member having better wear resistance.
An intermediate layer is provided between the inner layer and the outer layer in the hard coating layer of the conventional coated cemented carbide member, and the intermediate layer is defined as 4 in the periodic table.
Carbonates, nitoxides, or carbonitrides of one or more metals of group a and group 5a metals, or metal components of one or more metals of group 4a and group 5a metals; , carbonate, nitride oxide, or carbonitride oxide with one or two of boron and silicon (in this case, boron and silicon improve the hardness and acid resistance of the intermediate layer). The solid solution ratio is from 0.001 to 0.001 to the solid solubility limit (mole ratio) in the total of carbon, nitrogen, and oxygen.
2), and when the solid solution oxygen content in the intermediate layer is monotonically increased from the inner layer bonding surface to the outer layer bonding surface, ( a) The intermediate layer in the above-mentioned hard coating layer has various properties that change from the surface of the inner layer to the surface of the outer layer depending on the concentration gradient of solid solution oxygen.

(b)内層との接合面における中間層被覆層組成として
内層との接合力が最強の酸素を含有しない組成のものを
自由に選択することができる。
(b) As the composition of the intermediate layer coating layer at the interface with the inner layer, one can freely select a composition that does not contain oxygen and has the strongest bonding strength with the inner layer.

(c)中間層被覆層の表面部分は、固溶酸素含有量が最
も高い状態となるので、外層を構成する酸化物層との親
和力が強くなり、この結果外層と中間層の結合力はきわ
めて強固なものとなる。(d)通常の酸素を固溶する均
質組成の硬質被覆層では層厚が2〜3μmを越えると粒
子が粗くなつて柱状晶となつてしまうが、固溶酸素に濃
度勾配があると粒成長が抑制されて微細粒状組織が確保
されること。などの特性が得られるようになり、この結
果被覆超硬合金部材はすぐれた耐摩耗性をもつようにな
ると共に、例えば使用条件が広範囲に亘る切削工具とし
て使用することができるという知見を得たのである。
(c) The surface portion of the intermediate layer coating layer has the highest solid solution oxygen content, so it has a strong affinity with the oxide layer that constitutes the outer layer, and as a result, the bonding force between the outer layer and the intermediate layer is extremely high. It becomes strong. (d) In a normal hard coating layer with a homogeneous composition that contains oxygen as a solid solution, if the layer thickness exceeds 2 to 3 μm, the particles will become coarse and become columnar crystals, but if there is a concentration gradient in the solid solution oxygen, grain growth will occur. is suppressed and a fine grain structure is ensured. As a result, coated cemented carbide parts have excellent wear resistance and have been found to be able to be used, for example, as cutting tools under a wide range of usage conditions. It is.

この発明は、上記知見にもとづいてなされたもので、以
下に実施例により具体的に説明する。
This invention was made based on the above findings, and will be specifically explained below using Examples.

実施例 1平均粒径2μmのタングステン炭化物(WC
)粉末:94重量%と、同1μMOCO粉末:6重量%
とをボールミル中で24時間湿式混合し、乾燥して得ら
れた混合粉末より圧粉体を形成し、この圧粉体を温度1
400℃に1時間保持して焼結を行ない超硬合金基材を
製造した。
Example 1 Tungsten carbide (WC) with an average particle size of 2 μm
) powder: 94% by weight and the same 1μMOCO powder: 6% by weight
are wet mixed in a ball mill for 24 hours, dried to form a green compact from the resulting mixed powder, and this green compact is heated to a temperature of 1
Sintering was performed by holding at 400° C. for 1 hour to produce a cemented carbide base material.

ついで、横型環状炉の中に耐熱鋼製反応管を挿入した型
式にして、金属の塩化物の気化器およびノ各種ガスの流
量調整設備を備えたコーテイング装置内に上記超硬合金
基材を装入し、非酸化性雰囲気で温度102『Cに加熱
した後、H2:96(!),TiCl4:2%,CH4
:2%の組成を有する反応ガスを1時間流して内層とし
ての炭化チタン(TiC)被覆層を形成し、つぎにH2
:96%,TiCl4:2,001),CH4:1.9
5%,CO:0.05%(容量%)の組成を有する反応
ガスを10分間流し、ついで10分毎に前記反応ガスに
おけるCOを0.05%づつ増加させる一方、CH4を
0.05%づつ減少させる反応ガス調整を行ないながら
2時間の反応を施して内層表面上に中間層としての硬質
被覆層を形成し、引続いて炉内温度を9800Cに下げ
ると共に、H2:96(Fb,AlCl3:2%,CO
2:2%(容量(fl))からなる組成の反応ガスを1
時間流して外層としての酸化アルミニウム(A!203
)被覆層を形成した。
Next, the cemented carbide base material was installed in a coating device that had a heat-resistant steel reaction tube inserted into a horizontal annular furnace, and was equipped with a metal chloride vaporizer and various gas flow rate adjustment equipment. After heating to a temperature of 102°C in a non-oxidizing atmosphere, H2: 96 (!), TiCl4: 2%, CH4
:A reaction gas having a composition of 2% was flowed for 1 hour to form a titanium carbide (TiC) coating layer as an inner layer, and then H2
:96%, TiCl4:2,001), CH4:1.9
5%, CO:0.05% (volume %) was flowed for 10 minutes, and then every 10 minutes, CO in the reaction gas was increased by 0.05%, while CH4 was increased by 0.05%. The reaction was carried out for 2 hours while gradually decreasing the reaction gas to form a hard coating layer as an intermediate layer on the surface of the inner layer.Subsequently, the temperature inside the furnace was lowered to 9800C, and H2:96 (Fb, AlCl3 :2%, CO
2: Reactant gas with a composition of 2% (volume (fl))
Aluminum oxide (A!203
) A coating layer was formed.

この結果得られた本発明被覆超硬合金部材の断面を観察
したところ、層厚:7μmの金属光択ある層と層厚:1
μMOAl2O3層とからなる硬質被覆層が存在し、X
線マイクロアナライザーによる分析では、前記硬質被覆
層の金属光沢のある層は、層厚:約3.5μmの酸素を
含有しない内層としてのTiC被覆層と、前記内層との
接合面から外層との接合面に向つて酸素含有量が単調に
増加した層厚:約3.5μmの中間層とからなり、前記
中間層の外層との接合面では組成:TiCO.7OO.
3に相当する酸素量が検出された。
When the cross section of the coated cemented carbide member of the present invention obtained as a result was observed, it was found that there was a metal layer with a layer thickness of 7 μm and a layer with a layer thickness of 1 μm.
There is a hard coating layer consisting of μMOAl2O3 layer,
Analysis using a line microanalyzer revealed that the metallic luster layer of the hard coating layer was bonded to the TiC coating layer as an oxygen-free inner layer with a layer thickness of about 3.5 μm and the bonding surface between the inner layer and the outer layer. It consists of an intermediate layer with a layer thickness of approximately 3.5 μm in which the oxygen content monotonically increases toward the surface, and the composition of the interface between the intermediate layer and the outer layer is TiCO. 7OO.
An amount of oxygen equivalent to 3 was detected.

実施例 2 実施例1におけると同一の超硬合金基材からなるCIS
WISNGN432の形状のスローアウエイチツプおよ
びコーテイング装置を使用し、炭化チタン(TlC)被
覆の条件として、反応温度・・・・・・1020℃、 反応ガス組成・・・・・・H2:96%,TiCl4:
2%,CH4:2%(容量(Fb)、を採用し、また炭
化チタン(TlCO.5OO.5)被覆の条件として、
反応温度・・・・・・1020℃、 反応ガス組成・・・・・・H2:97%,TiCl4:
2%,CO:1(Fb(容量%)、を採用し、まず、2
10分づつの反応時間を定め、このうちの最初の20分
間をTlC被覆条件で行つて内層としての硬質被覆層を
形成し、ついで残りの190分に関して、1サイクルを
10分として、1サイクルにおける前半をTiCO.,
OO.5被覆、後半をTiC被覆の条件で19サイクル
繰り返し行なつて中間層としての硬質被覆層を形成した
が、この中間層形成反応に際しては、各サイクルにおけ
るTiC被覆の反応時間を1サイクル当り0.5分づつ
漸次短縮する一方、TiCO.,OO.,被覆の反応時
間を1サイクル当り0.5分づつ延長させる操作を行な
い、引続いて炉内温度を970℃に下げると共に、H2
:96%,A2Cl,:2%,CO2:2%(容量(F
b)からなる組成の混合ガスを760WgHgの圧力で
1時間流して外層としてのAl2O3被覆層を形成する
ことによつて本発明被覆超硬合金部材を製造した。
Example 2 CIS made of the same cemented carbide base material as in Example 1
Using a throw-away chip in the shape of WISNGN432 and a coating device, the conditions for titanium carbide (TlC) coating were: reaction temperature: 1020°C, reaction gas composition: H2: 96%, TiCl4. :
2%, CH4: 2% (capacity (Fb)), and as the conditions for titanium carbide (TlCO.5OO.5) coating,
Reaction temperature: 1020°C, reaction gas composition: H2:97%, TiCl4:
2%, CO: 1 (Fb (capacity %)), first, 2
The reaction time is set in 10 minute increments, and the first 20 minutes of these are carried out under TLC coating conditions to form a hard coating layer as an inner layer, and then for the remaining 190 minutes, one cycle is 10 minutes, and the reaction time in one cycle is The first half is TiCO. ,
OO. A hard coating layer as an intermediate layer was formed by repeating 19 cycles under the conditions of 5 coatings and TiC coating in the latter half.In this intermediate layer forming reaction, the reaction time of TiC coating in each cycle was 0. While gradually shortening by 5 minutes, TiCO. ,OO. , the reaction time of the coating was extended by 0.5 minutes per cycle, and then the temperature inside the furnace was lowered to 970°C, and the H2
:96%, A2Cl, :2%, CO2:2% (capacity (F
A coated cemented carbide member of the present invention was manufactured by flowing a mixed gas having the composition of b) at a pressure of 760 WgHg for 1 hour to form an Al2O3 coating layer as an outer layer.

この結果得られた本発明被覆超硬合金部材の断面を観察
したところ、層厚:10μmの硬質被覆層を有し、前記
硬質被覆層は、層厚:2μmの酸素を含有しない内層と
してのTiC被覆層と、内層接合面から外層との接合面
に向つて固溶酸素含有量が単調に増加する濃度勾配を有
し、しかも外層との接合面ではTiOO.5OO.5の
組成をもつた微細粒状組織の層厚:6μmの中間層と、
外層としてのA22O3被覆層:1μmとからなつてい
る。
When the cross section of the coated cemented carbide member of the present invention obtained as a result was observed, it was found that it had a hard coating layer with a layer thickness of 10 μm, and the hard coating layer was made of TiC as an oxygen-free inner layer with a layer thickness of 2 μm. The coating layer has a concentration gradient in which the solid solution oxygen content monotonically increases from the bonding surface of the inner layer to the bonding surface of the outer layer, and moreover, TiOO. 5OO. A layer thickness of a fine granular structure having a composition of 5: 6 μm intermediate layer,
A22O3 coating layer as an outer layer: 1 μm.

ついで、比較の目的で、同一の超硬合金基材およびコー
テイング装置を使用し、前記超硬合金基材の表面に、層
厚:2μMO)TiC被覆層からなる内層と、層厚:7
μmにして均質組成のTiCO.,OO.5被覆層から
なる中間層と、層厚:1μm(7)Al2O3被覆層か
らなる外層とを形成した比較被覆超硬合金部材を製造し
た。
Next, for the purpose of comparison, using the same cemented carbide base material and coating device, an inner layer consisting of a TiC coating layer (layer thickness: 2 μM) and a layer thickness: 7 μM on the surface of the cemented carbide base material.
TiCO of homogeneous composition in μm. ,OO. A comparative coated cemented carbide member was manufactured in which an intermediate layer consisting of 5 coating layers and an outer layer consisting of (7) Al2O3 coating layers having a layer thickness of 1 μm were formed.

このようにして得られた本発明被覆超硬合金部材および
比較被覆超硬合金部材について、被削材:FC25丸材
(硬さHB:250)、切削速度:250m/Min、
切込み:3n、 送り:0.5n/Rev.、 の条件で切削試験を行なつたところ、 本発明被覆超硬合金部材:70分、 比較被覆超硬合金部材:40分、 の寿命時間をそれぞれ示し、本発明被覆超硬合金部材は
すぐれた切削特性をもつことが明らかである。
Regarding the coated cemented carbide member of the present invention and the comparative coated carbide member thus obtained, work material: FC25 round material (hardness HB: 250), cutting speed: 250 m/Min,
Depth of cut: 3n, Feed: 0.5n/Rev. A cutting test was conducted under the conditions of , and the service life was 70 minutes for the coated cemented carbide member of the present invention, 40 minutes for the comparative coated carbide member, and the coated cemented carbide member of the present invention was superior. It is clear that it has cutting properties.

実施例 3 超硬合金基材として超硬合金JIS−P3Oを適用し、
実施例1におけると同一のコーテイング装置を使用し、
炭窒化チタン(T!CO.4NO.6)被覆の条件とし
て、反応温度・・・・・・10000C反応ガス組成・
・・・・・H2:60%,N2:37(Fb,TiCl
4:2%,CH4:1%(容量%)、を採用uまた炭窒
酸化チタン(TiCO.2,NO.5OOO.25)被
覆の条件として、反応温度・・・・・・1000℃、 反応ガス組成・・・・・・H2:60%,N,:36.
5%,TiCl4:2%,CO:1.5%(容量%)、
を採用し、まず、反応時間を150分と定め、このうち
の最初の60分をTiCO.4NO.6被覆条件で行な
つて内層としての硬質被覆層を形成し、ついで残りの9
0分に関して、1サイクルを10分として、1サイクル
における後半をTiCO.2,NO.5OO2.25被
覆、後半をTlCO.4NO.6被覆の条件で9サイク
ル繰り返し行なつて中間層としての硬質被覆層を形成し
たが、この中間層形成に際しては、各サイクルにおける
TiCO.25NO.5OOO.ぉ被覆の反応時間を第
1サイクルから1サイクル当り1分づつ延長する一方、
TiCO.4NO.6被覆の反応時間を1サイクル当り
1分づつ短縮する操作を行ない、引続いて別設の化学蒸
着炉に移し、炉内温度:950℃で、H2:95.8%
,A2Cl3:2%,TiCl4:0.2Cfb,C0
,:2%(容量%)からなる組成の混合ガスを100n
Hgの圧力で1時間流して外層としてのAl2O3−T
iO2被覆層を形成することによつて本発明被覆超硬合
金部材を製造した。
Example 3 Cemented carbide JIS-P3O was applied as the cemented carbide base material,
Using the same coating equipment as in Example 1,
The conditions for coating titanium carbonitride (T!CO.4NO.6) are: reaction temperature: 10,000C; reaction gas composition;
...H2: 60%, N2: 37 (Fb, TiCl
4:2%, CH4:1% (volume %) were used.The conditions for titanium carbonitride oxide (TiCO.2, NO.5OOO.25) coating were: reaction temperature: 1000°C; Gas composition: H2: 60%, N: 36.
5%, TiCl4: 2%, CO: 1.5% (volume %),
First, the reaction time was set at 150 minutes, and the first 60 minutes of this time were spent on TiCO. 4NO. 6 coating conditions to form a hard coating layer as an inner layer, and then the remaining 9
Regarding 0 minute, one cycle is 10 minutes, and the second half of one cycle is TiCO. 2, NO. 5OO2.25 coating, the second half was TlCO. 4NO. A hard coating layer as an intermediate layer was formed by repeating 9 cycles under the conditions of 6 coatings, but when forming this intermediate layer, TiCO. 25NO. 5OOOO. While extending the coating reaction time from the first cycle by 1 minute per cycle,
TiCO. 4NO. 6. The reaction time for coating was shortened by 1 minute per cycle, and then transferred to a separate chemical vapor deposition furnace, and the temperature inside the furnace was 950°C, H2: 95.8%.
, A2Cl3: 2%, TiCl4: 0.2Cfb, C0
,: 100n of mixed gas with a composition of 2% (volume %)
Al2O3-T as the outer layer by flowing for 1 hour at the pressure of Hg.
A coated cemented carbide member of the present invention was manufactured by forming an iO2 coating layer.

この結果得られた本発明被覆超硬合金部材の断面をX線
マイクロアナライザーにより観察したところ、層厚:7
.5μmの硬質被覆層が形成されており、前記硬質被覆
層は、層厚:3μmの酸素を含有しない内層としてのT
iOO.4NO.6被覆層と、外層との接合面がTlO
O.2,NO.,OOO.2,の組成で構成され、固溶
酸素が内層接合面から外層接合面に向つて単調に増加し
だ濃度分布を有する微細粒状組織の中間層:3μmと、
0.5重量%のTiを含有するα−Al2O3からなる
外層:1.5μmとよりなるものであつた。実施例 4 超硬合金JISW3P3OからなるCIS規格SNGN
432の形状のスローアウエイチツプの表面に内層とし
て層厚:4μMO)TiC被覆層を形成したものからな
る基材を用いると共に、実施例1におけるコーテイング
装置にさらに3塩化ほう素およびジグロールメチルシラ
ンのガス流量調整装置を取り付けたコーテイング装置を
使用し、前記スローアウエイチツプを前記コーテイJャ
O装置において非酸化性雰囲気で温度1020℃に加熱
し、ついでH2:95.6%,TiCl4:2%,CH
4:1.95%,CO:0.05%,BC23:0.2
%,SiCH3・Cl2:0.2%(容量%)からなる
混合反応ガスを10分間流して反応を行ない、引続いて
10分毎にCOを0.05(Fbづつ増加させる一方、
CH4を0.05%づつ減少させる操作を行ないながら
2時間の反応を施して中間層を形成し、さらに別設の化
学蒸着炉に移し、炉内温度:950℃で、H2:96%
,AlCl3:2%,CO2:2%(容量%)からなる
混合ガスを760mT!LHgの圧力で1.5時間流し
て外層としてのAl2O3被覆層を形成することによつ
て本発明被覆超硬合金部材を製造した。
When the cross section of the coated cemented carbide member of the present invention obtained as a result was observed using an X-ray microanalyzer, the layer thickness was 7.
.. A hard coating layer with a thickness of 5 μm is formed, and the hard coating layer has a thickness of 3 μm and is made of T as an oxygen-free inner layer.
iOO. 4NO. 6 The bonding surface between the coating layer and the outer layer is TlO
O. 2, NO. , OOO. 2, an intermediate layer of a fine granular structure with a concentration distribution in which solid solution oxygen monotonically increases from the inner layer bonding surface to the outer layer bonding surface: 3 μm;
The outer layer was made of α-Al2O3 containing 0.5% by weight of Ti and had a thickness of 1.5 μm. Example 4 CIS standard SNGN made of cemented carbide JISW3P3O
A base material consisting of a TiC coating layer formed as an inner layer on the surface of a 432-shaped throwaway chip was used, and the coating device in Example 1 was further coated with boron trichloride and diglormethylsilane. Using a coating device equipped with a gas flow rate adjustment device, connect the throwaway chip to the coating device.
Heated to 1020°C in a non-oxidizing atmosphere in an O apparatus, then H2: 95.6%, TiCl4: 2%, CH
4:1.95%, CO:0.05%, BC23:0.2
%, SiCH3・Cl2: 0.2% (volume %) was flowed for 10 minutes to carry out the reaction, and subsequently, CO was increased by 0.05 (Fb) every 10 minutes, while
A reaction was performed for 2 hours while reducing CH4 by 0.05% to form an intermediate layer, and the mixture was transferred to a separate chemical vapor deposition furnace, and the temperature inside the furnace was 950°C, H2: 96%.
, AlCl3: 2%, CO2: 2% (volume %) at 760 mT! A coated cemented carbide member of the present invention was manufactured by flowing under a pressure of LHg for 1.5 hours to form an Al2O3 coating layer as an outer layer.

この結果得られた本発明被覆超硬合金部材の断面を観察
したところ、層厚:9.2μmの硬質被覆層を有し、こ
の硬質被覆層における内層および中間層は層厚:8μm
を示し、この両層は、X線回析によりTiC結晶と同一
の面心立方晶構造をもつことが判明し、また中間層のほ
う素およびけい素含有状況を螢光X線およびX線マイク
ロアナライザーにより分析したところ、Ti(CO.6
9OO.28BO.。
When the cross section of the coated cemented carbide member of the present invention obtained as a result was observed, it was found that it had a hard coating layer with a layer thickness of 9.2 μm, and the inner layer and intermediate layer in this hard coating layer had a layer thickness of 8 μm.
Both layers were found to have the same face-centered cubic structure as the TiC crystal by X-ray diffraction, and the boron and silicon content of the intermediate layer was determined using fluorescent X-rays and X-ray microscopy. When analyzed with an analyzer, Ti(CO.6
9OO. 28BO. .

2SiO.Ol)の組成に相当するほう素とけい素が検
出され、しかも内層接合面から外層接合面に向つて単調
に増加する固溶酸素濃度を示していた。
2SiO. Boron and silicon corresponding to the composition of O1) were detected, and the solid solution oxygen concentration monotonically increased from the inner layer bonding surface to the outer layer bonding surface.

ついで、比較の目的で、同一の被覆スローアウエイチツ
プおよびコーテイング装置、並びに化学蒸着炉を使用し
、中間層における固溶酸素に濃度勾配を付与せず、均質
組成とする以外は、上記実施例4におけると同一の条件
で前記スローアウエイチツプの表面に硬質被覆層を形成
することによつて比較被覆超硬合金部材を製造した。
For comparison purposes, Example 4 above was then used, except that the same coated throw-away chip, coating equipment, and chemical vapor deposition furnace were used, and the solid solution oxygen in the intermediate layer was not given a concentration gradient and had a homogeneous composition. A comparative coated cemented carbide member was manufactured by forming a hard coating layer on the surface of the throwaway tip under the same conditions as in .

このようにして得られた本発明被覆超硬合金部材と比較
被覆超硬合金部材について、被削材:JIS−SNCM
−8(硬さHB:300)、切削速度:200m/Mi
n、切込み:2mm1 送り:0.351Lm/Rev.、 切削時間:5min、 の条件で切削試験を行ない、逃げ面摩耗を測定したとこ
ろ、本発明被覆超硬合金部材:0.2111L7!L、
比較被覆超硬合金部材:0.35mm、を示した。
Regarding the coated cemented carbide member of the present invention and the comparative coated cemented carbide member thus obtained, the work material: JIS-SNCM
-8 (hardness HB: 300), cutting speed: 200m/Mi
n, depth of cut: 2mm1 feed: 0.351Lm/Rev. A cutting test was conducted under the following conditions, cutting time: 5 min, and flank wear was measured. The coated cemented carbide member of the present invention: 0.2111L7! L,
Comparative coated cemented carbide member: 0.35 mm.

上述のように、硬質被覆層の中間層における固溶酸素が
内層接合面から外層との接合面に向つて単調に増加する
濃度勾配を有するこの発明の被覆超硬合金部材において
は、前記硬質被覆層における中間層は微細な粒状組織と
なつていると共に、内層接合面部分の中間層被覆層の組
成を内層との結合力が最強の酸素を含有しない組成とし
、一方外層との接合面部分における酸素含有量を最大な
ものとして外層との親和力を強固にすることができるの
で、著しくすぐれた耐摩耗性をもつたものになり、しか
も切削工具として使用した場合には広範囲に亘つての適
用が可能であるなど工業上有用な特性を有するものであ
る。
As described above, in the coated cemented carbide member of the present invention, in which the solid solution oxygen in the intermediate layer of the hard coating layer has a concentration gradient that monotonically increases from the inner layer bonding surface to the outer layer bonding surface, the hard coating layer The intermediate layer in the layer has a fine granular structure, and the composition of the intermediate coating layer on the bonding surface of the inner layer is a composition that does not contain oxygen, which has the strongest bonding force with the inner layer, while the composition on the bonding surface of the outer layer is By maximizing the oxygen content, it is possible to strengthen the affinity with the outer layer, resulting in extremely high wear resistance, and when used as a cutting tool, it can be used over a wide range of applications. It has industrially useful properties such as being able to

Claims (1)

【特許請求の範囲】 1 硬質相形成成分として、周期律表の4a、5a、お
よび6a族金属の炭化物、窒化物、炭窒化物、および炭
酸窒化物のうちの1種または2種以上:60〜97重量
%を含有し、残りが結合相形成成分としての鉄族金属の
うちの1種または2種以上と不可避不純物からなる組成
を有する超硬合金基材の表面に、周期率表の4aおよび
5a族金属のうちの1種または2種以上の金属の炭化物
、窒化物、または炭窒化物からなる面心立方晶の高融点
化合物で構成された内層と、周期律表の4aおよび5a
族金属のうちの1種または2種以上の金属の炭酸化物、
窒酸化物、または炭窒酸化物からなる面心立方晶の高融
点化合物で構成された中間層と、Al、Zr、Mg、T
i、およびSiのうちの1種または2種以上の金属の酸
化物で構成された外層、とからなる硬質被覆層を形成し
てなる被覆超硬合金部材において、上記硬質被覆層のう
ちの中間層における固溶酸素含有量を、内層接合面から
外層接合面に向つて単調に増加させたことを特徴とする
被覆超硬合金部材。 2 硬質相形成成分として、周期律表の4a、5a、お
よび6a族金属の炭化物、窒化物、炭窒化物、および炭
酸窒化物のうちの1種または2種以上:60〜97重量
%を含有し、さらに結合相形成成分として、Cr族金属
、SiおよびAlのうちの1種または2種以上:1〜2
0重量%を含有し、残りが結合相形成成分としての鉄族
金属のうちの1種または2種以上の不可避不純物からな
る組成を有する超硬合金基材の表面に、周期律表の4a
および5a族金属のうちの1種または2種以上の金属の
炭化物、窒化物、または炭窒化物からなる面心立方晶の
高融点化合物で構成された内層と、周期律表の4aおよ
び5a族金属のうちの1種または2種以上の金属の炭酸
化物、窒酸化物、または炭窒酸化物からなる面心立方晶
の高融点化合物で構成された中間層と、Al、Zr、M
g、Ti、およびSiのうちの1種または2種以上の金
属の酸化物で構成された外層、とからなる硬質被覆層を
形成してなる被覆超硬合金部材において、上記硬質被覆
層のうちの中間層における固溶酸素含有量を、内層接合
面から外層接合面に向つて単調に増加させたことを特徴
とする被覆超硬合金部材。 3 硬質相形成成分として、周期律表の4a、5a、お
よび6a族金属の炭化物、窒化物、炭窒化物、および炭
酸窒化物のうちの1種または2種以上:60〜97重量
%を含有し、残りが結合相形成成分としての鉄族金属の
うちの1種または2種以上と不可避不純物からなる組成
を有する超硬合金基材の表面に、周期律表の4aおよび
5a族金属のうちの1種または2種以上の金属の炭化物
、窒化物、または炭窒化物からなる面心立方晶の高融点
化合物で構成された内層と、周期律表の4aおよび5a
族金属のうちの1種または2種以上の金属成分と、ほう
素およびけい素のうちの1種または2種の成分との両成
分共存の炭酸化物、窒酸化物、または炭酸化物からなる
面心立方晶の高融点化合物で構成された中間層と、Al
、Zr、Mg、Ti、およびSiのうちの1種または2
種以上の金属の酸化物で構成された外層、とからなる硬
質被覆層を形成してなる被覆超硬合金部材において、上
記硬質被覆層のうちの中間層における固溶酸素含有量を
、内層接合面から外層接合面に向つて単調に増加させた
ことを特徴とする被覆超硬合金部材。 4 硬質相形成成分として、周期律表の4a、5a、お
よび6a族金属の炭化物、窒化物、炭窒化物、および炭
酸窒化物のうちの1種または2種以上:60〜97重量
%を含有し、さらに結合相形成成分として、Cr族金属
、Si、およびAlのうちの1種または2種以上:1〜
20重量%を含有し、残りが結合相形成成分としての鉄
族金属のうちの1種または2種以上と不可避不純物から
なる組成を有する超硬合金基材の表面に、周期律表の4
aおよび5a族金属のうちの1種または2種以上の金属
の炭化物、窒化物、または炭窒化物からなる面心立方晶
の高融点化合物で構成された内層と、周期律表の4aお
よび5a族金属のうちの1種または2種以上の金属成分
と、ほう素およびけい素のうちの1種または2種の成分
との両成分共存の炭酸化物、窒酸化物、または炭窒酸化
物からなる面心立方晶の高融点化合物で構成された中間
層と、Al、Zr、Mg、Ti、およびSiのうちの1
種または2種以上の金属の酸化物で構成された外層、と
からなる硬質被覆層を形成してなる被覆超硬合金部材に
おいて、上記硬質被覆層のうちの中間層における固溶酸
素含有量を、内層接合面から外層接合面に向つて単調に
増加させたことを特徴とする被覆超硬合金部材。
[Scope of Claims] 1. As a hard phase forming component, one or more of carbides, nitrides, carbonitrides, and carbonitrides of metals from groups 4a, 5a, and 6a of the periodic table: 60 4a of the periodic table on the surface of a cemented carbide base material having a composition of 97% by weight and the remainder consisting of one or more iron group metals as binder phase forming components and unavoidable impurities. and an inner layer composed of a face-centered cubic high melting point compound consisting of carbides, nitrides, or carbonitrides of one or more metals of group 5a metals, and 4a and 5a of the periodic table.
Carbonates of one or more metals of group metals,
An intermediate layer composed of a face-centered cubic high melting point compound made of nitride oxide or carbonitride oxide, and Al, Zr, Mg, T.
i, and an outer layer made of an oxide of one or more metals of Si, in the coated cemented carbide member formed by forming a hard coating layer consisting of an oxide of one or more metals of Si, the intermediate of the hard coating layer A coated cemented carbide member characterized in that the solid solution oxygen content in the layer increases monotonically from the inner layer bonding surface to the outer layer bonding surface. 2 Contains 60 to 97% by weight of one or more of carbides, nitrides, carbonitrides, and carbonitrides of group 4a, 5a, and 6a metals of the periodic table as a hard phase forming component. Furthermore, as a bonding phase forming component, one or more of Cr group metals, Si and Al: 1 to 2
4a of the periodic table on the surface of a cemented carbide base material having a composition of 0% by weight and the remainder consisting of one or more unavoidable impurities of iron group metals as binder phase forming components.
and an inner layer composed of a face-centered cubic high melting point compound consisting of carbides, nitrides, or carbonitrides of one or more metals from group 5a metals, and groups 4a and 5a of the periodic table. an intermediate layer composed of a face-centered cubic high-melting point compound made of one or more metal carbonates, nitride oxides, or carbonitride oxides, and Al, Zr, M
In the coated cemented carbide member formed by forming a hard coating layer consisting of an outer layer composed of an oxide of one or more metals among g, Ti, and Si, among the hard coating layers, A coated cemented carbide member characterized in that the solid solution oxygen content in the intermediate layer of is monotonically increased from the inner layer bonding surface to the outer layer bonding surface. 3 Contains 60 to 97% by weight of one or more of carbides, nitrides, carbonitrides, and carbonitrides of group 4a, 5a, and 6a metals of the periodic table as a hard phase forming component. However, on the surface of a cemented carbide base material having a composition in which the remainder consists of one or more iron group metals as binder phase forming components and unavoidable impurities, metals from groups 4a and 5a of the periodic table are applied. 4a and 5a of the periodic table.
A surface made of carbonide, nitride oxide, or carbonate in which one or more metal components of group metals and one or two components of boron and silicon coexist. An intermediate layer composed of a centered cubic high melting point compound and an Al
, Zr, Mg, Ti, and one or two of Si.
In a coated cemented carbide member formed by forming a hard coating layer consisting of an outer layer made of an oxide of one or more metals, the solid solution oxygen content in the intermediate layer of the hard coating layer is determined by the inner layer bonding. A coated cemented carbide member characterized in that the coated cemented carbide member increases monotonically from the surface to the outer layer bonding surface. 4 Contains 60 to 97% by weight of one or more of carbides, nitrides, carbonitrides, and carbonitrides of group 4a, 5a, and 6a metals of the periodic table as a hard phase forming component. Furthermore, as a bonding phase-forming component, one or more of Cr group metals, Si, and Al: 1-
20% by weight, and the remainder consists of one or more iron group metals as binder phase forming components and unavoidable impurities.
an inner layer composed of a face-centered cubic high melting point compound consisting of a carbide, nitride, or carbonitride of one or more metals of group a and group 5a metals, and 4a and 5a of the periodic table. Carbonates, nitrides, or carbonitoxides in which one or more metal components of group metals and one or two components of boron and silicon coexist. an intermediate layer composed of a face-centered cubic high melting point compound; and one of Al, Zr, Mg, Ti, and Si.
In a coated cemented carbide member formed by forming a hard coating layer consisting of a seed or an outer layer made of an oxide of two or more metals, the solid solution oxygen content in the intermediate layer of the hard coating layer is A coated cemented carbide member characterized in that the coated cemented carbide member increases monotonically from the inner layer bonding surface to the outer layer bonding surface.
JP2356178A 1978-03-03 1978-03-03 Coated cemented carbide parts Expired JPS5921387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2356178A JPS5921387B2 (en) 1978-03-03 1978-03-03 Coated cemented carbide parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2356178A JPS5921387B2 (en) 1978-03-03 1978-03-03 Coated cemented carbide parts

Publications (2)

Publication Number Publication Date
JPS54116345A JPS54116345A (en) 1979-09-10
JPS5921387B2 true JPS5921387B2 (en) 1984-05-19

Family

ID=12113919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2356178A Expired JPS5921387B2 (en) 1978-03-03 1978-03-03 Coated cemented carbide parts

Country Status (1)

Country Link
JP (1) JPS5921387B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015150653A (en) * 2014-02-14 2015-08-24 新日鐵住金株式会社 Cemented carbide tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591103A (en) * 1982-06-25 1984-01-06 Toshiba Tungaloy Co Ltd Coated hard tool tip
JP4997561B2 (en) * 2005-08-04 2012-08-08 独立行政法人産業技術総合研究所 Tool or mold material in which a hard film is formed on a hard alloy for forming a high-hardness film, and a method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015150653A (en) * 2014-02-14 2015-08-24 新日鐵住金株式会社 Cemented carbide tool

Also Published As

Publication number Publication date
JPS54116345A (en) 1979-09-10

Similar Documents

Publication Publication Date Title
US5310605A (en) Surface-toughened cemented carbide bodies and method of manufacture
US8323738B2 (en) Coated cutting tool and method for producing the same
RU2062260C1 (en) Sintered article
JP6162703B2 (en) Cutting tools coated with alpha-alumina with manipulated grain boundaries
GB2112415A (en) Coated cermet blade
US8574728B2 (en) Aluminum oxynitride coated article and method of making the same
JPS58211862A (en) Composite silicon nitride cutting tool also executing coating
CN103108716B (en) Surface-coated cutting tool
US4830886A (en) Process for making cutting insert with titanium carbide coating
US4758451A (en) Process for producing coated molded bodies
JPH0791651B2 (en) Diamond coated tungsten carbide based cemented carbide cutting tool chip
JPH068008A (en) Cutting tool made of surface coating tungsten carbide group supper hard alloy excellent in chipping resistance property
JPH0568548B2 (en)
JP2556101B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool
JPS5921387B2 (en) Coated cemented carbide parts
JP2861832B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
CA1064787A (en) Wear resisting cemented carbide articles
JPS6155591B2 (en)
JP3269305B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent interlayer adhesion with hard coating layer
US4640693A (en) Coated silicon nitride cutting tool and process for making
JPH08269719A (en) Production of cutting tool surface-coated with titanium oxycarbonitride layer
JPH05156446A (en) Chemical vapor deposition of diamond coating on hard substrate
JP2917555B2 (en) Hard layer coated cemented carbide cutting tool and its manufacturing method
JPS625993B2 (en)
JPS593541B2 (en) Coated cemented carbide parts