JPS59213625A - Material consisting of fe-pb amorphous compound and process for preparing it - Google Patents

Material consisting of fe-pb amorphous compound and process for preparing it

Info

Publication number
JPS59213625A
JPS59213625A JP58086031A JP8603183A JPS59213625A JP S59213625 A JPS59213625 A JP S59213625A JP 58086031 A JP58086031 A JP 58086031A JP 8603183 A JP8603183 A JP 8603183A JP S59213625 A JPS59213625 A JP S59213625A
Authority
JP
Japan
Prior art keywords
lead
iron
amorphous compound
mixture
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58086031A
Other languages
Japanese (ja)
Other versions
JPH0346408B2 (en
Inventor
Takeshi Masumoto
健 増本
Kenji Suzuki
謙爾 鈴木
Shuji Masuda
増田 修二
Yukihiro Oota
進啓 太田
Yoshitaka Ookubo
美香 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Research Development Corp of Japan
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Shingijutsu Kaihatsu Jigyodan filed Critical Research Development Corp of Japan
Priority to JP58086031A priority Critical patent/JPS59213625A/en
Publication of JPS59213625A publication Critical patent/JPS59213625A/en
Publication of JPH0346408B2 publication Critical patent/JPH0346408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)
  • Inorganic Insulating Materials (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obtain a stable material consisting of an Fe-Pb amorphous compd. by melting a mixture of iron oxide and lead oxide by heating and quenching the molten mixture with a superhigh quenching rate. CONSTITUTION:A mixture of starting materials having a proportion of composition expressed by the general formula (wherein 1.00>X>0.20) is melted by heating, and the molten mixture is quenched with a superhigh quenching rate. Said melting by heating is performed at a temp. higher than the temp. for causing satisfactory melting of starting materials, pref. at a temp. range by 50-200 deg.C higher than the melting temp. The heating during melting is usually performed in the air. Then, the melt of the starting materials is quenched with a superhigh quenching rate, usually at 10<4>-10<5> deg.C/sec cooling rate. Several methods for super quick cooling may be adopted in wide range so far as the required cooling rate is attainable. A representative example of the methods is to solidify the melt maintaining the same atomic arrangement as that in the liquid state by ejecting the melt of the mixture of starting material onto the surface of a roll rotating at high rotational speed.

Description

【発明の詳細な説明】 本発明は、新規な鉄−鉛系非晶質化合物材料及びその製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel iron-lead amorphous compound material and a method for producing the same.

近年エレクトロニクス及びその関連技術の発展に伴って
、酸化鉄(Fe20s )を主とする酸化物系セラミク
ス及びその単結晶の研究が活発に行なわれており、特に
光−電気、音−電気、雰囲気ガス−!、気、光音偏光、
X線分光等の分野における変換素子材料として、又触媒
材料、磁性材料管として研究が行なわれている。Fe2
0aとPbOとの安定な化合物としては、数種の結晶体
について2〜8の文献に記載されているのみで、これ等
の単結晶化の研究はさかんに行なわれているものの、非
晶質化合物についての研究は行なわれていない。
In recent years, with the development of electronics and related technologies, research has been actively conducted on oxide-based ceramics mainly containing iron oxide (Fe20s) and their single crystals. -! , air, photoacoustic polarization,
Research is being conducted as a conversion element material in fields such as X-ray spectroscopy, as a catalyst material, and as a magnetic material tube. Fe2
As a stable compound of Oa and PbO, only a few types of crystalline forms have been described in 2 to 8 documents, and although research on the single crystallization of these is being actively conducted, amorphous No studies have been conducted on the compound.

本発明は、従来全く知られていない鉄−鉛系非晶質酸化
物を提供するものである。即ち本発明は、(Fe20B
)1−X −(PbO)x (但しi、oo>x>0.
20)なる組成を有する新規な鉄−鉛系非晶質化合物材
料、及び(FegOa ) 1−X −(PbO)X(
ffl シXは上記に同じ)に相当する酸化鉄と酸化鉛
との混合物を加熱融解した後、超急冷することを特徴と
する鉄−鉛系非晶質化合物材料の製造方法に係るもので
ある。
The present invention provides an iron-lead amorphous oxide that has been completely unknown heretofore. That is, the present invention provides (Fe20B
)1-X-(PbO)x (where i, oo>x>0.
20) A novel iron-lead based amorphous compound material having the composition and (FegOa) 1-X-(PbO)X(
This relates to a method for producing an iron-lead amorphous compound material, which is characterized by heating and melting a mixture of iron oxide and lead oxide corresponding to ffl (X is the same as above) and then ultra-quenching the mixture. .

本発明の鉄−鉛系非晶質酸化物は、磁性材料、光応答性
磁性素子、温度応答性磁性素子、磁気メモリ材料、イオ
ン伝導材料、磁気テープ、触媒、光透過性導電材料、誘
電体材料、光−電気スイッチング素子、熱−電気スイッ
チング素子等として有用でめる。
The iron-lead amorphous oxide of the present invention can be used for magnetic materials, photoresponsive magnetic elements, temperature-responsive magnetic elements, magnetic memory materials, ion conductive materials, magnetic tapes, catalysts, light-transparent conductive materials, and dielectric materials. It is useful as a material, an optical-electrical switching element, a thermal-electrical switching element, etc.

本発明は、更に、(k’ep、Os ) 1−X −(
PbO)x(但し1.00>X>0.20 )なる組成
を有する鉄−鉛系非晶質化合物材料をその結晶化温度以
下で加熱処理することを特徴とするへ向性多結晶薄膜材
料の製造方法をも提供するものである。
The present invention further provides (k'ep, Os ) 1-X -(
PbO) x (1.00>X>0.20) A polycrystalline thin film material characterized by heat-treating an iron-lead based amorphous compound material at a temperature below its crystallization temperature. The present invention also provides a manufacturing method.

この様にして得られる配向性多結晶薄膜材料は、光メモ
リー材料、光−磁気メモリー材料、光導波路素子、光学
ミツ蟹−1表面波デバイス、光音響デバイス、圧電トラ
ンスジューサー、焦電素子、光電素子、透明電極材料、
/<イパスコンデンサー、光スィッチ、エレクトロクロ
ミック素子、光変調素子、湿度センサー、温度センサー
、化学センサー、触媒等として有用である。
The oriented polycrystalline thin film material obtained in this way can be used for optical memory materials, opto-magnetic memory materials, optical waveguide devices, optical honey crab-1 surface wave devices, photoacoustic devices, piezoelectric transducers, pyroelectric elements, photoelectric devices, etc. elements, transparent electrode materials,
/<It is useful as an Ipass capacitor, a light switch, an electrochromic device, a light modulation device, a humidity sensor, a temperature sensor, a chemical sensor, a catalyst, etc.

尚、本発明においては、″鉄−鉛系非晶質化合物”とは
、非晶質単独の場合のみならず、非晶質中に多結晶相を
含む場合をも包含するものとする。
In the present invention, the term "iron-lead amorphous compound" includes not only an amorphous compound but also a polycrystalline compound containing a polycrystalline phase.

本発明の鉄−鉛系非晶質酸化物は、以下の様にして製造
される。
The iron-lead amorphous oxide of the present invention is produced as follows.

本発明において使用する原料は、酸化鉄、酸化鉛との混
合物であり、その組成割合は、(Fe20a)i −x
 ・(PbO)x (但し1.00>X>0.20)と
なる量比である。上記組成比の原料混合物を加熱溶融し
、これを超急冷する。加熱溶融は、これ等原料混合物が
充分に溶融する温度以上で行なえば良く、好ましくは溶
融温度よシも50〜200℃程度高い温度範囲特に好ま
しくは80〜150℃程度高い温度範囲で加熱する。加
熱時の雰囲気に刻する制限は特に無く、通常空気中で行
う。次いで原料混合物の融液を超急冷する。超急冷は、
本発明方法の必須の要件であって、これによシはじめて
非晶質新規化合物を収得することが出来る。超急冷は通
常1♂〜106°C/秒程度の冷却速度で行う。この超
急冷は、上記冷却速度で冷却出来る手段であれば広い範
囲で各種の手段が採用出来、高速回転中のロール表面上
に原料混合物の融液を噴出して液体状態の原子配置にて
固化せしめる方法を代表例として挙けることが出来る。
The raw material used in the present invention is a mixture of iron oxide and lead oxide, and its composition ratio is (Fe20a)i -x
- (PbO) x (However, 1.00>X>0.20) is the quantitative ratio. A raw material mixture having the above composition ratio is heated and melted, and then cooled extremely rapidly. The heating and melting may be carried out at a temperature higher than the temperature at which these raw material mixtures are sufficiently melted, preferably in a temperature range of about 50 to 200°C higher than the melting temperature, and particularly preferably in a temperature range of about 80 to 150°C higher than the melting temperature. There are no particular restrictions on the atmosphere during heating, and heating is usually carried out in air. Next, the melt of the raw material mixture is ultra-quenched. Super rapid cooling is
This is an essential requirement of the method of the present invention, and only by this method can a new amorphous compound be obtained. Ultra-quenching is usually carried out at a cooling rate of about 1♂ to 106°C/sec. This ultra-rapid cooling can be carried out by a wide variety of methods as long as it can be cooled at the above-mentioned cooling rate.The melt of the raw material mixture is ejected onto the surface of the roll rotating at high speed and solidified in the atomic arrangement of the liquid state. A typical example is the method of forcing people to do something.

以下図面を参照しつつ本発明方法の実施に際し使用され
る融解原料混合物の急冷装置の一例を説明する。
An example of a quenching apparatus for a molten raw material mixture used in carrying out the method of the present invention will be described below with reference to the drawings.

第1図は、架台(1)上に設置された急冷装置本体(3
)の正面図を示す。急冷装置は、誘電加熱用コイA/ 
(5)、(5)・・・、原料加熱用チューブ(7)、該
チューブ(7)の支持体(9)、融解原料噴出用のノズ
ル0υ、急冷用ロール(至)、ノズル0ηの冷却用ツメ
/I’(至)、渦流防止エアノズルση、ノズルQηの
微調整機構α呻、エアシリンダーan、冷却された材料
の受は箱(イ)、冷却材料取出口(ハ)等を主要構成部
としている。冷却用ロー/L10の内部に該ロール冷却
用のファンを設置し且つロール表面側端部に空気吹込み
口を設けることによ如、融解原料の急冷を安定して行な
うことが出来る。第2図は、支持体(9)の詳細を示す
Figure 1 shows the main body of the rapid cooling device (3) installed on the stand (1).
) is shown. The quenching device is a dielectric heating coil A/
(5), (5)..., raw material heating tube (7), support for the tube (7) (9), nozzle 0υ for spouting molten raw material, rapid cooling roll (to), cooling of nozzle 0η The main components include the claw/I' (to), the vortex prevention air nozzle ση, the fine adjustment mechanism α for the nozzle Qη, the air cylinder an, the box for receiving the cooled material (a), the cooling material outlet (c), etc. Department. By installing a fan for cooling the roll inside the cooling row/L10 and providing an air blowing port at the end of the roll surface, the molten raw material can be rapidly cooled stably. Figure 2 shows details of the support (9).

第2図において、支持体(9)は、パルプ■を備えた冷
却水導入路(4)、冷却水排出路6つ、ニードルバルブ
(至)を備えたブローエア導入路(ハ)、ロール(至)
の表面とノズル0υとの間隔微調整機構(ロ)及び原料
融液を均一に押出す為の整流用目皿−を備えている。
In Fig. 2, the support (9) includes a cooling water inlet passage (4) equipped with pulp (■), six cooling water discharge passages, a blow air introduction passage (c) equipped with a needle valve (to), and a roll (towards). )
It is equipped with a mechanism (b) for finely adjusting the distance between the surface of the nozzle and the nozzle 0υ, and a rectifying perforated plate for uniformly extruding the raw material melt.

第1図及び第2図に示す急冷装置(3)を使用して本発
明方法を実施する場合、まず所定組成の原料混合物を融
液吹出し用ノズル01)を有するチューブ(7)内に収
納する。このチューブ(7)は、高温酸化雰囲気状態で
充分耐久性のある材質で作られ、たとえば白金、白金−
ロジウム、イリジウム、窒化ケイ素、窒化ボロン等で作
られたものが好ましい。
When carrying out the method of the present invention using the quenching device (3) shown in FIGS. 1 and 2, a raw material mixture of a predetermined composition is first stored in a tube (7) having a melt blowing nozzle 01). . This tube (7) is made of a material that is sufficiently durable under high-temperature oxidizing atmosphere conditions, such as platinum, platinum-
Those made of rhodium, iridium, silicon nitride, boron nitride, etc. are preferred.

尚、原料融液と直接接触しない部分の材質は、高融点の
セラミックス、ガラス、金属でも良い。ノス゛ルロの形
状は、目的製品に応じて適宜に決定され、たとえば細い
線状材料の場合は円い形状で、巾の広い製品の場合はス
リット状の形状のものを使用する。ノズル口の形状は、
楕円形その他の形状であっても良い。チューブ(7)内
に収納された原料混合物は、次いでその融点以上の温度
に加熱され、融液とされた後、ツメ/l/Qυの口部が
ら高速回転しているロール(至)の面上に一定ガス圧に
て吹出され、ロール表面上で急冷せしめられる。ノズル
口とロール面における原料融液の吹出し角度は、目的化
合物の巾が約B mm以下の場合はロール面に対して垂
直で良く、またその巾が約9 mm以上の場合はロール
面垂線に対してθ°〜45°である。
Note that the material of the portion not in direct contact with the raw material melt may be high melting point ceramics, glass, or metal. The shape of the nozzle is appropriately determined depending on the target product; for example, a round shape is used for thin linear materials, and a slit-like shape is used for wide products. The shape of the nozzle mouth is
It may be oval or other shape. The raw material mixture stored in the tube (7) is then heated to a temperature higher than its melting point to form a melt, and then the surface of the roll (to) which is rotating at high speed from the mouth of the claw /l/Qυ The gas is blown upward at a constant pressure and is rapidly cooled on the roll surface. The blowing angle of the raw material melt between the nozzle opening and the roll surface may be perpendicular to the roll surface if the width of the target compound is approximately B mm or less, and perpendicular to the roll surface if the width is approximately 9 mm or more. θ° to 45°.

これ等の吹出し角度調整機構は、装置自体に所定の角度
を設定可能な(畿構として組み込むことも出来るが、好
ましくはノズル自体を加工しておくのが良い。
These blowout angle adjustment mechanisms can set a predetermined angle in the device itself (although they can be incorporated as a mechanism, it is preferable to process the nozzle itself).

原料混合物の加熱方法は、特に制限されないが、通常発
熱体を有する炉、誘電加熱炉または集光加熱炉で行う。
The heating method for the raw material mixture is not particularly limited, but it is usually carried out in a furnace equipped with a heating element, a dielectric heating furnace, or a condensing heating furnace.

原料融液の温度は、その融点より50〜200°C好ま
しくは80〜150°C程度高い温度とするのが良い。
The temperature of the raw material melt is preferably about 50 to 200°C, preferably 80 to 150°C higher than its melting point.

この際融点にあまり近過ぎると、融液をロール面上に吹
き出している間にノズル附近で冷却固化する恐れがあシ
、逆にあま9にも高くなシずぎると、ロール面上での急
冷が困難となる傾向がある。
If the temperature is too close to the melting point, there is a risk that the melt will cool and solidify near the nozzle while it is being blown out onto the roll surface.On the other hand, if the temperature is too high, the melt may cool rapidly on the roll surface. tends to be difficult.

ロール面上に融液を吹き出すために使用する加圧用ガス
としては、不活性ガスが好ましく、たと、tばフルボン
、窒素、ヘリウム等でも良いが、融液原料を酸化状態に
維持する為には、乾燥圧縮空気が好ましい。ガス圧は、
ノズル口の大きさにもよるが、通常0− ’ 〜2− 
Okf / cm2好マシくハ0.5〜l、Qkf/c
m2程度である。また原料融液を吹き出す際のノズル口
とロール面間の距離は、0.01〜1.gmm程度が良
く、よシ好ましくは0.05〜Q、5mm程度である。
The pressurizing gas used to blow the melt onto the roll surface is preferably an inert gas, such as fulvon, nitrogen, helium, etc., but in order to maintain the melt raw material in an oxidized state, , dry compressed air is preferred. The gas pressure is
Depending on the size of the nozzle opening, it is usually 0-' to 2-
Okf/cm2 better ha 0.5~l, Qkf/c
It is about m2. Further, the distance between the nozzle opening and the roll surface when blowing out the raw material melt is 0.01 to 1. The thickness is preferably approximately 0.05 to 5 mm.

o、otmmよりも小さな場合、パドル量が非常に少な
くなり、均一な材料が得られず、一方1.□mmよシも
大きい場合、パドル量が過剰になったシ、又組成融液の
界面張力によシ形成されるパドル厚さ以上の場合には、
パドルが形成され難くなる傾向が生ずる場合がある。
If it is smaller than o, otmm, the paddle amount will be very small and a uniform material will not be obtained; on the other hand, 1. If the thickness is larger than □mm, the amount of puddle is excessive, or the thickness of the puddle formed by the interfacial tension of the melt composition is exceeded.
There may be a tendency for paddles to become difficult to form.

ロールの材質は、熱伝導性の良い銅及びその合金、硬質
クロムメッキ層を有する上記材料、さらには鋼、ステン
レススチール等である。ロールの周速度を5m/秒〜8
5m/秒、好ましくは10m/秒〜20m/秒とし、原
料融液を急冷することにより目的とする良質の非晶質化
合物材料が得られる。この際ロール周速度が5m/秒以
下の場合には、非晶質化し難い傾向が生じるので、あま
り好ましく々い。ロール周速度が86m/秒よシも大き
くなると、得られる目的物材料の形状が非常に薄膜化し
、すべて鱗片状もしくは細粉状となるが、材料構造的に
はやはシ本発明の非晶質化合物材料である。
The material of the roll includes copper and its alloy with good thermal conductivity, the above-mentioned materials having a hard chromium plating layer, steel, stainless steel, and the like. The circumferential speed of the roll is 5m/sec~8
The target amorphous compound material of high quality can be obtained by rapidly cooling the raw material melt at a speed of 5 m/sec, preferably 10 m/sec to 20 m/sec. In this case, if the roll circumferential speed is 5 m/sec or less, it is less preferable because it tends to be difficult to become amorphous. When the circumferential speed of the roll increases to 86 m/sec, the shape of the obtained target material becomes extremely thin and all of it becomes scaly or fine powder-like, but the material structure is no longer the same as the amorphous material of the present invention. It is a quality compound material.

融液原料を回転ロール面上へ吹き出す雰囲気として減圧
下乃至高真空下、又は不活性ガス雰囲気中で本発明化合
物の製造を行なう場合には、高温状態での原料融液の還
元が発生し、組成原子中の酸素原子の減少が起り、得ら
れる材料に紫色もしくは黒色等の着色が発生する。しか
し乍ら、この着色生成物も物性的には本発明化合物であ
り、着色された状態で使用可能である。
When producing the compound of the present invention under reduced pressure or high vacuum or in an inert gas atmosphere as the atmosphere in which the melt raw material is blown onto the rotating roll surface, reduction of the raw material melt at high temperature occurs, Oxygen atoms in the composition atoms decrease, and the resulting material becomes colored purple or black. However, this colored product is also a compound of the present invention physically and can be used in a colored state.

原料混合物をチューブ内で加熱溶融せしめるに際しては
、該混合物をすべて完全に融液化することが必要である
。しかし乍ら、該混合物が完全に融液化する前に、一部
融液化したものが、ノズル先端から流出してしまう恐れ
があるため、ノズル先端を局部的に冷却して融液の流出
を防止することが好ましい。ノズルを局部的に冷却する
代表的手段は、ノズル先端に冷却用ガスを吹きつける手
段であシ、ガスとしてはアルゴン、ヘリウム、窒素等の
不活性ガスでも良いが、乾燥冷圧縮空気がより好ましい
When heating and melting the raw material mixture in a tube, it is necessary to completely melt the mixture. However, before the mixture is completely molten, some of the molten material may flow out from the nozzle tip, so the nozzle tip is locally cooled to prevent the melt from flowing out. It is preferable to do so. A typical means of locally cooling the nozzle is to blow a cooling gas onto the tip of the nozzle, and the gas may be an inert gas such as argon, helium, or nitrogen, but dry, cold compressed air is more preferable. .

本発明に係る新規なる非晶質化合物材料は、通常50〜
10μm程度の厚さであシ、非常にもろい材料である。
The novel amorphous compound material according to the present invention usually has a
It is a very fragile material with a thickness of about 10 μm.

このためロール面で急冷され、固体化された後、できる
限シ材料に応力が加えられない状態にすることが好まし
い。応力付加となる原因の一つに大気中でのロール回転
にょシ発生する風切シ現象からくるロール表面空気層の
大きな乱流がある。この乱流を防止するとともに急冷却
すべき溶融原料混合物とロール面との密着性をよシ良好
とするために、風切)防止用向流吹出しノズル即ち第1
図に示す渦流防止エアツメ1vαηを設置するか、ロー
ル内部にファンを固定設置する。
For this reason, it is preferable that after the material is rapidly cooled and solidified on the roll surface, stress is not applied to the material as much as possible. One of the causes of stress addition is the large turbulent flow in the air layer on the roll surface caused by the wind blowing phenomenon that occurs when the roll rotates in the atmosphere. In order to prevent this turbulent flow and to improve the adhesion between the molten raw material mixture to be rapidly cooled and the roll surface, a countercurrent blow-off nozzle for preventing wind blowing, that is, a first
Install the eddy current prevention air claw 1vαη shown in the figure, or install a fan fixedly inside the roll.

後者の場合は、ロールの自転によりロール表面側端部に
設けられた口径可変式の空気導入口よりロール内部へ発
生する乱流をすい込み、ロール軸正面より排出し、ロー
ル表面上空気をロール内部へ移動せしめ、これにより溶
融物をロール面へより押しつけ密着させ、さらに空気の
吹込み移動によシロール自体をも空冷することが出来る
。また得られる拐料の寸法均一性を保持させるために、
ロール表面に回転方向とは直角に材料切断用の溝を設け
ておけば、一定寸法で切断された材料が得られる。
In the latter case, the turbulent flow generated inside the roll due to rotation of the roll is absorbed into the roll through a variable-diameter air inlet provided at the end of the roll surface, and is discharged from the front of the roll axis, allowing air to flow over the roll surface. By moving the melt into the interior, the melt is pressed more closely against the roll surface, and furthermore, by blowing air into the roll, the roll itself can be air-cooled. In addition, in order to maintain the dimensional uniformity of the obtained fine particles,
If grooves for cutting the material are provided on the roll surface at right angles to the rotation direction, material cut to a constant size can be obtained.

本発明の鉄−鉛系化合物は、その原料混合比により化合
物の原子配列構造が大きく変化し、具体的には以下の如
くに大別される。先ず、0.852X≧0.80の場合
には非晶質化合物100%のものが得られ、0.80>
X>0.20の範囲ではpe2oa結晶の混在する配向
性多結晶体混在非晶質材料が得られ、1.00>X>0
.85の範囲ではPbO結晶相の混在する配向性多結晶
非晶質材料が得られる。第8図に本発明材料の生成範囲
を示す。
The atomic arrangement structure of the iron-lead compound of the present invention changes greatly depending on the mixing ratio of raw materials, and specifically, it can be broadly classified as follows. First, when 0.852X≧0.80, a 100% amorphous compound is obtained;
In the range of X>0.20, an amorphous material mixed with oriented polycrystals in which pe2oa crystals are mixed is obtained, and in the range of 1.00>X>0
.. In the range of 85, an oriented polycrystalline amorphous material containing a PbO crystal phase can be obtained. FIG. 8 shows the production range of the material of the present invention.

使用する急冷装置の急冷用ロールの周速度が、5m/秒
〜35m/秒の範囲内では、各組成域において得られる
材料の構造自体には大きな変化は認められない。
When the circumferential speed of the quenching roll of the quenching device used is within the range of 5 m/sec to 35 m/sec, no significant change is observed in the structure of the material itself obtained in each composition range.

本発明の配向性多結晶薄膜材料は、上述の様にして州ら
れた( Fe2Og ) 1−x −(PbO)x  
(但し1.00>X>0.20 )なる組成の鉄−鉛系
非晶質化合物材料を熱分析に供してその結晶化温度(T
c)を求めた後、該化合物拐料を結晶化温度以下の温度
で所定時間熱処理することにより得られる。尚、結晶化
温度以下においても熱処理時間が長過ぎる場合には、非
配向性の多結晶体となるので、この点に関する留意が必
要である。
The oriented polycrystalline thin film material of the present invention has (Fe2Og)1-x-(PbO)x prepared as described above.
(However, 1.00>X>0.20) An iron-lead amorphous compound material with a composition of
After determining c), it is obtained by heat-treating the compound powder at a temperature below the crystallization temperature for a predetermined period of time. Note that if the heat treatment time is too long even below the crystallization temperature, a non-oriented polycrystalline material will result, so care must be taken in this regard.

例えば、(F820B ) l−X −(PbO)xに
おいてX=0.66なる鉄−鉛系非晶質化合物材料の結
晶化温度は、436°Cであり、これを大気中で熱処理
すると、条件によって下記の如き材料が得られる。
For example, the crystallization temperature of an iron-lead amorphous compound material where X=0.66 in (F820B) l-X-(PbO)x is 436°C, and when it is heat-treated in the atmosphere, the conditions The following materials are obtained.

1.485°C×10分:配向性多結晶体2.485°
C×80分:多結晶体 8.890°C×10分:非晶質材料 4.890°C×30分:配向性多結晶体5.890℃
×60分:多結晶体 尚、本発明材料の構造の同定に際しては、X線回折及び
偏光顕微鏡により結晶性の有無の確認及び構造解析を行
ない、走査型電子顕微鏡により極少部分の観察をイ1な
った。
1.485°C x 10 minutes: oriented polycrystal 2.485°
C x 80 minutes: Polycrystalline 8.890°C x 10 minutes: Amorphous material 4.890°C x 30 minutes: Oriented polycrystalline 5.890°C
×60 minutes: Polycrystalline When identifying the structure of the material of the present invention, confirm the presence or absence of crystallinity and analyze the structure using X-ray diffraction and a polarizing microscope, and observe a very small portion using a scanning electron microscope. became.

以下実施例により本発明の特徴とするところをよシ一層
明らかにする。
The features of the present invention will be made clearer by way of examples below.

実施例I F8201] (純度99.9%)及びPb0(純度9
9.9%)を所定の組成で配合し、均一に混合した後、
850°Cで80分間仮焼して組成物原料とした。
Example I F8201] (purity 99.9%) and Pb0 (purity 9
9.9%) in a predetermined composition and mixed uniformly,
It was calcined at 850°C for 80 minutes and used as a raw material for a composition.

得られた組成物原料を白金チューブ(直径10mm X
長さ150m1Il)に充填し、誘電加熱コイル内に設
置して、発振管繊条電圧18V、陽極電圧1gKV、格
子電流!20〜150mA、陽極電流1.2〜1.8A
の条件下に誘電加熱した。完全に融液化した原料を急冷
用回転ロール表面上に乾燥圧縮空気により吹き出し、急
冷させた。
The obtained composition raw material was placed in a platinum tube (diameter 10 mm
Filled with a length of 150 m (1 Il), installed in a dielectric heating coil, oscillator tube fiber voltage 18V, anode voltage 1gKV, grid current! 20-150mA, anode current 1.2-1.8A
Dielectric heating was carried out under the following conditions. The completely molten raw material was blown out onto the surface of a rotating rapid cooling roll using dry compressed air to rapidly cool it.

第1表及び第2表に組成及び製造時の諸条件を示す。第
1表及び第2表中試料N001〜20.25及び29は
、リボン状の本発明の非晶質酸化物材料を示す。又、N
o、 24は、ロールの回転速度が大きい為、薄片とな
っているが、形状に制約がない触媒等の分野では使用可
能である。
Tables 1 and 2 show the composition and manufacturing conditions. Samples N001-20.25 and 29 in Tables 1 and 2 show ribbon-shaped amorphous oxide materials of the present invention. Also, N
24 is a thin piece because the rotational speed of the roll is high, but it can be used in fields such as catalysts where there are no restrictions on shape.

尚、ノズル形状Aとあるのは、0.2 mm X 4m
mのスリット状ノズルを示し、ノズル形状Bとあるのは
径g、2mmの円形ノズルを示す。
In addition, nozzle shape A is 0.2 mm x 4 m.
The nozzle shape B indicates a circular nozzle with a diameter g of 2 mm.

参考例1 (FegOa ) t−x −(PbO)xにおイテX
=0.50に相当する上記実施例1の試料NO,8,1
0,12,18及び15についてのX線回析結果を第4
図に示す。急冷用ロールの周速度が5.18m/秒(F
e08)から84.54m/秒(No、 15 ) O
範囲内で得られた材料の原子配列椛造には、大きな変化
がないことが明らかである。
Reference example 1 (FegOa) t-x - (PbO)
Sample No. 8, 1 of the above Example 1 corresponding to =0.50
The X-ray diffraction results for 0, 12, 18 and 15 are
As shown in the figure. The peripheral speed of the quenching roll is 5.18 m/s (F
e08) to 84.54 m/sec (No, 15) O
It is clear that there are no significant changes in the atomic arrangement structure of the materials obtained within the range.

参考例2 (Fe20a ) 1−x −(FbO)xにおいてX
=0.66に相当する上記実施例1の試料N097の示
差熱分析結果を第5図に示す。
Reference example 2 (Fe20a) 1-x - (FbO)
The results of differential thermal analysis of sample No. 097 of Example 1, which corresponds to =0.66, are shown in FIG.

第6図において、Toは結晶化温度、TFIはガラス転
位点、mpは融点を夫々示す。
In FIG. 6, To indicates the crystallization temperature, TFI indicates the glass transition point, and mp indicates the melting point.

参考例3 (Fe2Og ) 1−X 、 (PbO)Xにおいて
X=0.66に相当する上記実施例1の試料No、7の
外観を示す写真を参考図面lとして示す。
Reference Example 3 A photograph showing the appearance of Sample No. 7 of Example 1, which corresponds to X=0.66 in (Fe2Og) 1-X, (PbO)X, is shown as Reference Drawing 1.

参考例4 上記実施例1の試料N007の走査型電子顕微鏡写真(
20000倍及び860倍)を夫々参考図面I及び■と
じて示す。
Reference Example 4 Scanning electron micrograph of sample N007 of Example 1 above (
20,000 times and 860 times) are shown as Reference Drawings I and ■, respectively.

参考例5 (FegOa)t −x −(PbO)X KオイテX
 = 0.66に相当する上記実施例1の試料N018
の赤外線吸収スペクトルを第6図として示す。
Reference example 5 (FegOa)t -x -(PbO)X KOiteX
Sample No. 18 of Example 1 above corresponding to = 0.66
The infrared absorption spectrum of is shown in FIG.

参考例6 (Fe20g ) 1−X 、 (PbO)Xにおいて
X=0.75に相当する上記実施例1の試料N0017
の14.4°Cにおける直流電気伝導度を第7図に示し
、又14.4°Cにおける周波数に対する誘電率(1)
及び誘電損失(1)を第8図に示す。尚、試料の厚さを
0.00260mとし、電極面積を0.00685cm
2とした。
Reference Example 6 Sample N0017 of the above Example 1 corresponding to X=0.75 in (Fe20g) 1-X, (PbO)X
Figure 7 shows the DC electrical conductivity at 14.4°C, and the dielectric constant (1) versus frequency at 14.4°C.
and dielectric loss (1) are shown in FIG. The thickness of the sample was 0.00260 m, and the electrode area was 0.00685 cm.
It was set as 2.

参考例7 (Fe20s ) t−x ・(FbO)xにおいてX
が1.00から0.50まで変化した場合の室温(28
°C)での磁化量の変化を第9図に線(A)として示す
Reference example 7 (Fe20s) t-x ・(FbO)X in x
Room temperature (28
The change in the amount of magnetization with temperature (°C) is shown in FIG. 9 as a line (A).

又、(B”es+Oa ) t−x −(PbO)xに
おいてX=0.50なる同一組成を有する非晶質材料(
上記実施例1の試料No、g)と結晶質材料(F192
0BとPbOとを850°Cで60分間焼結したもの)
とについての温度変化に対する磁化量の変化を第9図に
線(B)及び(C)として夫々示す。
Moreover, an amorphous material (
Sample No. g) of Example 1 above and crystalline material (F192
0B and PbO sintered at 850°C for 60 minutes)
The changes in the amount of magnetization with respect to temperature changes are shown in FIG. 9 as lines (B) and (C), respectively.

参考例8 (Fe20a)t −x ・(PbO)x Kオイテx
 = 0.50に相当する上記実施例1の試料No、8
における熱処理温度及び時間に対する構造変化に伴う磁
化量変化を第10図に示す。
Reference example 8 (Fe20a)t −x ・(PbO)x KOitex
Sample No. 8 of the above Example 1 corresponding to = 0.50
FIG. 10 shows changes in magnetization due to structural changes with respect to heat treatment temperature and time.

参考例9 (Fe20s)i −x −(PbO)x KオイテX
 = 0.66に相当する上記実施例1の試料No、 
7における光−磁気変化量(応答性)を第11図に示す
Reference example 9 (Fe20s)i −x −(PbO)x KOiteX
Sample No. of the above Example 1 corresponding to = 0.66,
The amount of optical-magnetic change (responsiveness) in No. 7 is shown in FIG.

実施例2 実施例1の試料No、 17を空気中890°Cで80
分間熱処理した後、X線回折を行なったところ、回折角
(2θ)に1本の鋭い回折ピークを示し、非晶質構造か
ら配向性多結晶構造への変化が確認された。
Example 2 Sample No. 17 of Example 1 was heated at 890°C in air for 80
After heat treatment for a minute, X-ray diffraction was performed, and one sharp diffraction peak was observed at the diffraction angle (2θ), confirming a change from an amorphous structure to an oriented polycrystalline structure.

又、熱処理の前後における電気的性質(周波数IKI(
z)は以下の通りであった。
In addition, the electrical properties (frequency IKI (
z) was as follows.

熱処理前  熱処理後 誘電率(ε)    78   157誘電損失(ta
nδ)   0.8   0.04
Before heat treatment After heat treatment Dielectric constant (ε) 78 157 Dielectric loss (ta
nδ) 0.8 0.04

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法において使用される融解原料の急
冷装置の一例の正面図、第2図は、第1図の急冷装置の
一部拡大詳細図面、第8図は、本発明材料の組成範囲を
示す図面、第4図は、本発明材料の若干のX線回折図面
、第5図は、本発明による一材料の示差熱分析図、第6
図は、本発明による他の一材料の赤外線吸収スペクトル
、第7図は、本発明による他の一材料の直流電気伝導度
を示すグラフ、第8図は、第7図に示すと同様の材料の
周波数に対する誘電率及び誘電損失を示すグラフ、第9
図の線(A)は、 (Fe20a)1−X −(PbO)x ニオイテxが
変化した場合の磁化量の変化を示すグラフ、第9図の線
(B)及び(C)は、(Fe20a)t−x ・(Pb
O)x ニオイテX=0.50なる組成を有する非晶質
材料及び結晶質材料の温度変化に対する磁化量の変化を
示すグラフ、第10図は本発明による材料の熱処理温度
及び時間に対する磁化量変化を示すグラフ、第11図は
本発明による材料の光−磁気変化量(応答性)を夫々示
す。 (1)・・・架台、     (3)・・・急冷装置本
体、り5)、(5)・・・誘電加熱用コイル、(7)・
・・原料加熱用チューブ、 (9)・・・原料加熱用チューブの支持体、0℃・・・
融解原料噴出用ノズル、 03・・・急冷用ロール、 aつ・・・ノズルθυの冷却用ノヌ゛ル、αη・・・渦
流防止エアノズル、 01・・・ノズル0υの微調整機構、 (財)・・・エアシリンダー、 (2)・・・冷却された材料の受は箱、(ハ)・・・冷
却材料取り出口、■・・・パルプ、翰・・・冷却水導入
路、  61)・・・冷却水排出路、曽・・・ニードル
バルブ、 彌・・・ブローエア導入路、(ロ)・・・ロ
ール(至)とツメ/L7Ql)との間隔微調整機構、翰
・・・整流用目皿。 (以 上) 代理人 去理士 三 枝 英 二′!、”い−二]、ノ 第1図 第3図 (Fe20+)1−x(PbO)x 第5図 時間(介) ゝ′00000゜ (”)(ON 00 寸 −P〜 μ) 11         冒 〈 O口 () ・× ○ lコ ニ E/ 〈 l ! / / い −−− Q                        
     N第1頁の続き 0発 明 者 増田修二 徳島県板野郡北島町江尻字宮ノ 本27−8 0発 明 者 太田追啓 徳島県板野郡藍住町東中富字長 江傍示86番中富団地F8−148 0発 明 者 大久保美香 徳島市佐古六番町3番20号 ■出 願 人 増本健 仙台市上杉3丁目8番22号 ■出 願 人 鈴木謙爾 泉市将監11丁目12番11号 ■出 願 人 増田修二 徳島県板野郡北島町江尻字宮ノ 本27−8 ■出 願 人 太田追啓 徳島県板野郡藍住町東中富字長 江傍示86番中富団地F8−148
FIG. 1 is a front view of an example of a quenching device for molten raw materials used in the method of the present invention, FIG. 2 is a partially enlarged detailed drawing of the quenching device in FIG. 1, and FIG. Drawings showing the composition range; FIG. 4 is an X-ray diffraction diagram of some materials of the present invention; FIG. 5 is a differential thermal analysis diagram of one material according to the present invention; FIG.
The figure is an infrared absorption spectrum of another material according to the present invention, FIG. 7 is a graph showing the DC electrical conductivity of another material according to the present invention, and FIG. 8 is a material similar to that shown in FIG. 7. Graph showing dielectric constant and dielectric loss with respect to frequency, No. 9
The line (A) in the figure is a graph showing the change in magnetization when the (Fe20a)1-X -(PbO) )t-x ・(Pb
A graph showing changes in magnetization with respect to temperature changes of amorphous materials and crystalline materials having a composition of O) 11 shows the amount of optical-magnetic change (responsivity) of the material according to the present invention. (1)... Frame, (3)... Rapid cooling device body, (5)... Dielectric heating coil, (7)...
・・Tube for heating the raw material, (9) ・・Support for the tube for heating the raw material, 0°C…
Nozzle for spouting molten raw material, 03...roll for rapid cooling, a...nozzle for cooling nozzle θυ, αη...air nozzle to prevent eddy current, 01...fine adjustment mechanism for nozzle 0υ, Foundation ...Air cylinder, (2)...Cooled material receptacle is box, (c)...Cooled material outlet, ■...Pulp, kiln...Cooling water introduction channel, 61).・・Cooling water discharge path, ・Needle valve, ・Blow air introduction path, (B) ・・Distance fine adjustment mechanism between roll (to) and claw/L7Ql), ・Kan・・For rectification Eye plate. (That's all) Agent: Eiji Saegusa! , "I-2], Figure 1 Figure 3 (Fe20+) 1-x (PbO) O mouth () ・× ○ lconiE/〈l! / / I --- Q
Continued from page N1 0 Inventor: Shuji Masuda 27-8 Miyanomoto, Ejiri, Kitajima-cho, Itano-gun, Tokushima Prefecture 0 Inventor: Oita Oihiro, 86, Nagae Saiji, Nagae, Higashi-Nakatomi, Aizumi-cho, Itano-gun, Tokushima Prefecture, Nakatomi Danchi F8-148 0 Author: Mika Okubo, 3-20, Sako Rokuban-cho, Tokushima City ■Applicant: Ken Masumoto, 3-8-22 Uesugi, Sendai City ■Applicant: Kenji Suzuki, 11-12-11, Shokan, Izumi City ■Applicant: Person: Shuji Masuda 27-8 Miyanomoto, Ejiri, Kitajima-cho, Itano-gun, Tokushima Prefecture ■Applicant: Shuji Ota, No. 86, Nakatomi Danchi F8-148, Nagae Saiji, Aizumi-cho, Itano-gun, Tokushima Prefecture

Claims (1)

【特許請求の範囲】 ■ (Fe20B)1−X −(PbO)x (但t、
i、oo>x)0.20)々る組成を有する鉄−鉛系非
晶質化合物材料。 ■ 0.85≧X≧0.30である特許請求の範囲第1
項の鉄−鉛系非晶質化合物材料。 ■ 0.30>X>0.20である特許請求の範囲第1
項の鉄−鉛系非晶質化合物材料。 、■ 1.00>X>0.85である特許請求の範囲第
1項の鉄−鉛系非晶質化合物材料。 ■ 酸化鉄と酸化鉛との混合物を加熱融解した後、融解
物を超急冷することを特徴とする ( Fezes ) 1−X ・(PbO)x (但し
1.00>X>0.20)なる組成を有する欽−鉛系非
晶質化合物材料の製造法。 ■ 10〜b 許請求の範囲第5項の鉄−鉛系非晶質化合物材料の製造
法。 ■ 原料融解物を固体に接触させることにより超急冷す
る特許請求の範囲第5項又は第6項の鉄−鉛系非晶質化
合物材料の製造法。 ■ スリット状、円形又は楕円形の吹出し口を設けたノ
ズルを備えた加熱用チューブに原料混合物を投入し、該
混合物の融点よりも50〜200°C高い温度で加熱溶
融させた後、5m/秒〜85m/秒の周速度で回転する
ロール表面上に上記ノズルを経て該融解物を吹き出して
超急冷させる特許請求の範囲第6項乃至第7項のいずれ
かに記載の鉄−鉛系非晶質化合物の製造法。 ■ (Fez08)t −x −(PbO)x (但し
1.00>X>0.20)なる組成を有する鉄−鉛系非
晶質化合物材料をその結晶化温度以下で加熱処理するこ
とを特徴とする配向性多結晶薄膜材料のW造法。
[Claims] ■ (Fe20B)1-X -(PbO)x (However,
i,oo>x)0.20) An iron-lead based amorphous compound material having a composition of: i,oo>x)0.20). ■ Claim 1 where 0.85≧X≧0.30
Iron-lead amorphous compound material. ■ Claim 1 where 0.30>X>0.20
Iron-lead amorphous compound material. , ■ The iron-lead based amorphous compound material according to claim 1, wherein 1.00>X>0.85. ■ It is characterized by heating and melting a mixture of iron oxide and lead oxide and then cooling the molten material extremely rapidly (Fezes) 1-X ・(PbO)x (however, 1.00>X>0.20) A method for producing a lead-based amorphous compound material having the following composition. (10-b) A method for producing an iron-lead amorphous compound material according to claim 5. (2) A method for producing an iron-lead amorphous compound material according to claim 5 or 6, wherein the raw material melt is ultra-quenched by bringing it into contact with a solid. ■ The raw material mixture is put into a heating tube equipped with a nozzle equipped with a slit-shaped, circular or oval outlet, and after heating and melting it at a temperature 50 to 200°C higher than the melting point of the mixture, The iron-lead non-containing material according to any one of claims 6 to 7, wherein the melt is blown out through the nozzle onto the surface of a roll rotating at a circumferential speed of 85 m/sec to 85 m/sec to cool it super rapidly. Method for producing crystalline compounds. ■ (Fez08)t -x -(PbO)x (However, 1.00>X>0.20) The iron-lead amorphous compound material is heat-treated at a temperature below its crystallization temperature. W manufacturing method of oriented polycrystalline thin film material.
JP58086031A 1983-05-16 1983-05-16 Material consisting of fe-pb amorphous compound and process for preparing it Granted JPS59213625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58086031A JPS59213625A (en) 1983-05-16 1983-05-16 Material consisting of fe-pb amorphous compound and process for preparing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58086031A JPS59213625A (en) 1983-05-16 1983-05-16 Material consisting of fe-pb amorphous compound and process for preparing it

Publications (2)

Publication Number Publication Date
JPS59213625A true JPS59213625A (en) 1984-12-03
JPH0346408B2 JPH0346408B2 (en) 1991-07-16

Family

ID=13875286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58086031A Granted JPS59213625A (en) 1983-05-16 1983-05-16 Material consisting of fe-pb amorphous compound and process for preparing it

Country Status (1)

Country Link
JP (1) JPS59213625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216255A (en) * 2007-03-05 2008-09-18 Headway Technologies Inc Magnetic particle detecting method
CN114477301A (en) * 2022-02-25 2022-05-13 武汉苏泊尔炊具有限公司 Non-stick material and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008216255A (en) * 2007-03-05 2008-09-18 Headway Technologies Inc Magnetic particle detecting method
JP2013140186A (en) * 2007-03-05 2013-07-18 Headway Technologies Inc Magnetic particle detecting method
CN114477301A (en) * 2022-02-25 2022-05-13 武汉苏泊尔炊具有限公司 Non-stick material and preparation method and application thereof
CN114477301B (en) * 2022-02-25 2023-09-29 武汉苏泊尔炊具有限公司 Non-stick material, preparation method and application thereof

Also Published As

Publication number Publication date
JPH0346408B2 (en) 1991-07-16

Similar Documents

Publication Publication Date Title
JPS59213625A (en) Material consisting of fe-pb amorphous compound and process for preparing it
JPH0435430B2 (en)
JPS59190228A (en) Amorphous compound material of vanadium-cobalt system and its preparation
JPH0435403B2 (en)
JPS59203712A (en) Amorphous iron-tellurium compound material and its manufacture
JPS60127242A (en) Iron-lead amorphous compound material and its production
JPH0422854B2 (en)
JPS60127244A (en) Iron-bismuth amorphous compound material and its production
JPH0436097B2 (en)
JPS59203730A (en) Material and preparation of fe-v amorphous compound
JPS5973438A (en) Bismuth-iron amorphous compound material and preparation thereof
JPS59199511A (en) Tellurium-lithium amorphous compound material and its production
JPS59203706A (en) Amorphous tellurium-aluminum compound material and its manufacture
JPS59203708A (en) Amorphous tellurium-zinc compound material and its manufacture
JPS59195537A (en) Amorphous vanadium-manganese compound material and its manufacture
JPS60118614A (en) Amorphous compound material of tellurium-barium system and its preparation
JPS605015A (en) Amorphous compound material of tellurium-silicon type and its preparation
JPS59190222A (en) Amorphous vanadium-titanium compound material and its preparation
JPS59199510A (en) Tellurium-titanium amorphous compound material and its production
JPH0331652B2 (en)
JPS59199507A (en) Tellurium-lead amorphous compound material and its production
JPH0436094B2 (en)
JPH0250057B2 (en)
JPH0357053B2 (en)
JPS59203710A (en) Amorphous tellurium-molybdenum compound material and its manufacture